首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetic modelling of the respiratory network in plant mitochondria is discussed, with emphasis on the importance of the choice of boundary conditions, and of modelling of both quinol-oxidising and quinone-reducing pathways. This allows quantitative understanding of the interplay between the different pathways, and of the functioning of the plant respiratory network in terms of the kinetic properties of its component parts. The effects of activation of especially succinate dehydrogenase and the cyanide-insensitive alternative oxidase are discussed. Phenomena, such as respiratory control ratios depending on the substrate, shortcomings of the Bahr and Bonner model for electron distribution between the oxidases and reversed respiratory control, are explained. The relation to metabolic control analysis of the respiratory network is discussed in terms of top-down analysis.  相似文献   

2.
Import of the synthetic precursor of the alternative oxidase from soybean was shown to be dependent on a membrane potential and ATP. The membrane potential in soybean mitochondria may be formed either by respiration through the cytochrome pathway, or through the alternative oxidase pathway with NAD+-linked substrates. Import of the alternative oxidase precursor in the presence of succinate as respiratory substrate was inhibited by KCN. Import in the presence of malate was insensitive to KCN and SHAM added separately, but was inhibited by KCN and SHAM added together (inhibitors of the cytochrome and alternative oxidases respectively). Import of the alternative oxidase was accompanied by processing of the precursor to a single 32 kDa product in both cotyledon and root mitochondria. This product had a different mobility than the two alternative oxidase bands detected by immunological means (34 and 36 kDa), suggesting that the enzyme had been modified in situ. When the cDNA clone of the alternative oxidase was modified by a single mutation (–2 Arg changed to –2 Gly), the processing of the precursor was inhibited.  相似文献   

3.
Breeding for abiotic stresses for sustainable agriculture   总被引:1,自引:0,他引:1  
Using cereal crops as examples, we review the breeding for tolerance to the abiotic stresses of low nitrogen, drought, salinity and aluminium toxicity. All are already important abiotic stress factors that cause large and widespread yield reductions. Drought will increase in importance with climate change, the area of irrigated land that is salinized continues to increase, and the cost of inorganic N is set to rise. There is good potential for directly breeding for adaptation to low N while retaining an ability to respond to high N conditions. Breeding for drought and salinity tolerance have proven to be difficult, and the complex mechanisms of tolerance are reviewed. Marker-assisted selection for component traits of drought in rice and pearl millet and salinity tolerance in wheat has produced some positive results and the pyramiding of stable quantitative trait locuses controlling component traits may provide a solution. New genomic technologies promise to make progress for breeding tolerance to these two stresses through a more fundamental understanding of underlying processes and identification of the genes responsible. In wheat, there is a great potential of breeding genetic resistance for salinity and aluminium tolerance through the contributions of wild relatives.  相似文献   

4.
We previously demonstrated that both trehalose and LEA protein protect plants from damage by drought, salt, and heat. Here, we compared their effectiveness in preserving photosynthetic capacity under those abiotic stresses. Upon dehydration, the Pmax (maximal photosynthetic rate) of O2 evolution decreased similarly in both nontransformants andotsA plants. Contrastingly, Pmax was maintained at a considerably higher level inCaLEA6 plants. However, no significant differences in Chl fluorescence parameters were observed between transformants and nontransformants. Under salinity stress,CaLEA6 plants were also better thanotsA plants in terms of their values for Pmax, photochemical efficiency of PSII(Fv/Fm), and photochemical quenching (qP). After heat bothotsA andCaLEA6 plants maintained a higher Pmax as well as more favorable Chl fluorescence parameters, although the latter transformant performed slightly better overall. Therefore, despite the comparable effectiveness of trehalose and LEA protein in enhancing tolerance against those abiotic stresses, they confer differential protection in maintaining photosynthetic capacity. Compared with trehalose, the CaLEA6 protein appears to be a more universal and effective agent under those stresses.  相似文献   

5.
Regulation of alternative oxidase activity in higher plants   总被引:10,自引:0,他引:10  
Plant mitochondria contain two terminal oxidases: cytochrome oxidase and the cyanideinsensitive alternative oxidase. Electron partioning between the two pathways is regulated by the redox poise of the ubiquinone pool and the activation state of the alternative oxidase. The alternative oxidase appears to exist as a dimer which is active in the reduced, noncovalently linked form and inactive when in the oxidized, covalently linked form. Reduction of the oxidase in isolated tobacco mitochondria occurs upon oxidation of isocitrate or malate and may be mediated by matrix NAD(P)H. The activity of the reduced oxidase is governed by certain other organic acids, notably pyruvate, which appear to interact directly with the enzyme. Pyruvate alters the interaction between the alternative oxidase and ubiquinol so that the oxidase becomes active at much lower levels of ubiquinol and competes with the cytochrome pathway for electrons. These requirements for activation of the alternative oxidase constitute a sophisticated feed-forward control mechanism which determines the extent to which electrons are directed away from the energy-conserving cytochrome pathway to the non-energy conserving alternative oxidase. Such a mechanism fits well with the proposed role of the alternative oxidase as a protective enzyme which prevents over-reduction of the cytochrome chain and fermentation of accumulated pyruvate.  相似文献   

6.
Ann L. Umbach  James N. Siedow 《BBA》2006,1757(2):135-142
Two Cys residues, CysI and CysII, are present in most plant alternative oxidases (AOXs). CysI inactivates AOX by forming a disulfide bond with the corresponding CysI residue on the adjacent subunit of the AOX homodimer. When reduced, CysI associates with α-keto acids, such as pyruvate, to activate AOX, an effect mimicked by charged amino acid substitutions at the CysI site. CysII may also be a site of AOX activity regulation, through interaction with the small α-keto acid, glyoxylate. Comparison of Arabidopsis AOX1a (AtAOX1a) mutants with single or double substitutions at CysI and CysII confirmed that glyoxylate interacted with either Cys, while the effect of pyruvate (or succinate for AtAOX1a substituted with Ala at CysI) was limited to CysI. A variety of CysII substitutions constitutively activated AtAOX1a, indicating that neither the catalytic site nor, unlike at CysI, charge repulsion is involved. Independent effects at each Cys were suggested by lack of CysII substitution interference with pyruvate stimulation at CysI, and close to additive activation at the two sites. However, results obtained using diamide treatment to covalently link the AtAOX1a subunits by the disulfide bond indicated that CysI must be in the reduced state for activation at CysII to occur.  相似文献   

7.
The mitochondrial alternative oxidase (AOX) and the plastid terminal oxidase (PTOX) are two similar members of the membrane-bound diiron carboxylate group of proteins. AOX is a ubiquinol oxidase present in all higher plants, as well as some algae, fungi, and protists. It may serve to dampen reactive oxygen species generation by the respiratory electron transport chain. PTOX is a plastoquinol oxidase in plants and some algae. It is required in carotenoid biosynthesis and may represent the elusive oxidase in chlororespiration. Recently, prokaryotic orthologues of both AOX and PTOX proteins have appeared in sequence databases. These include PTOX orthologues present in four different cyanobacteria as well as an AOX orthologue in an alpha-proteobacterium. We used PCR, RT-PCR and northern analyses to confirm the presence and expression of the PTOX gene in Anabaena variabilis PCC 7120. An extensive phylogeny of newly found prokaryotic and eukaryotic AOX and PTOX proteins supports the idea that AOX and PTOX represent two distinct groups of proteins that diverged prior to the endosymbiotic events that gave rise to the eukaryotic organelles. Using multiple sequence alignment, we identified residues conserved in all AOX and PTOX proteins. We also provide a scheme to readily distinguish PTOX from AOX proteins based upon differences in amino acid sequence in motifs around the conserved iron-binding residues. Given the presence of PTOX in cyanobacteria, we suggest that this acronym now stand for plastoquinol terminal oxidase. Our results have implications for the photosynthetic and respiratory metabolism of these prokaryotes, as well as for the origin and evolution of eukaryotic AOX and PTOX proteins.  相似文献   

8.
The alternative respiration pathway in plants: Role and regulation   总被引:18,自引:0,他引:18  
In the past few years, knowledge of the nature and regulation of the alternative oxidase in plant mitochondria has increased greatly. The protein has been characterized and mechanisms that regulate its activity have been described. The consequences of these regulatory mechanisms are that in vivo the cytochrome pathway and the alternative pathway may compete for electrons. The implications for the interpretation of the 'Bahr and Bonner' inhibitor titrations, formerly used to estimate the partitioning of electrons over the two pathways, are discussed.
It is proposed that activation and engagement of the alternative oxidase may keep Q reduction levels low in order to prevent harmful high levels of free radical production. A model is presented for the regulation of alternative oxidase protein induction, involving a signalling function of active oxygen species.  相似文献   

9.
10.
Trypanosoma brucei rhodesiense is one of the causative agents of African Trypanosomiasis. Programmed cell death (PCD) is fundamental in the development, homeostasis and immune mechanisms of multicellular organisms. It has been shown that, other than occurring in multicellular organisms, the PCD phenomenon also takes place in unicellular organisms. In the present study, we have found that under high-density axenic culture conditions, bloodstream form of T. b. rhodesiense depicts a PCD-like phenomenon. We investigated the association of the PCD-like phenomenon with expression of trypanosome alternative oxidase (TAO) under low-temperature stress conditions. We observed that bloodstream form of T. b. rhodesiense did not show any PCD but had up-regulated expression of TAO. Inhibition of TAO by the addition of ascofranone caused the development of PCD in bloodstream T. b. rhodesiense under low-temperature stress, implying that expression of TAO may contribute to the inhibition of PCD.  相似文献   

11.
Perturbation of mitochondrial function causes altered nuclear gene expression in plants. To study this response, called mitochondrial retrograde regulation, and developmental gene expression, a transgenic Arabidopsis thaliana (Col-0) line containing a firefly luciferase gene controlled by a promoter region of the Arabidopsis alternative oxidase 1a gene (AtAOX1a) was created. The transgene and the endogenous gene were developmentally induced in young cotyledons to a level higher than in older cotyledons and leaves. Analysis of transgene expression suggests that this is true for emerging leaves as well. Antimycin A (AA), a mitochondrial electron transport chain inhibitor, and monofluroacetate (MFA), a TCA cycle inhibitor, induced expression of the transgene and the endogenous gene in parallel. The following comparative responses of the transgene to inhibitors were observed: (a) the response in cotyledons to AA treatment differed greatly in magnitude from the response in leaves; (b) the induction kinetics in cotyledons following MFA treatment differed greatly from the kinetics in leaves; and (c) the induction kinetics following MFA treatment differed from the kinetics of AA in both leaves and cotyledons. The transgenic line was used in a genetic screen to isolate mutants with greatly decreased transgene and AtAOX1a induction in response to AA. Some of these mutant lines showed greatly decreased induction by MFA, but one did not. Taken altogether, the data provide genetic evidence that suggests that induction of the AtAOX1a gene by distinct mitochondrial perturbations are via distinct, but overlapping signaling pathways that are tissue specific.  相似文献   

12.
To survive, plants possess elaborate defence mechanisms to protect themselves against virus or pathogen invasion. Recent studies have suggested that plant mitochondria may play an important role in host defence responses to biotic stresses. In contrast with animal mitochondria, plant mitochondria possess a unique respiratory pathway, the cyanide‐insensitive alternative pathway, which is catalysed by the alternative oxidase (AOX). Much work has revealed that the genes encoding AOX, AOX protein and the alternative respiratory pathway are frequently induced during plant–pathogen (or virus) interaction. This raises the possibility that AOX is involved in host defence responses to biotic stresses. Thus, a key to the understanding of the role of mitochondrial respiration under biotic stresses is to learn the function and regulation of AOX. In this article, we focus on the theoretical and experimental progress made in the current understanding of the function and regulation of AOX under biotic stresses. We also address some speculative aspects to aid further research in this area.  相似文献   

13.
The mitochondrial alternative oxidase is a diiron carboxylate quinol oxidase (Dox) found in plants and some fungi and protists, but not animals. The plastid terminal oxidase is distantly related to alternative oxidase and is most likely also a Dox protein. Database searches revealed that the alpha-proteobacterium Novosphingobium aromaticivorans and the cyanobacteria Nostoc sp. PCC7120, Synechococcus sp. WH8102 and Prochlorococcus marinus subsp. pastoris CCMP1378 each possess a Dox homolog. Each prokaryotic protein conforms to the current structural models of the Dox active site and phylogenetic analyses suggest that the eukaryotic Dox genes arose from an ancestral prokaryotic gene.  相似文献   

14.
非生物胁迫下植物脱水素的研究进展   总被引:1,自引:0,他引:1  
脱水素是LEA蛋白中的一类,广泛存在于植物的各个组织器官及植物胚胎发育后期.脱水素是植物在受低温、干旱和高盐等非生物逆境胁迫时合成的一类高亲水性保护蛋白,具有保护核酸、胞内蛋白和膜结构免受损害的功能.许多研究已经证实在非生物胁迫下,植物脱水素的表达与积累和植物抗逆性之间存在着紧密的联系.对脱水素的结构、亚细胞定位、基因表达模式及非生物胁迫下脱水素作用的最新研究成果进行了综述.  相似文献   

15.
16.
Regulation of alternative oxidase gene expression in soybean   总被引:13,自引:0,他引:13  
Soybean (Glycine max cv. Stevens) suspension cells were used to investigate the expression of the alternative oxidase (Aox) multigene family. Suspension cells displayed very high rates of cyanide-insensitive respiration, but Aox3 was the only isoform detected in untreated cells. Incubation with antimycin A, citrate, salicylic acid or at low temperature (10 °C) specifically induced the accumulation of the Aox1 isoform. Aox2 was not observed under any conditions in the cells. Increases in Aox1 protein correlated with increases in Aox1 mRNA. Treatment of soybean cotyledons with norflurazon also induced expression of Aox1. Reactive oxygen species (ROS) were detected upon incubation of cells with antimycin, salicylic acid or at low temperature, but not during incubation with citrate. Aox1 induction by citrate, but not by antimycin, was prevented by including the protein kinase inhibitor staurosporine in the medium. The results suggest that multiple pathways exist in soybean to regulate expression of Aox genes and that Aox1 specifically is induced by a variety of stress and metabolic conditions via at least two independent signal transduction pathways.  相似文献   

17.
Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules in eukaryotes. Plant MAPK cascades are complicated networks and play vital roles in signal transduction induced by biotic and abiotic stresses. In this paper, expression patterns of MAPKs in maize roots treated with low-temperature, osmotic stresses, wounding, plant hormones and UV-C irradiation were investigated. Semi-quantitative RT-PCR reveals that the expression of MAPKs in maize roots which treated with low-temperature in light or in low light are inducible. The expression patterns of MAPKs in maize roots with treatments of CaCl2, SA, GA and wounding are approximately the same. A detailed time course experiment shows that the expression patterns of ZmSIMK are different with treatments of PEG and NaCl, respectively. These results suggest that the expression patterns of MAPKs are complicated and the signal pathways are interlaced into a network in maize roots.  相似文献   

18.
The study of the effect of nucleoside phosphates on the activity of cyanide-resistant oxidase in the mitochondria and submitochondrial particles of Yarrowia lipolytica showed that adenosine monophosphate (5'-AMP, AMP) did not stimulate the respiration of intact mitochondria. The incubation of mitochondria at room temperature (25 degrees C) for 3-5 h or their treatment with ultrasound, phospholipase A, and the detergent Triton X-100 at a low temperature inactivated the cyanide-resistant alternative oxidase. The inactivated alternative oxidase could be reactivated with AMP. The reactivating effect of AMP was enhanced by azolectin. Some other nucleoside phosphates also showed reactivating ability in the following descending order: AMP = GMP > GDP > GTP > MP > IMP. The apparent K(m) values for AMP in reactivation of the alternative oxidase of submitochondrial particles or mitochondria treated with Triton X-100 and incubated at 25 degrees C were calculated. Physiological aspects of activation of the alternative oxidase are discussed in connection with the impairment of electron transfer through the cytochrome pathway.  相似文献   

19.
植物中含有多种富含亮氨酸重复(leucine-rich repeats,LRRs)的蛋白质,这类蛋白质在植物生长、发育和抗病反应等方面发挥着重要作用。本研究在水稻中克隆到一个编码LRRs结构的基因OsLRR,以半定量RT-PCR检测了OsLRR在水稻不同组织和不同非生物胁迫的表达情况,并进一步分析了铝毒胁迫下OsLRR在抗铝和铝敏感水稻品种之间的表达差异。结果表明OsLRR在水稻根、叶鞘和叶中都有较高表达。铝、砷、PEG6000和ABA可诱导水稻根中OsLRR的表达,而镉、硝普钠和铁则抑制其表达。只有盐胁迫能诱导叶片中OsLRR的表达。铝毒可以诱导抗铝和铝敏感水稻品种根中OsLRR的表达,但随着处理时间的延长,抗铝品种中OsLRR的表达逐渐加强,而铝敏感品种中OsLRR的表达则逐渐减弱。  相似文献   

20.
The alternative oxidase of plant mitochondria is the terminal oxidase of the cyanide-insensitive respiratory pathway and is encoded by a nuclear gene. A 1 kb genomic fragment including exon 3 of the alternative oxidase was amplified by PCR from the genome of Arabidopsis thaliana. This fragment was connected to a tapetum-specific promoter in the antisense orientation and then introduced into tobacco. The pollen viability in three transgenic plants ranged from 2% to 60%. The reduced pollen viability cosegregated with the transgene in a selfed progeny. Immunolocalization of alternative oxidase protein in the immature flower bud section indicated that expression of alternative oxidase protein in tapetum of the transgenic plant was much lower than that of the non-transformant. The histological observation and protein gel-blot analysis showed that the development of pollen grains in the transgenic plant did not progress after the degradation of the tapetum, and the amount of alternative oxidase in pollen grains of the transgenic plant became lower than that of the non-transformant. These results suggested that the alternative oxidase activity in the tapetum has a significant effect on the pollen development. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号