首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The epithelial Na+ channel (ENaC), composed of three subunits (alpha beta gamma), plays a critical role in salt and fluid homeostasis. Abnormalities in channel opening and numbers have been linked to several genetic disorders, including cystic fibrosis, pseudohypoaldosteronism type I and Liddle syndrome. We have recently identified the ubiquitin-protein ligase Nedd4 as an interacting protein of ENaC. Here we show that ENaC is a short-lived protein (t1/2 approximately 1 h) that is ubiquitinated in vivo on the alpha and gamma (but not beta) subunits. Mutation of a cluster of Lys residues (to Arg) at the N-terminus of gamma ENaC leads to both inhibition of ubiquitination and increased channel activity, an effect augmented by N-terminal Lys to Arg mutations in alpha ENaC, but not in beta ENaC. This elevated channel activity is caused by an increase in the number of channels present at the plasma membrane; it represents increases in both cell-surface retention or recycling of ENaC and incorporation of new channels at the plasma membrane, as determined by Brefeldin A treatment. In addition, we find that the rapid turnover of the total pool of cellular ENaC is attenuated by inhibitors of both the proteasome and the lysosomal/endosomal degradation systems, and propose that whereas the unassembled subunits are degraded by the proteasome, the assembled alpha beta gamma ENaC complex is targeted for lysosomal degradation. Our results suggest that ENaC function is regulated by ubiquitination, and propose a paradigm for ubiquitination-mediated regulation of ion channels.  相似文献   

2.
Gupta SS  Canessa CM 《FEBS letters》2000,481(1):77-80
The alpha and beta subunits of the amiloride-sensitive rat epithelial sodium channel (alpha beta ENaC) were expressed in the yeast Saccharomyces cerevisiae. We used a combination of yeast strains, including a mutant in the secretory pathway (sec6), and Western blotting techniques, to show that alpha beta ENaC was synthesized and targeted through the secretory system to the plasma membrane. Yeasts expressing alpha beta ENaC were more sensitive to salt than the parent strain. In addition, amiloride, a specific blocker of ENaC, was found to suppress salt sensitivity in the yeast strain expressing alpha beta ENaC.  相似文献   

3.
The epithelial sodium channel (ENaC) is a key element for the maintenance of sodium balance and the regulation of blood pressure. Three homologous ENaC subunits (alpha, beta and gamma) assemble to form a highly Na+-selective channel. However, the subunit stoichiometry of ENaC has not yet been solved. Quantitative analysis of cell surface expression of ENaC alpha, beta and gamma subunits shows that they assemble according to a fixed stoichiometry, with alpha ENaC as the most abundant subunit. Functional assays based on differential sensitivities to channel blockers elicited by mutations tagging each alpha, beta and gamma subunit are consistent with a four subunit stoichiometry composed of two alpha, one beta and one gamma. Expression of concatameric cDNA constructs made of different combinations of ENaC subunits confirmed the four subunit channel stoichiometry and showed that the arrangement of the subunits around the channel pore consists of two alpha subunits separated by beta and gamma subunits.  相似文献   

4.
Number of subunits comprising the epithelial sodium channel.   总被引:4,自引:0,他引:4  
The human epithelial sodium channel (hENaC) is a hetero-oligomeric complex composed of three subunits, alpha, beta, and gamma. Understanding the structure and function of this channel and its abnormal behavior in disease requires knowledge of the number of subunits that comprise the channel complex. We used freeze-fracture electron microscopy and electrophysiological methods to evaluate the number of subunits in the ENaC complex expressed in Xenopus laevis oocytes. In oocytes expressing wild-type hENaC (alpha, beta, and gamma subunits), clusters of particles appeared in the protoplasmic face of the plasma membrane. The total number of particles in the clusters was consistent with the whole-cell amiloride-sensitive current measured in the same cells. The size frequency histogram for the particles in the clusters suggested the presence of an integral membrane protein complex composed of 17 +/- 2 transmembrane alpha-helices. Because each ENaC subunit has two putative transmembrane helices, these data suggest that in the oocyte plasma membrane, the ENaC complex is composed of eight or nine subunits. At high magnification, individual ENaC particles exhibited a near-square geometry. Functional studies using wild-type alphabeta-hENaC coexpressed with gamma-hENaC mutants, which rendered the functional channel differentially sensitive to methanethiosulfonate reagents and cadmium, suggested that the functional channel complex contains more than one gamma subunit. These data suggest that functional ENaC consists of eight or nine subunits of which a minimum of two are gamma subunits.  相似文献   

5.
The epithelial Na+ channel (ENaC) is assembled in the endoplasmic reticulum from three structurally related subunits (alpha, beta, and gamma). Channel maturation within the biosynthetic pathway involves cleavage of the alpha and gamma subunits by furin and processing of N-linked glycans on alpha, beta, and gamma to complex type. Both mature and immature subunits have been observed at the surface of stably transfected Madin-Darby canine kidney cells. We have examined whether channel maturation is an all-or-none event or whether heterogeneous processing of channel subunits occurs within an individual channel complex. Using an immobilized lectin to isolate proteins with complex type N-glycans, we found that individual channel complexes with mature subunits lack immature subunits. Furthermore, terminal processing of N-glycans on ENaC subunits was not dependent on cleavage of ENaC subunits, and proteolysis of channel subunits was not dependent on prior processing of N-glycans. Our results suggest that processing of subunits within an individual channel complex is an all-or-none event such that channels present on the cell surface contain either all mature or all immature subunits. The presence of immature channel complexes at the plasma membrane provides epithelial cells with a reserve of poorly functional channels that can be activated by proteases in post-Golgi compartments.  相似文献   

6.
Alveolar hypoxia may impair sodium-dependent alveolar fluid transport and induce pulmonary edema in rat and human lung, an effect that can be prevented by the inhalation of beta(2)-agonists. To investigate the mechanism of beta(2)-agonist-mediated stimulation of sodium transport under conditions of moderate hypoxia, we examined the effect of terbutaline on epithelial sodium channel (ENaC) expression and activity in cultured rat alveolar epithelial type II cells exposed to 3% O(2) for 24 h. Hypoxia reduced transepithelial sodium current and amiloride-sensitive sodium channel activity without decreasing ENaC subunit mRNA or protein levels. The functional decrease was associated with reduced abundance of ENaC subunits (especially beta and gamma) in the apical membrane of hypoxic cells, as quantified by biotinylation. cAMP stimulation with terbutaline reversed the hypoxia-induced decrease in transepithelial sodium transport by stimulating sodium channel activity and markedly increased the abundance of beta-and gamma-ENaC in the plasma membrane of hypoxic cells. The effect of terbutaline was prevented by brefeldin A, a blocker of anterograde transport. These novel results establish that hypoxia-induced inhibition of amiloride-sensitive sodium channel activity is mediated by decreased apical expression of ENaC subunits and that beta(2)-agonists reverse this effect by enhancing the insertion of ENaC subunits into the membrane of hypoxic alveolar epithelial cells.  相似文献   

7.
Here, we report the presence of two splice variants of the human epithelial sodium channel alpha subunit (h alpha ENaC) containing Alu cassette, namely h alpha ENaC+22 and h alpha ENaC+Alu, in various tissues. Functional expression of these splice variants with hENaC beta and gamma subunits produced loss-of-channel activity in the Xenopus oocyte expression system. Interestingly, coexpression of h alpha ENaC+22 or h alpha ENaC+Alu, respectively, with wild type hENaC alpha, beta, and gamma subunits enhanced the expression of amiloride-sensitive current in oocytes. The presence of Alu sequences in the 3'-untranslated region of h gamma ENaC was also identified.  相似文献   

8.
In many epithelial tissues in the body, the rate of Na(+) reabsorption is governed by the activity of the epithelial sodium channel (ENaC). The assembly, trafficking, and turnover of the three ENaC subunits (alpha, beta, and gamma) is complex and not well understood. Recent experiments suggest that ENaC must be proteolytically cleaved for maximal activity and may explain the discrepancies reported in prior biochemical approaches focused on quantitating the trafficking and half-life of full-length subunits. As an alternative approach to examining the dynamics of ENaC subunits, we have generated doxycycline-repressible replication-defective recombinant adenoviruses encoding individual epitope-tagged mouse ENaC subunits and expressed these in polarized MDCK I cells. Co-infection with these viruses encoding all three subunits generates robust amiloride-sensitive currents in polarized MDCK cells. Significant current was also observed in cells expressing alpha- and gamma-mENaC in the absence of beta-mENaC. These currents did not appear to result from association with endogenous canine beta-ENaC. Treatment of alpha beta gamma-expressing cells with cycloheximide (CHX) resulted in the rapid inhibition (within 3 h) of approximately 50-80% of the initial current; however, a sizable fraction of the initial current remained even after 6 h of CHX. By contrast, CHX addition to cells expressing only alpha- and gamma-mENaC resulted in rapid decay in current with no residual fraction. Our data suggest that ENaC channels of differing stoichiometries are differentially trafficked and degraded and provide support for the possibility that noncoordinate trafficking of ENaC subunits may function in vivo as a mechanism to modulate ENaC activity.  相似文献   

9.
Ion channels, including the epithelial Na(+) channel (ENaC), are intrinsic membrane proteins comprised of component subunits. Proper subunit assembly and stoichiometry are essential for normal physiological function of the channel protein. ENaC comprises three subunits, alpha, beta, and gamma, that have common tertiary structures and much amino acid sequence identity. For maximal ENaC activity, each subunit is required. The subunit stoichiometry of functional ENaC within the membrane remains uncertain. We combined a biophysical approach, fluorescence intensity ratio analysis, used to assess relative subunit stoichiometry with total internal reflection fluorescence microscopy, which enables isolation of plasma membrane fluorescence signals, to determine the limiting subunit stoichiometry of ENaC within the plasma membrane. Our results demonstrate that membrane ENaC contains equal numbers of each type of subunit and that at steady state, subunit stoichiometry is fixed. Moreover, we find that when all three ENaC subunits are coexpressed, heteromeric channel formation is favored over homomeric channels. Electrophysiological results testing effects of ENaC subunit dose on channel activity were consistent with total internal reflection fluorescence/fluorescence intensity ratio findings and confirmed preferential formation of heteromeric channels containing equal numbers of each subunit.  相似文献   

10.
The epithelial Na(+) channel (ENaC) is a multimeric membrane protein consisting of three subunits, alpha, beta, and gamma. The total number of subunits per functional channel complex has been described variously to follow either a tetrameric arrangement of 2alpha:1beta:1gamma or a higher-ordered stoichiometry of 3alpha:3beta:3gamma. Therefore, while it is clear that all three ENaC subunits are required for full channel activity, the number of the subunits required remains controversial. We used a new approach, based on single-channel measurements in Xenopus oocytes to address this issue. Individual mutations that alter single-channel conductance were made in pore-lining residues of ENaC alpha, beta, or gamma subunits. Recordings from patches in oocytes expressing a single species, wild type or mutant, of alpha, beta, and gamma showed a well-defined current transition amplitude with a single Gaussian distribution. When cRNAs for all three wild-type subunits were mixed with an equimolar amount of a mutant alpha-subunit (either S589D or S592T), amplitudes corresponding to pure wild-type or mutant conductances could be observed in the same patch, along with a third intermediate amplitude most likely arising from channels with at least one wild-type and at least 1 mutant alpha-subunit. However, intermediate or hybrid conductances were not observed with coexpression of wild-type and mutant betaG529A or gammaG534E subunits. Our results support a tetrameric arrangement of ENaC subunits where 2alpha, 1beta, and 1gamma come together around central pore.  相似文献   

11.
The epithelial sodium channel (ENaC) is the prototype of a new class of ion channels known as the ENaC/Deg family. The hallmarks of ENaC are a high selectivity for Na(+), block by amiloride, small conductance, and slow kinetics that are voltage-independent. We have investigated the contribution of the second hydrophobic domain of each of the homologous subunits alpha, beta, and gamma to the kinetic properties of ENaC. Chimeric subunits were constructed between alpha and beta subunits (alpha-beta) and between gamma and beta subunits (gamma-beta). Chimeric and wild-type subunits were expressed in various combinations in Xenopus oocytes. Analysis of whole-cell and unitary currents made it possible to correlate functional properties with specific sequences in the subunits. Functional channels were generated without the second transmembrane domain from alpha subunits, indicating that it is not essential to form functional pores. The open probability and kinetics varied with the different channels and were influenced by the second hydrophobic domains. Amiloride affinity, Li(+)/Na(+) selectivity, and single channel conductance were also affected by this segment.  相似文献   

12.
We previously showed that ENaC is present in lipid rafts in A6 cells, a Xenopus kidney cell line. We now demonstrate that ENaC can be detected in lipid rafts in mouse cortical collecting duct ((MPK)CCD(14)) cells by detergent insolubility, buoyancy on density gradients using two distinct approaches, and colocalization with caveolin 1. Less than 30% of ENaC subunits were found in raft fractions. The channel subunits also colocalized on sucrose gradients with known vesicle targeting and fusion proteins syntaxin 1A, Vamp 2, and SNAP23. Hormonal stimulation of ENaC activity by either forskolin or aldosterone, short or long term, did not alter the lipid raft distribution of ENaC. Methyl-beta-cyclodextrin added apically to (MPK)CCD(14) cells resulted in a slow decline in amiloride-sensitive sodium transport with short circuit current reductions of 38.1 +/- 9.6% after 60 min. The slow decline in ENaC activity in response to apical cyclodextrin was identical to the rate of decline seen when protein synthesis was inhibited by cycloheximide. Apical biotinylation of (MPK)CCD(14) cells confirmed the loss of ENaC at the cell surface following cyclodextrin treatment. Acute stimulation of the recycling pool of ENaC was unaffected by apical cyclodextrin application. Expression of dominant negative caveolin isoforms (CAV1-eGFP and CAV3-DGV) which disrupt caveolae, reduced basal ENaC currents by 72.3 and 78.2%, respectively; but, as with cyclodextrin, the acute response to forskolin was unaffected. We conclude that ENaC is present in and regulated by lipid rafts. The data are consistent with a model in which rafts mediate the constitutive apical delivery of ENaC.  相似文献   

13.
The amiloride-sensitive epithelial sodium channel (ENaC) plays a critical role in fluid and electrolyte homeostasis and consists of alpha, beta, and gamma subunits. The carboxyl terminus of each ENaC subunit contains a PPXY motif that is believed to be important for interaction with the WW domains of the ubiquitin-protein ligases, Nedd4 and Nedd4-2. Disruption of this interaction, as in Liddle's syndrome where mutations delete or alter the PPXY motif of either the beta or gamma subunits, has been shown to result in increased ENaC activity and arterial hypertension. Here we present evidence that N4WBP5A, a novel Nedd4/Nedd4-2-binding protein, is a potential regulator of ENaC. In Xenopus laevis oocytes N4WBP5A increases surface expression of ENaC by reducing the rate of ENaC retrieval. We further demonstrate that N4WBP5A prevents sodium feedback inhibition of ENaC possibly by interfering with the xNedd4-2-mediated regulation of ENaC. As N4WBP5A binds Nedd4/Nedd4-2 via PPXY motif/WW domain interactions and appears to be associated with specific intracellular vesicles, we propose that N4WBP5A functions by regulating Nedd4/Nedd4-2 availability and trafficking. Because N4WBP5A is highly expressed in native renal collecting duct and other tissues that express ENaC, it is a likely candidate to modulate ENaC function in vivo.  相似文献   

14.
Activity of the epithelial Na(+) channel (ENaC) is rate-limiting for Na(+) (re)absorption across electrically tight epithelia. ENaC is a heteromeric channel comprised of three subunits, alpha, beta, and gamma, with each subunit contributing to the functional channel pore. The subunit stoichiometry of ENaC remains uncertain with electrophysiology and biochemical experiments supporting both a tetramer with a 2alpha:1beta:1gamma stoichiometry and a higher ordered channel with a 3alpha:3beta:3gamma stoichiometry. Here we used an independent biophysical approach based upon fluorescence resonance energy transfer (FRET) between differentially fluorophore-tagged ENaC subunits to determine the subunit composition of mouse ENaC functionally reconstituted in Chinese hamster ovary and COS-7 cells. We found that when all three subunits were co-expressed, ENaC contained at least two of each type of subunit. Findings showing that ENaC subunits interact with similar subunits in immunoprecipitation studies are consistent with these FRET results. Upon native polyacrylamide gel electrophoresis, moreover, oligomerized ENaC runs predominantly as a single species with a molecular mass of >600 kDa. Because single ENaC subunits have a molecular mass of approximately 90 kDa, these results also agree with the FRET results. The current results as a whole, thus, are most consistent with a higher ordered channel possibly with a 3alpha:3beta:3gamma stoichiometry.  相似文献   

15.
Pseudohypoaldosteronism type 1 (PHA-1) is an inherited disease characterized by severe neonatal salt-wasting and caused by mutations in subunits of the amiloride-sensitive epithelial sodium channel (ENaC). A missense mutation (G37S) of the human ENaC beta subunit that causes loss of ENaC function and PHA-1 replaces a glycine that is conserved in the N-terminus of all members of the ENaC gene family. We now report an investigation of the mechanism of channel inactivation by this mutation. Homologous mutations, introduced into alpha, beta or gamma subunits, all significantly reduce macroscopic sodium channel currents recorded in Xenopus laevis oocytes. Quantitative determination of the number of channel molecules present at the cell surface showed no significant differences in surface expression of mutant compared with wild-type channels. Single channel conductances and ion selectivities of the mutant channels were identical to that of wild-type. These results suggest that the decrease in macroscopic Na currents is due to a decrease in channel open probability (P(o)), suggesting that mutations of a conserved glycine in the N-terminus of ENaC subunits change ENaC channel gating, which would explain the disease pathophysiology. Single channel recordings of channels containing the mutant alpha subunit (alphaG95S) directly demonstrate a striking reduction in P(o). We propose that this mutation favors a gating mode characterized by short-open and long-closed times. We suggest that determination of the gating mode of ENaC is a key regulator of channel activity.  相似文献   

16.
17.
The epithelial sodium channel (ENaC) is preferentially assembled into heteromeric alphabetagamma complexes. The alpha and gamma (not beta) subunits undergo proteolytic cleavage by endogenous furin-like activity correlating with increased ENaC function. We identified full-length subunits and their fragments at the cell surface, as well as in the intracellular pool, for all homo- and heteromeric combinations (alpha, beta, gamma, alphabeta, alphagamma, betagamma, and alphabetagamma). We assayed corresponding channel function as amiloride-sensitive sodium transport (I(Na)). We varied furin-mediated proteolysis by mutating the P1 site in alpha and/or gamma subunit furin consensus cleavage sites (alpha(mut) and gamma(mut)). Our findings were as follows. (i) The beta subunit alone is not transported to the cell surface nor cleaved upon assembly with the alpha and/or gamma subunits. (ii) The alpha subunit alone (or in combination with beta and/or gamma) is efficiently transported to the cell surface; a surface-expressed 65-kDa alpha ENaC fragment is undetected in alpha(mut)betagamma, and I(Na) is decreased by 60%. (iii) The gamma subunit alone does not appear at the cell surface; gamma co-expressed with alpha reaches the surface but is not detectably cleaved; and gamma in alphabetagamma complexes appears mainly as a 76-kDa species in the surface pool. Although basal I(Na) of alphabetagamma(mut) was similar to alphabetagamma, gamma(mut) was not detectably cleaved at the cell surface. Thus, furin-mediated cleavage is not essential for participation of alpha and gamma in alphabetagamma heteromers. Basal I(Na) is reduced by preventing furin-mediated cleavage of the alpha, but not gamma, subunits. Residual current in the absence of furin-mediated proteolysis may be due to non-furin endogenous proteases.  相似文献   

18.
The amiloride-sensitive epithelial sodium channel (ENaC) plays a critical role in fluid and electrolyte homeostasis and consists of alpha, beta, and gamma subunits. The carboxyl terminus of each ENaC subunit contains a PPxY, motif which is believed to be important for interaction with the WW domains of the ubiquitin-protein ligase, Nedd4. Disruption of this interaction, as in Liddle's syndrome, where mutations delete or alter the PPxY motif of either the beta or gamma subunits, has been proposed to result in increased ENaC activity. Here we present evidence that KIAA0439 protein, a close relative of Nedd4, is also a potential regulator of ENaC. We demonstrate that KIAA0439 WW domains bind all three ENaC subunits. We show that a recombinant KIAA0439 WW domain protein acts as a dominant negative mutant that can interfere with the Na(+)-dependent feedback inhibition of ENaC in whole-cell patch clamp experiments. We propose that KIAA0439 and Nedd4 proteins either play a redundant role in ENaC regulation or function in a tissue- and/or signal-specific manner to down-regulate ENaC.  相似文献   

19.
20.
In this article, the second of two, we continue our studies of sodium-dependent transport systems in human cartilage from healthy individuals and with osteoarthritis (OA) and rheumatoid arthritis (RA). We demonstrate the presence of the epithelial sodium channel (ENaC), previously undescribed in chondrocytes. This system is composed of three subunits, alpha, beta and gamma. We have shown that the human chondrocytes express at least the alpha and the beta subunit of ENaC. The expression of these subunits is altered in arthritic chondrocytes. In RA samples the quantity of alpha and beta is significantly higher than in control samples. On the other hand, ENaC alpha and beta subunits are absent in the chondrocytes of OA cartilage. Human chondrocytes also possess three isoforms of the Na+/H+ exchanger (NHE), NHE1, NHE2 and NHE3. The NHE system is composed of a single protein and is believed to participate in intracellular pH regulation. Furthermore, our studies indicate that at least one isoform of the electroneutral Na+/K+/2Cl- cotransporter (NKCC) is present in human chondrocytes. There are no obvious variations in the relative expression of NHE isoforms or NKCC between healthy and arthritic cartilage. Our data suggests that chondrocytes from arthritic cartilage may adapt to changes in their environmental sodium concentration through variations in ENaC protein levels. ENaC is also likely to serve as a major sodium entry mechanism, a process that, along with cytoskeletal proteins, may be part of mechanotransduction in cartilage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号