首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We describe the purification and characterization of a 16S U5 snRNP from the yeast Saccharomyces cerevisiae and the identification of its proteins. In contrast to the human 20S U5 snRNP, it has a comparatively simple protein composition. In addition to the Sm core proteins, it contains only two of the U5 snRNP specific proteins, Prp8p and Snu114p. Interestingly, the 16S U5 snRNP contains also Aar2p, a protein that was previously implicated in splicing of the two introns of the MATa1 pre-mRNA. Here, we demonstrate that Aar2p is essential and required for in vivo splicing of U3 precursors. However, it is not required for splicing in vitro. Aar2p is associated exclusively with this simple form of the U5 snRNP (Aar2-U5), but not with the [U4/U6.U5] tri-snRNP or spliceosomal complexes. Consistent with this, we show that depletion of Aar2p interferes with later rounds of splicing, suggesting that it has an effect when splicing depends on snRNP recycling. Remarkably, the Aar2-U5 snRNP is invariably coisolated with the U1 snRNP regardless of the purification protocol used. This is consistent with the previously suggested cooperation between the U1 and U5 snRNPs prior to the catalytic steps of splicing. Electron microscopy of the Aar2-U5 snRNP revealed that, despite the comparatively simple protein composition, the yeast Aar2-U5 snRNP appears structurally similar to the human 20S U5 snRNP. Thus, the basic structural scaffold of the Aar2-U5 snRNP seems to be essentially determined by Prp8p, Snu114p, and the Sm proteins.  相似文献   

2.
We have isolated and microsequenced Snu17p, a novel yeast protein with a predicted molecular mass of 17 kDa that contains an RNA recognition motif. We demonstrate that Snu17p binds specifically to the U2 small nuclear ribonucleoprotein (snRNP) and that it is part of the spliceosome, since the pre-mRNA and the lariat-exon 2 are specifically coprecipitated with Snu17p. Although the SNU17 gene is not essential, its knockout leads to a slow-growth phenotype and to a pre-mRNA splicing defect in vivo. In addition, the first step of splicing is dramatically decreased in extracts prepared from the snu17 deletion (snu17Delta) mutant. This defect is efficiently reversed by the addition of recombinant Snu17p. To investigate the step of spliceosome assembly at which Snu17p acts, we have used nondenaturing gel electrophoresis. In Snu17p-deficient extracts, the spliceosome runs as a single slowly migrating complex. In wild-type extracts, usually at least two distinct complexes are observed: the prespliceosome, or B complex, containing the U2 but not the U1 snRNP, and the catalytically active spliceosome, or A complex, containing the U2, U6, and U5 snRNPs. Northern blot analysis and affinity purification of the snu17Delta spliceosome showed that it contains the U1, U2, U6, U5, and U4 snRNPs. The unexpected stabilization of the U1 snRNP and the lack of dissociation of the U4 snRNP suggest that loss of Snu17p inhibits the progression of spliceosome assembly prior to U1 snRNP release and after [U4/U6.U5] tri-snRNP addition.  相似文献   

3.
The association of the U4/U6.U5 tri-snRNP with pre-spliceosomes is a poorly understood step in the spliceosome assembly pathway. We have identified two human tri-snRNP proteins (of 65 and 110 kDa) that play an essential role in this process. Characterization by cDNA cloning of the 65 and 110 kDa proteins revealed that they are likely orthologues of the yeast spliceosomal proteins Sad1p and Snu66p, respectively. Immunodepletion of either protein from the HeLa cell nuclear extracts inhibited pre-mRNA splicing due to a block in the formation of mature spliceosomes, but had no effect on the integrity of the U4/U6.U5 tri-snRNP. Spliceosome assembly and splicing catalysis could be restored to the respective depleted extract by the addition of recombinant 65 or 110 kDa protein. Our data demonstrate that both proteins are essential for the recruitment of the tri-snRNP to the pre-spliceosome but not for the maintenance of the tri-snRNP stability. Moreover, since both proteins contain an N-terminal RS domain, they could mediate the association of the tri-snRNP with pre-spliceosomes by interaction with members of the SR protein family.  相似文献   

4.
We have purified the yeast U5 and U6 pre-mRNA splicing small nuclear ribonucleoproteins (snRNPs) by affinity chromatography and analyzed the associated polypeptides by mass spectrometry. The yeast U5 snRNP is composed of the two variants of U5 snRNA, six U5-specific proteins and the 7 proteins of the canonical Sm core. The U6 snRNP is composed of the U6 snRNA, Prp24, and the 7 Sm-Like (LSM) proteins. Surprisingly, the yeast DEAD-box helicase-like protein Prp28 is stably associated with the U5 snRNP, yet is absent from the purified U4/U6 x U5 snRNP. A novel yeast U5 and four novel yeast U4/U6 x U5 snRNP polypeptides were characterized by genetic and biochemical means to demonstrate their involvement in the pre-mRNA splicing reaction. We also show that, unlike the human tri-snRNP, the yeast tri-snRNP dissociated upon addition of ATP or dATP.  相似文献   

5.
van Nues RW  Beggs JD 《Genetics》2001,157(4):1451-1467
Mapping of functional protein interactions will help in understanding conformational rearrangements that occur within large complexes like spliceosomes. Because the U5 snRNP plays a central role in pre-mRNA splicing, we undertook exhaustive two-hybrid screening with Brr2p, Prp8p, and other U5 snRNP-associated proteins. DExH-box protein Brr2p interacted specifically with five splicing factors: Prp8p, DEAH-box protein Prp16p, U1 snRNP protein Snp1p, second-step factor Slu7p, and U4/U6.U5 tri-snRNP protein Snu66p, which is required for splicing at low temperatures. Co-immunoprecipitation experiments confirmed direct or indirect interactions of Prp16p, Prp8p, Snu66p, and Snp1p with Brr2p and led us to propose that Brr2p mediates the recruitment of Prp16p to the spliceosome. We provide evidence that the prp8-1 allele disrupts an interaction with Brr2p, and we propose that Prp8p modulates U4/U6 snRNA duplex unwinding through another interaction with Brr2p. The interactions of Brr2p with a wide range of proteins suggest a particular function for the C-terminal half, bringing forward the hypothesis that, apart from U4/U6 duplex unwinding, Brr2p promotes other RNA rearrangements, acting synergistically with other spliceosomal proteins, including the structurally related Prp2p and Prp16p. Overall, these protein interaction studies shed light on how splicing factors regulate the order of events in the large spliceosome complex.  相似文献   

6.
A E Mayes  L Verdone  P Legrain    J D Beggs 《The EMBO journal》1999,18(15):4321-4331
Seven Sm proteins associate with U1, U2, U4 and U5 spliceosomal snRNAs and influence snRNP biogenesis. Here we describe a novel set of Sm-like (Lsm) proteins in Saccharomyces cerevisiae that interact with each other and with U6 snRNA. Seven Lsm proteins co-immunoprecipitate with the previously characterized Lsm4p (Uss1p) and interact with each other in two-hybrid analyses. Free U6 and U4/U6 duplexed RNAs co-immunoprecipitate with seven of the Lsm proteins that are essential for the stable accumulation of U6 snRNA. Analyses of U4/U6 di-snRNPs and U4/U6.U5 tri-snRNPs in Lsm-depleted strains suggest that Lsm proteins may play a role in facilitating conformational rearrangements of the U6 snRNP in the association-dissociation cycle of spliceosome complexes. Thus, Lsm proteins form a complex that differs from the canonical Sm complex in its RNA association(s) and function. We discuss the possible existence and functions of alternative Lsm complexes, including the likelihood that they are involved in processes other than pre-mRNA splicing.  相似文献   

7.
Activation of the spliceosome for splicing catalysis requires the dissociation of U4 snRNA from the U4/U6 snRNA duplex prior to the first step of splicing. We characterize an evolutionarily conserved 15.5 kDa protein of the HeLa [U4/U6.U5] tri-snRNP that binds directly to the 5' stem-loop of U4 snRNA. This protein shares a novel RNA recognition motif with several RNP-associated proteins, which is essential, but not sufficient for RNA binding. The 15.5kD protein binding site on the U4 snRNA consists of an internal purine-rich loop flanked by the stem of the 5' stem-loop and a stem comprising two base pairs. Addition of an RNA oligonucleotide comprising the 5' stem-loop of U4 snRNA (U4SL) to an in vitro splicing reaction blocked the first step of pre-mRNA splicing. Interestingly, spliceosomal C complex formation was inhibited while B complexes accumulated. This indicates that the 15.5kD protein, and/or additional U4 snRNP proteins associated with it, play an important role in the late stage of spliceosome assembly, prior to step I of splicing catalysis. Our finding that the 15.5kD protein also efficiently binds to the 5' stem-loop of U4atac snRNA indicates that it may be shared by the [U4atac/U6atac.U5] tri-snRNP of the minor U12-type spliceosome.  相似文献   

8.
Previously, yeast prp3 mutants were found to be blocked prior to the first catalytic step of pre-mRNA splicing. No splicing intermediates or products are formed from pre-mRNA in heat-inactivated prp3 mutants or prp3 mutant extracts. Here we show that Prp3p is a component of the U4/U6 snRNP and is also present in the U4/U6.U5 tri-snRNP. Heat inactivation of prp3 extracts results in depletion of free U6 snRNPs and U4/U6.U5 tri-snRNPs, but not U4/U6 snRNPs or U5 snRNPs. Free U4 snRNP, normally not present in wild-type extracts, accumulates under these conditions. Assays of in vivo levels of snRNAs in a prp3 mutant revealed that amounts of free U6 snRNA decreased, free U4 snRNA increased, and U4/U6 hybrids decreased slightly. These results suggest that Prp3p is required for formation of stable U4/U6 snRNPs and for assembly of the U4/U6.U5 tri-snRNP from its component snRNPs. Upon inactivation of Prp3p, spliceosomes cannot assemble from prespliceosomes due to the absence of intact U4/U6.U5 tri-snRNPs. Prp3p is homologous to a human protein that is a component of U4/U6 snRNPs, exemplifying the conservation of splicing factors between yeast and metazoans.  相似文献   

9.
SR proteins play important roles in the recognition and selection of the 3' and 5' splice site of a given intron and contribute to the phosphorylation/dephosphorylation-mediated regulation of pre-mRNA splicing. Recent studies have demonstrated that the U1 snRNP is recruited to the 5' splice site by protein/protein interactions involving the SR domains of the U1-70K protein and SF2/ASF. Recently, it was suggested that SR proteins might also contribute to the binding of the [U4/U6.U5] tri-snRNP to the pre-spliceosome (Roscigno RF, Garcia-Blanco MA, 1995, RNA 1:692-706), although it remains unclear whether these SR proteins interact with proteins of the tri-snRNP complex. As a first step toward the identification of proteins that could potentially mediate the integration of the [U4/U6.U5] tri-snRNP complex into the spliceosome, we investigated whether purified [U4/U6.U5] tri-snRNP complexes contain SR proteins. Three proteins in the tri-snRNP complex with approximate molecular weights of 27, 60, and 100 kDa were phosphorylated by purified snRNP-associated protein kinase, which has been shown previously to phosphorylate the serine/ arginine-rich domains of U1-70K and SF2/ASF (Woppmann A et al., 1993, Nucleic Acids Res 21:2815-2822). These proteins are thus prime candidates for novel tri-snRNP SR proteins. Here, we describe the biochemical and molecular characterization of the 27K protein. Analysis of a cDNA encoding the 27K protein revealed an N-terminal SR domain strongly homologous (54% identity) to the SR domain of the U1 snRNP-specific 70K protein. In contrast to many other SR proteins, the 27K protein does not contain an RNA-binding domain. The 27K protein can be phosphorylated in vitro by the snRNP-associated protein kinase and exhibits several isoelectric variants upon 2D gel electrophoresis. Thus, the tri-snRNP-specific 27K protein could potentially be involved in SR protein-mediated protein/protein interactions and, additionally, its phosphorylation state could modulate pre-mRNA splicing.  相似文献   

10.
Snu114p is a yeast U5 snRNP protein homologous to the ribosomal elongation factor EF-2. Snu114p exhibits the same domain structure as EF-2, including the G-domain, but with an additional N-terminal domain. To test whether Snu114p in the spliceosome is involved in rearranging RNA secondary structures (by analogy to EF-2 in the ribosome), we created conditionally lethal mutants. Deletion of this N-terminal domain (snu114ΔN) leads to a temperature-sensitive phenotype at 37°C and a pre-mRNA splicing defect in vivo. Heat treatment of snu114ΔN extracts blocked splicing in vitro before the first step. The snu114ΔN still associates with the tri-snRNP, and the stability of this particle is not significantly impaired by thermal inactivation. Heat treatment of snu114ΔN extracts resulted in accumulation of arrested spliceosomes in which the U4 RNA was not efficiently released, and we show that U4 is still base paired with the U6 RNA. This suggests that Snu114p is involved, directly or indirectly, in the U4/U6 unwinding, an essential step towards spliceosome activation.  相似文献   

11.
Immunoaffinity-purified human 25S [U4/U6.U5] tri-snRNPs harbor a set of polypeptides, termed the tri-snRNP proteins, that are not present in Mono Q-purified 20S U5 snRNPs or 10S U4/U6 snRNPs and that are important for tri-snRNP complex formation (Behrens SE, Lührmann R, 1991, Genes & Dev 5:1439-1452). Biochemical and immunological characterization of HeLa [U4/U6.U5] tri-snRNPs led to the identification of two novel proteins with molecular weights of 61 and 63kD that are distinct from the previously described 15.5, 20, 27, 60, and 90kD tri-snRNP proteins. For the initial characterization of tri-snRNP proteins that interact directly with U4/U6 snRNPs, immunoaffinity chromatography with an antibody directed against the 60kD protein was performed. We demonstrate that the 60 and 90kD tri-snRNP proteins specifically associate with the U4/U6 snRNP at salt concentrations where the tri-snRNP complex has dissociated. The primary structures of the 60kD and 90kD proteins were determined by cloning and sequencing their respective cDNAs. The U4/U6-60kD protein possesses a C-terminal WD domain that contains seven WD repeats and thus belongs to the WD-protein family, whose best-characterized members include the Gbeta subunits of heterotrimeric G proteins. A database homology search revealed a significant degree of overall homology (57.8% similarity, 33.9% identity) between the human 60kD protein and the Saccharomyces cerevisiae U4/U6 snRNP protein Prp4p. Two additional, previously undetected WD repeats (with seven in total) were also identified in Prp4p, consistent with the possibility that 60kD/Prp4p, like beta-transducin, may adopt a propeller-like structure. The U4/U6-90kD protein was shown to exhibit significant homology, particularly in its C-terminal half, with the S. cerevisiae splicing factor Prp3p, which also associates with the yeast U4/U6 snRNP. Interestingly, U4/U6-90kD shares short regions of homology with E. coli RNase III, including a region encompassing its double-stranded RNA binding domain. Based on their structural similarity with essential splicing factors in yeast, the human U4/U6-60kD and 90kD proteins are likely also to play important roles in the mammalian splicing process.  相似文献   

12.
Pre-mRNA splicing is executed by the spliceosome, a complex of small nuclear RNAs (snRNAs) and numerous proteins. One such protein, 15.5K/Snu13p, is associated with the spliceosomal U4/U6.U5 tri-snRNP and box C/D small nucleolar ribonucleoprotein particles (snoRNPs), which act during preribosomal RNA (rRNA) processing. As such, it is the first splicing factor to be identified in two functionally distinct particles. 15.5K binds to an internal helix-bulge-helix (K-turn) structure in the U4 snRNA and two such structures in the U3 snoRNA. Previous work has concentrated on the structural basis of the interaction of 15.5K with the RNAs and has been carried out in vitro. Here we present a functional analysis of Snu13p in vivo, using a galactose inducible SNU13 strain to investigate the basis of three lethal mutations in Saccharomyces cerevisiae. Two are point mutations that map to the RNA-binding domain, and the third is a C-terminal deletion. These mutations result in accumulation of unspliced pre-mRNA, confirming a role for Snu13p in pre-mRNA splicing. In addition, these mutants also display rRNA processing defects that are variable in nature. Analysis of one mutant in the RNA-binding domain reveals a reduction in the levels of the U4 snRNA, U6 snRNA, and box C/D snoRNAs, but not H/ACA snoRNAs, supporting a role for Snu13p in accumulation and/or maintenance of specific RNAs. The mutations in the RNA-binding domain exhibit differential binding to the U4 snRNA and U3 snoRNA in vitro, suggesting that there are differences in the mode of interaction of Snu13p with these two RNAs.  相似文献   

13.
In each round of nuclear pre-mRNA splicing, the U4/U6*U5 tri-snRNP must be assembled from U4/U6 and U5 snRNPs, a reaction that is at present poorly understood. We have characterized a 61 kDa protein (61K) found in human U4/U6*U5 tri-snRNPs, which is homologous to yeast Prp31p, and show that it is required for this step. Immunodepletion of protein 61K from HeLa nuclear extracts inhibits tri-snRNP formation and subsequent spliceosome assembly and pre-mRNA splicing. Significantly, complementation with recombinant 61K protein restores each of these steps. Protein 61K is operationally defined as U4/U6 snRNP-specific as it remains bound to this particle at salt concentrations where the tri-snRNP dissociates. However, as shown by two-hybrid analysis and biochemical assays, protein 61K also interacts specifically with the U5 snRNP-associated 102K protein, indicating that it physically tethers U4/U6 to the U5 snRNP to yield the tri-snRNP. Interestingly, protein 61K is encoded by a gene (PRPF31) that has been shown to be linked to autosomal dominant retinitis pigmentosa. Thus, our studies suggest that disruptions in tri-snRNP formation and function resulting from mutations in the 61K protein may contribute to the manifestation of this disease.  相似文献   

14.
B Chabot  S Bisotto    M Vincent 《Nucleic acids research》1995,23(16):3206-3213
The monoclonal antibody CC3 recognizes a phosphorylated epitope present on an interphase protein of 255 kDa. Previous work has shown that p255 is localized mainly to nuclear speckles and remains associated with the nuclear matrix scaffold following extraction with non-ionic detergents, nucleases and high salt. The association of p255 with splicing complexes is suggested by the finding that mAb CC3 can inhibit in vitro splicing and immunoprecipitate pre-messenger RNA and splicing products. Small nuclear RNA immunoprecipitation assays show that p255 is a component of the U5 small nuclear ribonucleoprotein (snRNP) and the [U4/U6.U5] tri-snRNP complex. In RNase protection assays, mAb CC3 immunoprecipitates fragments containing branch site and 3' splice site sequences. As predicted for a [U4/U6.U5]-associated component, the recovery of the branch site-protected fragment requires binding of U2 snRNP and is inhibited by EDTA. p255 may correspond to the previously identified p220 protein, the mammalian analogue of the yeast PRP8 protein. Our results suggest that changes in the phosphorylation of p255 may be part of control mechanisms that interface splicing activity with nuclear organization.  相似文献   

15.
The yeast Sad1 protein was previously identified in a screen for factors involved in the assembly of the U4/U6 di-snRNP particle. Sad1 is required for pre-mRNA splicing both in vivo and in vitro, and its human orthologue has been shown to associate with U4/U6.U5 tri-snRNP. We show here that Sad1 plays a role in maintaining a functional form of the tri-snRNP by promoting the association of U5 snRNP with U4/U6 di-snRNP. In the absence of Sad1, the U4/U6.U5 tri-snRNP dissociates into U5 and U4/U6 upon ATP hydrolysis and cannot bind to the spliceosome. The separated U4/U6 and U5 can reassociate upon incubation more favorably in the absence of ATP and in the presence of Sad1. Brr2 is responsible for mediating ATP-dependent dissociation of the tri-snRNP. Our results demonstrate a role of Sad1 in maintaining the integrity of the tri-snRNP by counteracting Brr2-mediated dissociation of tri-snRNP and provide insights into homeostasis of the tri-snRNP.  相似文献   

16.
The U1 snRNP is essential for recognition of the pre-mRNA 5'-splice site and the subsequent assembly of the spliceosome. Yeast U1 snRNP is considerably more complex than its metazoan counterpart, which suggests possible differences between yeast and metazoa in early splicing events. We have comprehensively analyzed the composition of yeast U1 snRNPs using a combination of biochemical, mass spectrometric, and genetic methods. We demonstrate the specific association of four novel U1 snRNP proteins, Snu71p, Snu65p, Nam8p, and Snu56p, that have no known metazoan homologues. A fifth protein, Npl3p, is an abundant cellular component that reproducibly co-purifies with the U1 snRNP, but its association is salt-sensitive. Therefore, we are unable to establish conclusively whether it binds specifically to the U1 snRNP. Interestingly, Nam8p and Npl3p were previously assigned functions in (pre-m)RNA-metabolism; however, so far, no association with U1 snRNP has been demonstrated or proposed. We also show that the yeast SmB protein is a U1 snRNP component. Yeast U1 snRNP therefore contains 16 different proteins, including seven snRNP core proteins, three homologues of the metazoan U1 snRNP-specific proteins, and six yeast-specific U1 snRNP proteins. We have simultaneously continued the characterization of additional mutants isolated in a synthetic lethal (MUD) screen for genes that functionally cooperate with U1 snRNA. Consistent with the biochemical results, mud10, mud15, and mud16 are alleles of SNU56, NAM8, and SNU65, respectively. mud10 and mud15 affect the in vivo splicing efficiency of noncanonical introns. Moreover, mud10p strongly affects the in vitro formation of splicing complexes, and extracts from the mud15 strain contain a U1 snRNP that migrates aberrantly on native gels. Finally, we show that Nam8p/Mud15p contributes to the stability of U1 snRNP.  相似文献   

17.
The driving forces behind the many RNA conformational changes occurring in the spliceosome are not well understood. Here we characterize an evolutionarily conserved human U5 small nuclear ribonucleoprotein (snRNP) protein (U5-116kD) that is strikingly homologous to the ribosomal elongation factor EF-2 (ribosomal translocase). A 114 kDa protein (Snu114p) homologous to U5-116kD was identified in Saccharomyces cerevisiae and was shown to be essential for yeast cell viability. Genetic depletion of Snu114p results in accumulation of unspliced pre-mRNA, indicating that Snu114p is essential for splicing in vivo. Antibodies specific for U5-116kD inhibit pre-mRNA splicing in a HeLa nuclear extract in vitro. In HeLa cells, U5-116kD is located in the nucleus and colocalizes with snRNP-containing subnuclear structures referred to as speckles. The G domain of U5-116kD/Snu114p contains the consensus sequence elements G1-G5 important for binding and hydrolyzing GTP. Consistent with this, U5-116kD can be cross-linked specifically to GTP by UV irradiation of U5 snRNPs. Moreover, a single amino acid substitution in the G1 sequence motif of Snu114p, expected to abolish GTP-binding activity, is lethal, suggesting that GTP binding and probably GTP hydrolysis is important for the function of U5-116kD/Snu114p. This is to date the first evidence that a G domain-containing protein plays an essential role in the pre-mRNA splicing process.  相似文献   

18.
An essential step of pre-mRNA spliceosome assembly is the interaction between the snRNPs U4/U6 and U5, to form the [U4/U6.U5] tri-snRNP. While the tri-snRNP protein Prp6p appears to play an important role for tri-snRNP formation in yeast, little is known about the interactions that connect the two snRNP particles in human tri-snRNPs. Here, we describe the molecular characterisation of a 102kD protein form HeLa tri-snRNPs. The 102kD protein exhibits a significant degree of overall homology with the yeast Prp6p, including the conservation of multiple tetratrico peptide repeats (TPR), making this the likely functional homologue of Prp6p. However, while the yeast Prp6p is considered to be a U4/U6-specific protein, the human 102kD protein was found to be tightly associated with purified 20 S U5 snRNPs. This association appears to be primarily due to protein-protein interactions. Interestingly, antibodies directed against the C-terminal TPR elements of the 102kD protein specifically and exclusively immunoprecipitate free U5 snRNPs, but not [U4/U6.U5] tri-snRNPs, from HeLa nuclear extract, suggesting that the C-terminal region of the 102kD protein is covered by U4/U6 or tri-snRNP-specific proteins. Since proteins containing TPR elements are typically involved in multiple protein-protein interactions, we suggest that the 102kD protein interacts within the tri-snRNP with both the U5 and U4/U6 snRNPs, thus bridging the two particles. Consistent with this idea, we show that in vitro translated U5-102kD protein binds to purified 13S U4/U6 snRNPs, which contain, in addition to the Sm proteins, all known U4/U6-specific proteins.  相似文献   

19.
SMNrp, also termed SPF30, has recently been identified in spliceosomes assembled in vitro. We have functionally characterized this protein and show that it is an essential splicing factor. We show that SMNrp is a 17S U2 snRNP-associated protein that appears in the pre-spliceosome (complex A) and the mature spliceosome (complex B) during splicing. Immunodepletion of SMNrp from nuclear extract inhibits the first step of pre-mRNA splicing by preventing the formation of complex B. Re-addition of recombinant SMNrp to immunodepleted extract reconstitutes both spliceosome formation and splicing. Mutations in two domains of SMNrp, although similarly deleterious for splicing, differed in their consequences on U2 snRNP binding, suggesting that SMNrp may also engage in interactions with splicing factors other than the U2 snRNP. In agreement with this, we present evidence for an additional interaction between SMNrp and the [U4/U6.U5] tri-snRNP. A candidate that may mediate this interaction, namely the U4/U6-90 kDa protein, has been identified. We suggest that SMNrp, as a U2 snRNP-associated protein, facilitates the recruitment of the [U4/U6.U5] tri-snRNP to the pre-spliceosome.  相似文献   

20.
Hub1/Ubl5 is a member of the family of ubiquitin-like proteins (UBLs). The tertiary structure of Hub1 is similar to that of ubiquitin; however, it differs from known modifiers in that there is no conserved glycine residue near the C terminus which, in ubiquitin and UBLs, is required for covalent modification of target proteins. Instead, there is a conserved dityrosine motif proximal to the terminal nonconserved amino acid. In S. cerevisiae, high molecular weight adducts can be formed in vivo from Hub1, but the structure of these adducts is not known, and they could be either covalent or noncovalent. The budding yeast HUB1 gene is not essential, but Delta hub1 mutants display defects in mating. Here, we report that fission yeast hub1 is an essential gene, whose loss results in cell cycle defects and inefficient pre-mRNA splicing. A screen for Hub1 interactors identified Snu66, a component of the U4/U6.U5 tri-snRNP splicing complex. Furthermore, overexpression of Snu66 suppresses the lethality of a hub1ts mutant. In cells lacking functional hub1, the nuclear localization of Snu66 is disrupted, suggesting that an important role for Hub1 is the correct subcellular targeting of Snu66, although our data suggest that Hub1 is likely to perform other roles in splicing as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号