首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
MicroRNAs (miRNAs) function as key regulators of gene expression in various cancers. In this study, the aim is to explore the roles and regulation mechanism of miR-181c in neuroblastoma (NB) cells. We found that miR-181c was downregulated in metastatic NB tissues, compared with primary NB tissues. Then functional studies indicated that miR-181 c overexpression inhibited NB cell proliferation, migration, and invasion, while miR-181c inhibition increased cell proliferation, migration, and invasion. EGFP reporter assay, real-time polymerase chain reaction and western blot analysis validated that Smad7 was a direct target of miR- 181c. MiR-181c reduced Smad7 expression at both mRNA and protein levels. Finally, functional assays showed that the effect of Smad7 knockdown on cells was similar to that of miR-181c overexpression. Importantly, Smad7 overexpression could restore the antitumor effects that were induced by miR-181 c. In conclusion, our results demonstrated that miR- 181c inhibits NB cell growth and metastasis-related traits through the suppression of SmadT, functioning as a tumor suppressor. Moreover, our results suggested that miR-181c may serve as an important therapeutic target for NB patients.  相似文献   

2.
Hypoxia is a key component of the tumor microenviron- merit and represents a well-documented source of thera- peutic failure in clinical oncology. Recent work has provided support for the idea that non-coding RNAs, and in particular, microRNAs, may play important roles in the adaptive response to low oxygen in tumors. Specifically, all published studies agree that the induction of microRNA- 210 (miR-210) is a consistent feature of the hypoxic re- sponse in both normal and malignant cells, miR-210 is a robust target of hypoxia-inducible factors, and its overex- pression has been detected in a variety of diseases with a hypoxic component, including most solid tumors. High levels of miR-210 have been linked to an in vivo hypoxic sig- nature and to adverse prognosis in breast and pancreatic cancer patients. A wide variety of miR-210 targets have been identified, pointing to roles in mitochondrial metabol- ism, angiogenesis, DNA damage response, apoptosis, and cell survival. Such targets are suspected to affect the devel- opment of tumors in multiple ways; therefore, an increased knowledge about miR-210's functions may lead to novel diagnostic and therapeutic approaches in cancer.  相似文献   

3.
Angiosperm seeds usually consist of two major parts: the embryo and the endosperm. However, the molec- ular mechanism(s) underlying embryo and endosperm development remains largely unknown, particularly in rice, the model cereal. Here, we report the identification and functional characterization of the rice GIANT EMBRYO (GE) gene. Mutation of GE resulted in a large embryo in the seed, which was caused by excessive expansion of scuteUum cells. Post-embryonic growth of ge seedling was severely inhibited due to defective shoot apical meristem (SAM) mainte- nance. Map-based cloning revealed that GE encodes a CYP78A subfamily P450 monooxygenase that is localized to the endoplasmic reticulum. GE is expressed predominantly in the scutellar epithelium, the interface region between embryo and endosperm. Overexpression of GE promoted cell proliferation and enhanced rice plant growth and grain yield, but reduced embryo size, suggesting that GE is critical for coordinating rice embryo and endosperm development. Moreover, transgenic Arabidopsis plants overexpressing AtCYP78AlO, a GE homolog, also produced bigger seeds, implying a con- served role for the CYP78A subfamily of P450s in regulating seed development. Taken together, our results indicate that GE plays critical roles in regulating embryo development and SAM maintenance.  相似文献   

4.
5.
The past decade has witnessed a rapid accumulation of evi- dence showing that hypoxic microenvironment, which is typical during cancer development, plays key roles in regu- lating cancer cell metabolism. In this review, we will focus on the role of hypoxic response, particularly, its master regulator hypoxia-inducible factor-I, in regulating glucose, lipid, as well as amino acid metabolism in cancer cells. We will also discuss the therapeutic opportunities by targeting specific pathways that facilitate metabolic reprogramming in cancer cells.  相似文献   

6.
To study how conserved fundamental concepts of the heat stress response (HSR) are in photosynthetic eukaryotes, we applied pharmaceutical and antisense/amiRNA approaches to the unicellular green alga Chlamydomonas reinhardtii. The Chlamydomonas HSR appears to be triggered by the accumulation of unfolded proteins, as it was induced at ambient temperatures by feeding cells with the arginine analog canavanine. The protein kinase inhibitor staurosporine strongly retarded the HSR, demonstrating the importance of phosphorylation during activation of the HSR also in Chlamydomonas. While the removal of extracellular calcium by the application of EGTA and BAPTA inhibited the HSR in moss and higher plants, only the addition of BAPTA, but not of EGTA, retarded the HSR and impaired thermotoler- ance in Chlamydomonas. The addition of cycloheximide, an inhibitor of cytosolic protein synthesis, abolished the attenu- ation of the HSR, indicating that protein synthesis is necessary to restore proteostasis. HSP90 inhibitors induced a stress response when added at ambient conditions and retarded attenuation of the HSR at elevated temperatures. In addition, we detected a direct physical interaction between cytosolic HSP90A/HSP70A and heat shock factor 1, but surprisingly this interaction persisted after the onset of stress. Finally, the expression of antisense constructs targeting chloroplast HSP70B resulted in a delay of the cell's entire HSR, thus suggesting the existence of a retrograde stress signaling cascade that is desensitized in HSP7OB-antisense strains.  相似文献   

7.
The pH of intracellular compartments is essential for the viability of cells. Despite its relevance, little is known about the pH of these compartments. To measure pH in vivo, we have first generated two pH sensors by combining the improved-solubility feature of solubility-modified green fluorescent protein (GFP) (smGFP) with the pH-sensing capabil- ity of the pHluorins and codon optimized for expression in Arabidopsis. PEpHluorin (plant-solubility-modified ecliptic pHluorin) gradually loses fluorescence as pH is lowered with fluorescence vanishing at pH 6.2 and PRpHluorin (plant- solubility-modified ratiomatric pHluorin), a dual-excitation sensor, allowing for precise measurements. Compartment- specific sensors were generated by further fusing specific sorting signals to PEpHluorin and PRpHluorin. Our results show that the pH of cytosol and nucleus is similar (pH 7.3 and 7.2), while peroxisomes, mitochondrial matrix, and plastidial stroma have alkaline pH. Compartments of the secretory pathway reveal a gradual acidification, spanning from pH 7.1 in the endoplasmic reticulum (ER) to pH 5.2 in the vacuole. Surprisingly, pH in the trans-Golgi network (TGN) and mul- tivesicular body (MVB) is, with pH 6.3 and 6.2, quite similar. The inhibition of vacuolar-type H+-ATPase (V-ATPase) with concanamycin A (ConcA) caused drastic increase in pH in TGN and vacuole. Overall, the PEpHluorin and PRpHluorin are excellent pH sensors for visualization and quantification of pH in vivo, respectively.  相似文献   

8.
To accommodate two seemingly contradictory biological roles in plant physiology, providing both the rigid structural support of plant cells and the adjustable elasticity needed for cell expansion, the composition of the plant cell wall has evolved to become an intricate network of cellulosic, hemicellulosic, and pectic polysaccharides and protein. Due to its complexity, many aspects of the cell wall influence plant cell expansion, and many new and insightful observations and technologies are forthcoming. The biosynthesis of cell wall polymers and the roles of the variety of proteins involved in polysaccharide synthesis continue to be characterized. The interactions within the cell wall polymer network and the modification of these interactions provide insight into how the plant cell wall provides its dual function. The complex cell wall architecture is controlled and organized in part by the dynamic intracellular cytoskeleton and by diverse trafficking pathways of the cell wall polymers and cell wall-related machinery. Meanwhile, the cell wall is continually influenced by hormonal and integrity sensing stimuli that are perceived by the cell. These many processes cooperate to construct, maintain, and manipulate the intricate plant cell wall--an essential structure for the sustaining of the plant stature, growth, and life.  相似文献   

9.
A plant's capability to cope with environmental challenges largely relies on signal transmission through mitogen-activated protein kinase (MAPK) cascades. In Arabidopsis thaliana, MPK3 is particularly strongly associated with numerous abiotic and biotic stress responses. Identification of MPK3 substrates is a milestone towards improving stress resistance in plants. Here, we characterize AZI1, a lipid transfer protein (LTP)-related hybrid proline-rich protein (HyPRP), as a novel target of MPK3. AZI1 is phosphorylated by MPK3 in vitro. As documented by co-immunoprecipitation and bimolecular fluorescence complementation experiments, AZI1 interacts with MPK3 to form protein complexes in planta. Furthermore, null mutants of azil are hypersensitive to salt stress, while AZIl-overexpressing lines are markedly more tolerant. AZI1 overexpression in the mpk3 genetic background partially alleviates the salt-hypersensitive phenotype of this mutant, but functional MPK3 appears to be required for the full extent of AZIl-conferred robustness. Notably, this robustness does not come at the expense of normal development. Immunoblot and RT-PCR data point to a role of MPK3 as positive regulator of AZI1 abundance.  相似文献   

10.
Seedling development including hypocotyl elongation is a critical phase in the plant life cycle. Light regula- tion of hypocotyl elongation is primarily mediated through the blue light photoreceptor cryptochrome and red/far-red light photoreceptor phytochrome signaling pathways, comprising regulators including COP1, HY5, and phytochrome- interacting factors (PIFs). The novel phytohormones, strigolactones, also participate in regulating hypocotyl growth. However, how strigolactone coordinates with light and photoreceptors in the regulation of hypocotyl elongation is largely unclear. Here, we demonstrate that strigolactone inhibition of hypocotyl elongation is dependent on cryp- tochrome and phytochrome signaling pathways. The photoreceptor mutants cry1 cry2, phyA, and phyB are hyposensi- tive to strigolactone analog GR24 under the respective monochromatic light conditions, while cop1 and pifl pif3 pif4 pif5 (pifq) quadruple mutants are hypersensitive to GR24 in darkness. Genetic studies indicate that the enhanced respon- siveness of cop1 to GR24 is dependent on HY5 and MAX2, while that of pifq is independent of HY5. Further studies demonstrate that GR24 constitutively up-regulates HY5 expression in the dark and light, whereas GR24-promoted HY5 protein accumulation is light- and cryptochrome and phytochrome photoreceptor-dependent. These results suggest that the light dependency of strigolactone regulation of hypocotyl elongation is likely mediated through MAX2-dependent promotion of HY5 expression, light-dependent accumulation of HY5, and PIF-regulated components.  相似文献   

11.
Reactive oxygen species and auxin play important roles in the networks that regulate plant development and morphogenetic changes, However, the molecular mechanisms underlying the interactions between them are poorly understood. This study isolated a mas (More Axillary Shoots) mutant, which was identified as an allele of the mitochondrial AAA-protease AtFtSH4, and characterized the function of the FtSH4 gene in regulating plant development by medi- ating the peroxidase-dependent interplay between hydrogen peroxide (H2Oz) and auxin homeostasis. The phenotypes of dwarfism and increased axillary branches observed in the mas (renamed as ftsh4-4) mutant result from a decrease in the IAA concentration. The expression levels of several auxin signaling genes, including IAA1, IAA2, and IAA3, as well as several auxin binding and transport genes, decreased significantly in ftsh4-4 plants. However, the H202 and peroxidases levels, which also have IAA oxidase activity, were significantly elevated in ftsh4-4 plants. The ftsh4-4 phenotypes could be reversed by expressing the iaaM gene or by knocking down the peroxidase genes PRX34 and PRX33. Both approaches can increase auxin levels in the ftsh4-4 mutant. Taken together, these results provided direct molecular and genetic evidence for the interaction between mitochondrial ATP-dependent protease, H2O2, and auxin homeostasis to regulate plant growth and development.  相似文献   

12.
Proper vesicle tethering and membrane fusion at the cell plate are essential for cytokinesis. Both the vesicle tethering complex exocyst and membrane fusion regulator KEULE were shown to function in cell plate formation, but the exact mechanisms still remain to be explored. In this study, using yeast two-hybrid (Y-2-H) assay, we found that SEC6 interacted with KEULE, and that a small portion of C-terminal region of KEULE was required for the interaction. The direct SEC6-KEULE interaction was supported by further studies using in vitro pull-down assay, immunoprecipitation, and in vivo bimolecular florescence complementation (BIFC) microscopy, sec6 mutants were male gametophytic lethal as reported; however, pollen-rescued sec6 mutants (PRsec6) displayed cytokinesis defects in the embryonic cells and later in the leaf pavement cells and the guard cells. SEC6 and KEULE proteins were co-localized to the cell plate during cytokine- sis in transgenic Arabidopsis. Furthermore, only SEC6 but not other exocyst subunits located in the cell plate interacted with KEULE in vitro. These results demonstrated that, like KEULE, SEC6 plays a physiological role in cytokinesis, and the SEC6-KEULE interaction may serve as a novel molecular linkage between arriving vesicles and membrane fusion machin- ery or directly regulate membrane fusion during cell plate formation in plants.  相似文献   

13.
Intracellular protein routing is mediated by vesicular transport which is tightly regulated in eukaryotes. The protein and lipid homeostasis depends on coordinated delivery of de novo synthesized or recycled cargoes to the plasma membrane by exocytosis and their subsequent removal by rerouting them for recycling or degradation. Here, we report the characterization of protein affected trafficking 3 (pat3) mutant that we identified by an epifluorescence-based for- ward genetic screen for mutants defective in subcellular distribution of Arabidopsis auxin transporter PIN1-GFR While pat3 displays largely normal plant morphology and development in nutrient-rich conditions, it shows strong ectopic intracellular accumulations of different plasma membrane cargoes in structures that resemble prevacuolar compart- ments (PVC) with an aberrant morphology. Genetic mapping revealed that pat3 is defective in vacuolar protein sorting 35A (VPS35A), a putative subunit of the retromer complex that mediates retrograde trafficking between the PVC and trans-Golgi network. Similarly, a mutant defective in another retromer subunit, vps29, shows comparable subcellular defects in PVC morphology and protein accumulation. Thus, our data provide evidence that the retromer components VPS35A and VPS29 are essential for normal PVC morphology and normal trafficking of plasma membrane proteins in plants. In addition, we show that, out of the three VPS35 retromer subunits present in Arabidopsis thaliana genome, the VPS35 homolog A plays a prevailing role in trafficking to the lyric vacuole, presenting another level of complexity in the retromer-dependent vacuolar sorting.  相似文献   

14.
Ferredoxin-NADP+ oxidoreductase (FNR), functioning in the last step of the photosynthetic electron transfer chain, exists both as a soluble protein in the chloroplast stroma and tightly attached to chloroplast membranes. Surface plasmon resonance assays showed that the two FNR isoforms, LFNR1 and LFNR2, are bound to the thylakoid membrane via the C-terminal domains of Tic62 and TROL proteins in a pH-dependent manner. The tic62 trol double mutants contained a reduced level of FNR, exclusively found in the soluble stroma. Although the mutant plants showed no visual phenotype or defects in the function of photosystems under any conditions studied, a low ratio of NADPH/NADP~ was detected. Since the CO2 fixation capacity did not differ between the tic62 trol plants and wild-type, it seems that the plants are able to funnel reducing power to most crucial reactions to ensure survival and fitness of the plants. However, the activity of malate dehydrogenase was down-regulated in the mutant plants. Apparently, the plastid metabolism is able to cope with substantial changes in directing the electrons from the light reactions to stromal metabolism and thus only few differences are visible in steady-state metabolite pool sizes of the tic62 trol plants.  相似文献   

15.
The aim of this study was to investigate the role of apelin in the cell proliferation and autophagy of lung adenocarcin- oma. The over-expression of APJ in lung adenocarcinoma was detected by immunohistochemistry, while plasma apelin level in lung cancer patients was measured by enzyme-linked immunosorbent assay. Our findings revealed that apelin-13 significantly increased the phosphorylation of ERK1/2, the expression of cyclin D1, microtubule-associated protein 1 light chain 3A/B (LC3A/B), and beclinl, and con- fwmed that apelin-13 promoted A549 cell proliferation and induced A549 cell autophagy via ERK1/2 signaling. More- over, there are pores on the surface of human lung adeno- carcinoma cell line A549 and apelin-13 causes cell surface smooth and glossy as observed under atomic force micros- copy. These results suggested that ERK1/2 signaling pathway mediates apelin-13-induced lung adenocarcinoma cell proliferation and autophagy. Under our experimental condition, autophagy associated with 3-methyladenine was not involved in cell proliferation.  相似文献   

16.
17.
Citrate synthase has a key role in the tricarboxylic (TCA) cycle of mitochondria of all organisms, as it cata- lyzes the first committed step which is the fusion of a carbon-carbon bond between oxaloacetate and acetyl CoA. The regulation of TCA cycle function is especially important in plants, since mitochondrial activities have to be coordinated with photosynthesis. The posttranslational regulation of TCA cycle activity in plants is thus far almost entirely unexplored. Although several TCA cycle enzymes have been identified as thioredoxin targets in vitro, the existence of any thioredoxin-dependent regulation as known for the Calvin cycle, yet remains to be demonstrated. Here we have investigated the redox regulation of the Arabidopsis citrate synthase enzyme by site-directed mutagenesis of its six cysteine residues. Our results indicate that oxidation inhibits the enzyme activity by the formation of mixed disulfides, as the partially oxidized citrate synthase enzyme forms large redox-dependent aggregates. Furthermore, we were able to demonstrate that thioredoxin can cleave diverse intraas well as intermolecular disulfide bridges, which strongly enhances the activity of the enzyme. Activity measurements with the cysteine variants of the enzyme revealed important cysteine residues affecting total enzyme activity as well as the redox sensitivity of the enzyme.  相似文献   

18.
The development of a plant leaf is a meticulously orchestrated sequence of events producing a complex organ comprising diverse cell types. The reticulate class of leaf variegation mutants displays contrasting pigmentation between veins and interveinal regions due to specific aberrations in the development of mesophyll cells. Thus, the reticulate mutants offer a potent tool to investigate cell-type-specific developmental processes. The discovery that most mutants are affected in plastid-localized, metabolic pathways that are strongly expressed in vasculature-associated tis- sues implicates a crucial role for the bundle sheath and their chloroplasts in proper development of the mesophyll cells. Here, we review the reticulate mutants and their phenotypic characteristics, with a focus on those in Arabidopsis thali- ana. Two alternative models have been put forward to explain the relationship between plastid metabolism and meso- phyll cell development, which we call here the supply and the signaling hypotheses. We critically assess these proposed models and discuss their implications for leaf development and bundle sheath function in C3 species. The characteriza- tion of the reticulate mutants supports the significance of plastid retrograde signaling in cell development and highlights the significance of the bundle sheath in C3 photosynthesis.  相似文献   

19.
Several essential biological progresses in mammals are regulated by circadian rhythms. Though the molecular mechanisms of oscillating these circadian rhythms have been uncovered, the specific functions of the circadian genes are not very clear. It has been reported that knocking down circadian genes by microRNA is a useful strategy to explore the function of the circadian rhythms. In this study, through a forward bioinformatics screening ap- proach, we identified miR-29a/b/c as potent inhibitors for the human circadian gene hPER1. We further found that miR-29a/b/c could directly target hPER1 3/untranslated region (UTR) and down-regulate hPER1 at both mRNA and protein expression levels in human A549 cells. Thus, our findings suggested that the expression of hPER1 is regulated by miR-29a/b/c, which may also provide a new clue for the function ofhPER1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号