首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The maturation of [NiFe]-hydrogenases is a catalysed process in which the activities of at least seven proteins are involved. The last step consists of the endoproteolytic cleavage of the precursor of the large subunit after the [NiFe]-metal centre has been assembled. The amino acid sequence requirements for the endopeptidase HycI involved in the C-terminal processing of HycE, the large subunit of the hydrogenase 3 from Escherichia coli, were investigated. Mutational alteration of the amino acid residues neighbouring the cleavage site showed that proteolysis still occurred when chemically similar amino acids were exchanged. Processing was blocked, however, in a variant in which the methionine at the C-terminal side was replaced by a glutamate residue. Truncation of the precursor from the C-terminal end rendered variants amenable to maturation even when two-thirds of the extension were removed but abolished proteolysis upon further deletion of a cluster of six basic amino acids. A construct in which the C-terminal extension from the large subunit of the hydrogenase 2 was fused to the mature part of the large subunit of hydrogenase 3 was neither processed by HycI nor by HybD, the endopeptidase specific for the large subunit of hydrogenase 2. The maturation endopeptidase, therefore, exhibits a relaxed sequence constraint in recognition of its cleavage site and does not require the entire C-terminal extension. The results point to an interaction of the C-terminus with some domain of the large subunit, rendering a conformation amenable to recognition by the endopeptidase.  相似文献   

2.
The maturation of [NiFe]-hydrogenases is a catalyzed process involving the activities of at least seven proteins. The last step consists of the endoproteolytic cleavage of the precursor of the large subunit, after the [NiFe]-metal center has been assembled. The HycI endopeptidase is involved in the C-terminal processing of HycE, the large subunit of hydrogenase 3 from Escherichia coli. Although HycI has been well characterized biochemically, the crystallization of the protein has been quite challenging. Here, we present the crystal structure of HycI at 1.70 Å resolution. The crystal structure resembles the recently reported solution structure (NMR) of the same protein and the holo-HyPD structure of the same family, but a significant conformational change is observed at the L5 loop, as compared with the solution structures of HycI and HyPD. In our crystal structure, three specific metal binding sites (Ca1-3) were identified and these metal ions are possibly involved in the C-terminal cleavage of HycE.  相似文献   

3.
The interaction of the hydrogenase maturation endopeptidase HycI with its substrate, the precursor of the large subunit, was studied. Replacement of conserved amino-acid residues in HycI, which have been shown to bind a cadmium ion from the crystallization buffer in crystals of HybD (endopeptidase for hydrogenase 2), abolished or strongly reduced processing activity. Atomic absorption spectroscopy of purified HycI and HybD proteins showed the absence of nickel. In vitro processing assays showed that the reaction requires nickel to be bound to the precursor and the protease does not have a function in nickel delivery to the substrate. Radioactive labelling of cells with 63Ni, devoid of endopeptidase, resolved several forms of the precursor which are possibly intermediates in the maturation pathway. It is concluded that the endopeptidase uses the metal in the large subunit of [NiFe]-hydrogenases as a recognition motif.  相似文献   

4.
Three types of hydrogenases have been isolated from the sulfate-reducing bacteria of the genus Desulfovibrio. They differ in their subunit and metal compositions, physico-chemical characteristics, amino acid sequences, immunological reactivities, gene structures and their catalytic properties. Broadly, the hydrogenases can be considered as 'iron only' hydrogenases and nickel-containing hydrogenases. The iron-sulfur-containing hydrogenase ([Fe] hydrogenase) contains two ferredoxin-type (4Fe-4S) clusters and an atypical iron-sulfur center believed to be involved in the activation of H2. The [Fe] hydrogenase has the highest specific activity in the evolution and consumption of hydrogen and in the proton-deuterium exchange reaction and this enzyme is the most sensitive to CO and NO2-. It is not present in all species of Desulfovibrio. The nickel-(iron-sulfur)-containing hydrogenases [( NiFe] hydrogenases) possess two (4Fe-4S) centers and one (3Fe-xS) cluster in addition to nickel and have been found in all species of Desulfovibrio so far investigated. The redox active nickel is ligated by at least two cysteinyl thiolate residues and the [NiFe] hydrogenases are particularly resistant to inhibitors such as CO and NO2-. The genes encoding the large and small subunits of a periplasmic and a membrane-bound species of the [NiFe] hydrogenase have been cloned in Escherichia (E.) coli and sequenced. Their derived amino acid sequences exhibit a high degree of homology (70%); however, they show no obvious metal-binding sites or homology with the derived amino acid sequence of the [Fe] hydrogenase. The third class is represented by the nickel-(iron-sulfur)-selenium-containing hydrogenases [( NiFe-Se] hydrogenases) which contain nickel and selenium in equimolecular amounts plus (4Fe-4S) centers and are only found in some species of Desulfovibrio. The genes encoding the large and small subunits of the periplasmic hydrogenase from Desulfovibrio (D.) baculatus (DSM 1743) have been cloned in E. coli and sequenced. The derived amino acid sequence exhibits homology (40%) with the sequence of the [NiFe] hydrogenase and the carboxy-terminus of the gene for the large subunit contains a codon (TGA) for selenocysteine in a position homologous to a codon (TGC) for cysteine in the large subunit of the [NiFe] hydrogenase. EXAFS and EPR studies with the 77Se-enriched D. baculatus hydrogenase indicate that selenium is a ligand to nickel and suggest that the redox active nickel is ligated by at least two cysteinyl thiolate and one selenocysteine selenolate residues.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
A hydrogenase operon was cloned from chromosomal DNA isolated from Desulfovibrio vulgaris Miyazaki F with the use of probes derived from the genes encoding [NiFe] hydrogenase from Desulfovibrio vulgaris Hildenborough. The nucleic acid sequence of the cloned DNA indicates this hydrogenase to be a two-subunit enzyme: the gene for the small subunit (267 residues; molecular mass = 28763 Da) precedes that for the large subunit (566 residues; molecular mass = 62495 Da), as in other [NiFe] and [NiFeSe] hydrogenase operons. The amino acid sequences of the small and large subunits of the Miyazaki hydrogenase share 80% homology with those of the [NiFe] hydrogenase from Desulfovibrio gigas. Fourteen cysteine residues, ten in the small and four in the large subunit, which are thought to co-ordinate the iron-sulphur clusters and the active-site nickel in [NiFe] hydrogenases, are found to be conserved in the Miyazaki hydrogenase. The subunit molecular masses and amino acid composition derived from the gene sequence are very similar to the data reported for the periplasmic, membrane-bound hydrogenase isolated by Yagi and coworkers, suggesting that this hydrogenase belongs to the general class of [NiFe] hydrogenases, despite its low nickel content and apparently anomalous spectral properties.  相似文献   

6.
7.
BACKGROUND: [NiFeSe] hydrogenases are metalloenzymes that catalyze the reaction H2<-->2H+ + 2e-. They are generally heterodimeric, contain three iron-sulfur clusters in their small subunit and a nickel-iron-containing active site in their large subunit that includes a selenocysteine (SeCys) ligand. RESULTS: We report here the X-ray structure at 2.15 A resolution of the periplasmic [NiFeSe] hydrogenase from Desulfomicrobium baculatum in its reduced, active form. A comparison of active sites of the oxidized, as-prepared, Desulfovibrio gigas and the reduced D. baculatum hydrogenases shows that in the reduced enzyme the nickel-iron distance is 0.4 A shorter than in the oxidized enzyme. In addition, the putative oxo ligand, detected in the as-prepared D. gigas enzyme, is absent from the D. baculatum hydrogenase. We also observe higher-than-average temperature factors for both the active site nickel-selenocysteine ligand and the neighboring Glu18 residue, suggesting that both these moieties are involved in proton transfer between the active site and the molecular surface. Other differences between [NiFeSe] and [NiFe] hydrogenases are the presence of a third [4Fe4S] cluster replacing the [3Fe4S] cluster found in the D. gigas enzyme, and a putative iron center that substitutes the magnesium ion that has already been described at the C terminus of the large subunit of two [NiFe] hydrogenases. CONCLUSIONS: The heterolytic cleavage of molecular hydrogen seems to be mediated by the nickel center and the selenocysteine residue. Beside modifying the catalytic properties of the enzyme, the selenium ligand might protect the nickel atom from oxidation. We conclude that the putative oxo ligand is a signature of inactive 'unready' [NiFe] hydrogenases.  相似文献   

8.
The maturation process of [NiFe] hydrogenases includes a proteolytic cleavage of the large subunit. We constructed a mutant of Nostoc strain PCC 7120 in which hupW, encoding a putative hydrogenase-specific protease, is inactivated. Our results indicate that the protein product of hupW selectively cleaves the uptake hydrogenase in this cyanobacterium.  相似文献   

9.
The enzymology of the heterodimeric (NiFe) and (NiFeSe) hydrogenases, the monomeric nickel-containing hydrogenases plus the multimeric F420-(NiFe) and NAD(+)-(NiFe) hydrogenases are summarized and discussed in terms of subunit localization of the redox-active nickel and non-heme iron clusters. It is proposed that nickel is ligated solely by amino acid residues of the large subunit and that the non-heme iron clusters are ligated by other cysteine-rich polypeptides encoded in the hydrogenase operons which are not necessarily homologous in either structure or function. Comparison of the hydrogenase operons or putative operons and their hydrogenase genes indicate that the arrangement, number and types of genes in these operons are not conserved among the various types of hydrogenases except for the gene encoding the large subunit. Thus, the presence of the gene for the large subunit is the sole feature common to all known nickel-containing hydrogenases and unites these hydrogenases into a large but diverse gene family. Although the different genes for the large subunits may possess only nominal general derived amino acid homology, all large subunit genes sequenced to date have the sequence R-X-C-X-X-C fully conserved in the amino terminal region of the polypeptide chain and the sequence of D-P-C-X-X-C fully conserved in the carboxyl terminal region. It is proposed that these conserved motifs of amino acids provide the ligands required for the binding of the redox-active nickel. The existing EXAFS (Extended X-ray Absorption Fine Structure) information is summarized and discussed in terms of the numbers and types of ligands to the nickel and the various redox species of nickel defined by EPR spectroscopy. New information concerning the ligands to nickel is presented based on site-directed mutagenesis of the gene encoding the large subunit of the (NiFe) hydrogenase-1 of Escherichia coli. Based on considerations of the biochemical, molecular and biophysical information, ligand environments of the nickel in different redox states of the (NiFe) hydrogenase are proposed.  相似文献   

10.
The large subunit of the [NiFe] hydrogenases harbors a NiFe(CN)(2)(CO) cluster. Maturation proteins HypA, B, C, D, E, and F are required for the NiFe cluster biosynthesis. While the maturation machinery has been hitherto studied intensively, little is known about interactions between the Hyp proteins and the large subunit of the [NiFe] hydrogenase. In this study, we have purified and characterized the cytosolic [NiFe] hydrogenase large subunit HyhL from Thermococcus kodakarensis (Tk-HyhL). Tk-HyhL exists in equilibrium between monomeric and dimeric forms. In vitro interaction analyses showed that Tk-HyhL monomer forms a tight complex with Tk-HypA and weakly interacts with Tk-HypC. The expected ternary complex formation was not detected. These observations reflect a diversity in the mechanism of Ni insertion in [NiFe] hydrogenase maturation depending on the organism.  相似文献   

11.
A 3.3-kilobase-pair region of the Methanothermus fervidus genome encoding part of the small subunit and all of the large subunit of the methyl viologen-reducing hydrogenase and a polyferredoxin was cloned and sequenced. The sequence of this hyperthermophilic hydrogenase conforms to the consensus sequence established for procaryotic [NiFe] hydrogenases. Although the M. fervidus polyferredoxin is the same size as the Methanobacterium thermoautotrophicum ferredoxin, containing six tandemly arranged bacterial ferredoxinlike domains, these two proteins are predicted to be only 64% identical in their primary sequences.  相似文献   

12.
Pinske C  Sawers RG 《PloS one》2012,7(2):e31755
During anaerobic growth Escherichia coli synthesizes two membrane-associated hydrogen-oxidizing [NiFe]-hydrogenases, termed hydrogenase 1 and hydrogenase 2. Each enzyme comprises a catalytic subunit containing the [NiFe] cofactor, an electron-transferring small subunit with a particular complement of [Fe-S] (iron-sulfur) clusters and a membrane-anchor subunit. How the [Fe-S] clusters are delivered to the small subunit of these enzymes is unclear. A-type carrier (ATC) proteins of the Isc (iron-sulfur-cluster) and Suf (sulfur mobilization) [Fe-S] cluster biogenesis pathways are proposed to traffic pre-formed [Fe-S] clusters to apoprotein targets. Mutants that could not synthesize SufA had active hydrogenase 1 and hydrogenase 2 enzymes, thus demonstrating that the Suf machinery is not required for hydrogenase maturation. In contrast, mutants devoid of the IscA, ErpA or IscU proteins of the Isc machinery had no detectable hydrogenase 1 or 2 activities. Lack of activity of both enzymes correlated with the absence of the respective [Fe-S]-cluster-containing small subunit, which was apparently rapidly degraded. During biosynthesis the hydrogenase large subunits receive their [NiFe] cofactor from the Hyp maturation machinery. Subsequent to cofactor insertion a specific C-terminal processing step occurs before association of the large subunit with the small subunit. This processing step is independent of small subunit maturation. Using western blotting experiments it could be shown that although the amount of each hydrogenase large subunit was strongly reduced in the iscA and erpA mutants, some maturation of the large subunit still occurred. Moreover, in contrast to the situation in Isc-proficient strains, these processed large subunits were not membrane-associated. Taken together, our findings demonstrate that both IscA and ErpA are required for [Fe-S] cluster delivery to the small subunits of the hydrogen-oxidizing hydrogenases; however, delivery of the Fe atom to the active site might have different requirements.  相似文献   

13.
A highly conserved histidine-rich region with unknown function was recognized in the large subunit of [NiFe] hydrogenases. The HxHxxHxxHxH sequence occurs in most membrane-bound hydrogenases, but only two of these histidines are present in the cytoplasmic ones. Site-directed mutagenesis of the His-rich region of the T. roseopersicina membrane-attached Hyn hydrogenase disclosed that the enzyme activity was significantly affected only by the replacement of the His104 residue. Computational analysis of the hydrogen bond network in the large subunits indicated that the second histidine of this motif might be a component of a proton transfer pathway including Arg487, Asp103, His104 and Glu436. Substitutions of the conserved amino acids of the presumed transfer route impaired the activity of the Hyn hydrogenase. Western hybridization was applied to demonstrate that the cellular level of the mutant hydrogenases was similar to that of the wild type. Mostly based on theoretical modeling, few proton transfer pathways have already been suggested for [NiFe] hydrogenases. Our results propose an alternative route for proton transfer between the [NiFe] active center and the surface of the protein. A novel feature of this model is that this proton pathway is located on the opposite side of the large subunit relative to the position of the small subunit. This is the first study presenting a systematic analysis of an in silico predicted proton translocation pathway in [NiFe] hydrogenases by site-directed mutagenesis.  相似文献   

14.
The actinomycete Rhodococcus opacus MR11 harbors a bidirectional NAD-reducing [NiFe] hydrogenase (SH). This cytoplasmic enzyme is composed of two heterodimeric modules which catalyze distinct enzymatic activities. The hydrogenase moiety mediates H(2):benzyl viologen oxidoreductase activity and the FMN-containing diaphorase module displays NADH:benzyl viologen oxidoreductase activity. The SH of Rh. opacus resembles [NiFe] hydrogenases present in strains of the proteobacterium Ralstonia eutropha and in species of cyanobacteria. Heterologous expression of active [NiFe] hydrogenases failed in most cases due to protein-assisted maturation processes implicated in the assembly of the NiFe bimetallic site. This study reports on the construction of a recombinant plasmid harboring the four SH subunit genes hoxFUYH and the associated endopeptidase gene hoxW from Rh. opacus under the regime of the SH promoter from R. eutropha H16. The resulting recombinant plasmid restored lithoautotrophic growth in a R. eutropha mutant impaired in H(2)-oxidizing ability. The SH of Rh. opacus was functionally active in R. eutropha and displayed the typical features described for its natural host. It readily dissociated in vitro into two active subforms. Dissociation was accompanied by the loss of the H(2)-dependent NAD-reducing activity, which was partially reconstituted by addition of 5 mM MgSO(4) and 0.5 mM NiCl(2). Activity and stability of the SH from Rh. opacus were enhanced almost three-fold by co-overexpression of the SH-associated metal insertion genes hypA2B2F2 of R. eutropha. Under optimal conditions the heterologously expressed Rh. opacus SH catalyzed NAD-reduction at a specific activity of 1.7 units per mg protein, which is approximately 30% of the yield obtained for the R. eutropha SH. The results indicate that, despite an enormous phylogenetic distance of the two bacterial species, their SH proteins are highly related.  相似文献   

15.
Hydrogenases, abundant proteins in the microbial world, catalyze cleavage of H2 into protons and electrons or the evolution of H2 by proton reduction. Hydrogen metabolism predominantly occurs in anoxic environments mediated by hydrogenases, which are sensitive to inhibition by oxygen. Those microorganisms, which thrive in oxic habitats, contain hydrogenases that operate in the presence of oxygen. We have selected the H2-sensing regulatory [NiFe] hydrogenase of Ralstonia eutropha H16 to investigate the molecular background of its oxygen tolerance. Evidence is presented that the shape and size of the intramolecular hydrophobic cavities leading to the [NiFe] active site of the regulatory hydrogenase are crucial for oxygen insensitivity. Expansion of the putative gas channel by site-directed mutagenesis yielded mutant derivatives that are sensitive to inhibition by oxygen, presumably because the active site has become accessible for oxygen. The mutant proteins revealed characteristics typical of standard [NiFe] hydrogenases as described for Desulfovibrio gigas and Allochromatium vinosum. The data offer a new strategy how to engineer oxygen-tolerant hydrogenases for biotechnological application.  相似文献   

16.
The distribution of genes for [Fe], [NiFe], and [NiFeSe] hydrogenases was determined for 22 Desulfovibrio species. The genes for [NiFe] hydrogenase were present in all species, whereas those for the [Fe] and [NiFeSe] hydrogenases had a more limited distribution. Sulfate-reducing bacteria from 16S rRNA groups other than the genus Desulfovibrio (R. Devereux, M. Delaney, F. Widdel, and D. A. Stahl, J. Bacteriol. 171:6689-6695, 1989) did not react with the [NiFe] hydrogenase gene probe, which could be used to identify different Desulfovibrio species in oil field samples following growth on lactate-sulfate medium.  相似文献   

17.
Two energy-generating hydrogenases enable the aerobic hydrogen bacterium Ralstonia eutropha (formerly Alcaligenes eutrophus) to use molecular hydrogen as the sole energy source. The complex synthesis of the nickel-iron-containing enzymes has to be efficiently regulated in response to H(2), which is available in low amounts in aerobic environments. H(2) sensing in R. eutropha is achieved by a hydrogenase-like protein which controls the hydrogenase gene expression in concert with a two-component regulatory system. In this study we show that the H(2) sensor of R. eutropha is a cytoplasmic protein. Although capable of H(2) oxidation with redox dyes as electron acceptors, the protein did not support lithoautotrophic growth in the absence of the energy-generating hydrogenases. A specifically designed overexpression system for R. eutropha provided the basis for identifying the H(2) sensor as a nickel-containing regulatory protein. The data support previous results which showed that the sensor has an active site similar to that of prototypic [NiFe] hydrogenases (A. J. Pierik, M. Schmelz, O. Lenz, B. Friedrich, and S. P. J. Albracht, FEBS Lett. 438:231-235, 1998). It is demonstrated that in addition to the enzymatic activity the regulatory function of the H(2) sensor is nickel dependent. The results suggest that H(2) sensing requires an active [NiFe] hydrogenase, leaving the question open whether only H(2) binding or subsequent H(2) oxidation and electron transfer processes are necessary for signaling. The regulatory role of the H(2)-sensing hydrogenase of R. eutropha, which has also been investigated in other hydrogen-oxidizing bacteria, is intimately correlated with a set of typical structural features. Thus, the family of H(2) sensors represents a novel subclass of [NiFe] hydrogenases denoted as the "regulatory hydrogenases."  相似文献   

18.
[NiFe] hydrogenases are well-characterized enzymes that have a key function in the H2 metabolism of various microorganisms. In the recent years a subfamily of [NiFe] hydrogenases with unique properties has been identified. The members of this family form multisubunit membrane-bound enzyme complexes composed of at least four hydrophilic and two integral membrane proteins. These six conserved subunits, which built the core of these hydrogenases, have closely related counterparts in energy-conserving NADH:quinone oxidoreductases (complex I). However, the reaction catalyzed by these hydrogenases differs significantly from the reaction catalyzed by complex I. For some of these hydrogenases the physiological role is to catalyze the reduction of H+ with electrons derived from reduced ferredoxins or poly-ferredoxins. This exergonic reaction is coupled to energy conservation by means of electron-transport phosphorylation. Other members of this hydrogenase family mainly function to provide the cell with reduced ferredoxin with H2 as electron donor in a reaction driven by reverse electron transport. As complex I these hydrogenases function as ion pumps and have therefore been designated as energy-converting [NiFe] hydrogenases.  相似文献   

19.

Background  

The last step in the maturation process of the large subunit of [NiFe]-hydrogenases is a proteolytic cleavage of the C-terminal by a hydrogenase specific protease. Contrary to other accessory proteins these hydrogenase proteases are believed to be specific whereby one type of hydrogenases specific protease only cleaves one type of hydrogenase. In cyanobacteria this is achieved by the gene product of either hupW or hoxW, specific for the uptake or the bidirectional hydrogenase respectively. The filamentous cyanobacteria Nostoc punctiforme ATCC 29133 and Nostoc sp strain PCC 7120 may contain a single uptake hydrogenase or both an uptake and a bidirectional hydrogenase respectively.  相似文献   

20.
 A comparative study of electron transfer between the 16 heme high molecular mass cytochrome (Hmc) from Desulfovibrio vulgaris Hildenborough and the [Fe] and [NiFe] hydrogenases from the same organism was carried out, both in the presence and in the absence of catalytic amounts of cytochrome c 3. For comparison, this study was repeated with the [NiFe] hydrogenase from D. gigas. Hmc is very slowly reduced by the [Fe] hydrogenase, but faster by either of the two [NiFe] hydrogenases. In the presence of cytochrome c 3, in equimolar amounts to the hydrogenases, the rates of electron transfer are significantly increased and are similar for the three hydrogenases. The results obtained indicate that the reduction of Hmc by the [Fe] or [NiFe] hydrogenases is most likely mediated by cytochrome c 3. A similar study with D. vulgaris Hildenborough cytochrome c 553 shows that, in contrast, this cytochrome is reduced faster by the [Fe] hydrogenase than by the [NiFe] hydrogenases. However, although catalytic amounts of cytochrome c 3 have no effect in the reduction by the [Fe] hydrogenase, it significantly increases the rate of reduction by the [NiFe] hydrogenases. Received: 14 April 1998 / Accepted: 25 June 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号