首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Myofibroblasts are a differentiated fibroblast cell type characterized by increased contractile capacity and elevated production of extracellular matrix (ECM) proteins. In the heart, myofibroblast expression is implicated in fibrosis associated with pressure-overload hypertrophy, among other pathologies. Although enhanced expression of ECM proteins by myofibroblasts is established, few studies have addressed the nature of the ECM deposited by myofibroblasts. To characterize ECM production and assembly by cardiac myofibroblasts, we developed a three-dimensional (3D) culture system using primary cardiac fibroblasts seeded into a nylon mesh that allows us to reversibly interconvert between myofibroblast and fibroblast phenotypes. We report that an increase in collagen I production by myofibroblasts was accompanied by a significant increase in collagen deposition into insoluble ECM. Furthermore, myofibroblasts exhibited increased levels of procollagen alpha1(I) with C-propeptide attached (and N-propeptide removed) relative to procollagen alpha1(I) compared with fibroblast cultures. An increase in production of the myofibroblast-associated splice variant of fibronectin (EDA-Fn) was seen in myofibroblast 3D cultures. Because the regulation of procollagen I processing is known to have profound effects on ECM assembly, differences in procollagen I secretion and maturation coupled with expression of EDA-Fn are shown to contribute to the production of a distinct ECM by the cardiac myofibroblast.  相似文献   

2.
Progressive systemic sclerosis (PSS), is a connective tissue disease characterized by excessive accumulation of collagen in the skin and various internal organs which is due, at least in part, to increased collagen production by PSS fibroblasts. In order to examine the molecular mechanisms responsible for this abnormality, we compared the kinetics of collagen biosynthesis, the intracellular degradation of collagen and the expression of Types I and III procollagen genes between normal and PSS dermal fibroblasts in culture. Two age- and sex-matched normal and PSS dermal fibroblast cell lines were studied. The results showed that the PSS cultures produced higher amounts of collagen than did normal fibroblasts and displayed an abnormal kinetic pattern. Furthermore, the PSS cells showed a slight but statistically significant increase in the fraction of collagen degraded intracellularly when compared with normal cells (23% against 18% respectively). The levels of mRNA for procollagen Types I and III were determined by Northern and dot-blot hybridization with specific cloned cDNA probes for alpha 1(I), alpha 2(I) and alpha 1(III) and it was found that they were 2-3-fold higher for each of the three chains in the PSS cell lines compared with the controls. These findings indicate, therefore, that the overproduction of collagen characteristic of PSS fibroblasts can be largely accounted for by the increased levels of collagen mRNA.  相似文献   

3.
4.
The effects of interferon-alpha and interferon-gamma on collagen synthesis and mRNA levels of type I and type III procollagens were studied in skin fibroblasts cultured from affected and unaffected skin sites of two patients with localized scleroderma (morphea). Both scleroderma cell lines exhibited elevated type I and type III procollagen mRNA levels to account for the increased procollagen synthesis, when compared to the unaffected controls. Interferon-gamma treatment resulted in a dose-dependent reduction in collagen synthesis and procollagen mRNA levels in scleroderma fibroblasts. A 72-h exposure to interferon-gamma reduced procollagen mRNA levels in the scleroderma fibroblast lines to the levels exhibited by the unaffected control fibroblasts. The suppressive effect of interferon-alpha on procollagen mRNA levels was somewhat weaker than that of interferon-gamma. The results suggest potential use of interferon-gamma in treatment and prevention of human fibrotic conditions.  相似文献   

5.
Abnormal regulation of collagen synthesis has been observed in fibroblasts from keloids, benign collagenous tumors that develop as a result of an inherited defect in dermal wound healing. Hydrocortisone reduces the rate of collagen synthesis in fibroblasts from normal adult dermis and scars, but fails to down regulate collagen synthesis in keloid-derived fibroblasts. We show here that loss of glucocorticoid control of collagen synthesis in keloid cells is due to an inability of hydrocortisone to reduce the levels of types I, III, and V collagen mRNA, whereas it coordinately lowers these RNAs in normal adult cells. The defective regulatory mechanism is expressed only in fibroblasts from the lesion. Fibroblasts from uninvolved dermis respond normally to hydrocortisone. Not all glucocorticoid-modulated matrix proteins are abnormally regulated in this disorder; fibronectin mRNA is induced to a similar extent in normal and keloid cells. The failure of hydrocortisone to reduce collagen gene expression is also seen in fibroblasts from fetal dermis. We have reported similarities between keloid and fetal cells with regard to growth factor requirements and growth response to hydrocortisone. Thus, keloids may be due to the inappropriate expression of a pattern of growth and matrix production that is developmentally regulated.  相似文献   

6.
Keloid fibroproliferation appears to be influenced by epithelial-mesenchymal interactions between keloid keratinocytes (KKs) and keloid fibroblasts (KFs). Keloid and normal fibroblasts exhibit accelerated proliferation and collagen I and III production in co-culture with KKs compared with single cell culture or co-culture with normal keratinocytes. ERK and phosphatidylinositol 3-kinase (PI3K) pathway activation has been observed in excessively proliferating KFs in co-culture with KKs. We hypothesized that ERK and PI3K pathways might be involved in collagen and extracellular matrix production in KFs. To test our hypothesis, four samples of KFs were co-cultured in defined serum-free medium with KKs for 2-5 days. KF cell lysate was subjected to Western blot analysis. Compared with KF single cell culture, phospho-ERK1/2 and downstream phospho-Elk-1 showed up-regulation in the co-culture groups, as did phospho-PI3K and phospho-Akt-1, indicating ERK and PI3K pathway activation. Western blotting of the conditioned medium demonstrated increased collagen I-III, laminin beta2, and fibronectin levels. Addition of the MEK1/2-specific inhibitor U0126 or the PI3K-specific inhibitor LY294002 (but not p38 kinase and JNK inhibitors) completely nullified collagen I-III production and significantly decreased laminin beta2 and fibronectin secretion. In the presence of the MEK1/2 or PI3K inhibitor, fibronectin demonstrated changes in molecular mass reflected by faster in-gel migration. These data strongly suggest that synchronous activation of both the ERK and PI3K pathways is essential for collagen I-III and laminin beta2 production. These pathways additionally appear to affect the side chain attachments of fibronectin. Modulation of these pathways may suggest a direction for keloid therapy.  相似文献   

7.
8.
Keloids are disfiguring, proliferative scars that represent a pathological response to cutaneous injury. The overabundant extracellular matrix formation, largely from collagen deposition, is characteristic of these lesions and has led to investigations into the role of the fibroblast in its pathogenesis. Curiously, the role of the epidermis in extracellular matrix collagen deposition of normal skin has been established, but a similar hypothesis in keloids has not been investigated. The aim of this study was to investigate the influence of keloid epithelial keratinocytes on the growth and proliferation of normal fibroblasts in an in vitro serum-free co-culture system. A permeable membrane separated two chambers; the upper chamber contained a fully differentiated stratified epithelium derived from the skin of excised earlobe keloid specimens, whereas the lower chamber contained a monolayer of normal or keloid fibroblasts. Both cell types were nourished by serum-free medium from the lower chamber.Epithelial keratinocytes from five separate earlobe keloid specimens were investigated. Four sets of quadruplicates were performed for each specimen co-cultured with normal fibroblasts or keloid-derived fibroblasts. Controls consisted of (1) normal keratinocytes co-cultured with normal fibroblasts, and (2) fibroblasts grown in serum-free media in the absence of keratinocytes in the upper chamber. Fibroblasts were indirectly quantified by 3- (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric assay, with results confirmed by DNA content measurement, at days 1 and 5 after the co- culture initiation.Significantly, increased proliferation was seen in fibroblasts co-cultured with keloid keratinocytes, as compared with the normal keratinocyte controls at day 5 (analysis of variance, p < 0.001). These results strongly suggest that the overlying epidermal keratinocytes of the keloid may have an important, previously unappreciated role in keloid pathogenesis using paracrine or epithelial-mesenchymal signaling.  相似文献   

9.
10.
The effects of interferon-α and interferon-γ on collagen synthesis and mRNA levels of type I and type III procollagens were studied in skin fibroblasts cultured from affected and unaffected skin sites of two patients with localized scleroderma (morphea). Both scleroderma cell lines exhibited elevated type I and type III procollagen mRNA levels to account for the increased procollagen synthesis, when compared to the unaffected controls. Interferon-γ treatment resulted in a dose-dependent reduction in collagen synthesis and procollagen mRNA levels in scleroderma fibroblasts. A 72-h exposure to interferon-γ reduced procollagen mRNA levels in the scleroderma fibroblast lines to the levels exhibited by the unaffected control fibroblasts. The suppressive effect of interferon-α on procollagen mRNA levels was somewhat weaker than that of interferon-γ. The results suggest potential use of interferon-γ in treatment and prevention of human fibrotic conditions.  相似文献   

11.
Molecular sieve column chromatography was used to determine the amount of type I and III collagen synthesized by normal dermis and keloid biopsies and fibroblasts derived from these tissues. After incubation with radioactive proline, the collagen was extracted and separated into types I and III and then quantitated. There was no significant difference in the percent type III collagen synthesized by fresh keloid biopsies compared to normal dermis. Likewise, there was no significant difference in the percent type III collagen synthesized by keloid fibroblasts compared to normal dermal fibroblasts. However, fibroblasts from both keloid and normal dermis synthesized a lower percentage of type III collagen in cell culture compared to the original biopsies. These findings demonstrate that keloid collagen has the same type distribution as normal dermis and suggest that increased collagen synthesis in these lesions is not related to altered collagen types.  相似文献   

12.
Molecular sieve column chromatography was used to determine the amount of type I and III collagen synthesized by normal dermis and keloid biopsies and fibroblasts derived from these tissues. After incubation with radioactive proline, the collagen was extracted and separated into types I and III and then quantitated. There was no significant difference in the percent type III collagen synthesized by fresh keloid biopsies compared to normal dermis. Likewise, there was no significant difference in the percent type III collagen synthesized by keloid fibroblasts compared to normal dermal fibroblasts, However, fibroblasts from both keloid and normal dermis synthesized a lower percentage of type III collagen in cell culture compared to the original biopsies. These findings demonstrate that keloid collagen has the same type distribution as normal dermis and suggest that increased collagen synthesis in these lesions is not related to altered collagen types.  相似文献   

13.
Increasing evidence supports the idea that the finite proliferative life span of normal fibroblasts is a differentiation-like phenomenon. If this were correct, an ordered sequence of differential gene expression should be associated with the in vitro progression of cells from low passage to high passage (senescence). To define the pattern of expression of fibroblast differentiation-associated genes during this in vitro progression, we have determined the temporal pattern of expression of extracellular matrix (ECM) genes in Syrian hamster dermal fibroblasts as a function of passage level and percentage of proliferative life span in vitro. Steady-state mRNA levels were determined by Northern and dot blot analyses of total cellular RNA hybridized with cDNA probes specific for fibronectin, procollagen alpha 1III, and procollagen alpha 1I. Cells were analyzed at 24 hr postconfluence to minimize the presence of actively proliferating cells, and because maximal levels of fibronectin, alpha 1III, and alpha 1I mRNAs were observed 24 hr postconfluence. Unique, multiphasic patterns of expression of each of these ECM components were observed as the cells progressed from low passage to high passage. As the cells reached midhigh passage, fibronectin mRNA levels increased. This midpassage increase in fibronectin was followed by an increase in the level of alpha 1III mRNA as the cells reached the end of their in vitro proliferative life span, and then alpha 1I when the cells entered the postmitotic senescent phase, at which time the level of fibronectin mRNA also declined. A similar overlapping cascade pattern of up-regulation of these genes is seen during development and wound repair. This suggests that as cultured fibroblasts reach the end of their proliferative life span, they reinitiate a gene expression program used in tissue development and repair.  相似文献   

14.
The effects of epidermal growth factor (EGF) on granulation-tissue formation and collagen-gene expression were studied in experimental sponge-induced granulomas in rats. After daily administration of 5 micrograms of EGF into the sponge, total RNA was extracted from the ingrown granulation tissue at days 4 and 7 and analysed by Northern hybridization for the contents of mRNAs for types I and III procollagens. EGF treatment increased procollagen mRNA, particularly at day 4. To determine whether this elevation was due to increased proliferation of collagen-producing fibroblasts or to activation of collagen-gene expression in these cells, fibroblast cultures were started from granulation tissue and treated with EGF. These experiments confirmed that EGF is a potent mitogen for granuloma fibroblasts in a dose-dependent manner. The effect of EGF treatment on radioactive hydroxyproline production in cultured cells was inhibitory. The decreased rate of collagen synthesis was also indicated by decreased amounts of procollagen mRNAs. The results suggest that the stimulation of wound healing and collagen production by EGF is due to increased fibroblast proliferation, and not to increased expression of type I and III procollagen genes.  相似文献   

15.
Cardiac tissue from mice that do not express secreted protein acidic and rich in cysteine (SPARC) have reduced amounts of insoluble collagen content at baseline and in response to pressure overload hypertrophy compared with wild-type (WT) mice. However, the cellular mechanism by which SPARC affects myocardial collagen is not clearly defined. Although expression of SPARC by cardiac myocytes has been detected in vitro, immunohistochemistry of hearts demonstrated SPARC staining primarily associated with interstitial fibroblastic cells. Primary cardiac fibroblasts isolated from SPARC-null and WT mice were assayed for collagen I synthesis by [(3)H]proline incorporation into procollagen and by immunoblot analysis of procollagen processing. Bacterial collagenase was used to discern intracellular from extracellular forms of collagen I. Increased amounts of collagen I were found associated with SPARC-null versus WT cells, and the proportion of total collagen I detected on SPARC-null fibroblasts without propeptides [collagen-α(1)(I)] was higher than in WT cells. In addition, the amount of total collagen sensitive to collagenase digestion (extracellular) was greater in SPARC-null cells than in WT cells, indicating an increase in cell surface-associated collagen in the absence of SPARC. Furthermore, higher levels of collagen type V, a fibrillar collagen implicated in collagen fibril initiation, were found in SPARC-null fibroblasts. The absence of SPARC did not result in significant differences in proliferation or in decreased production of procollagen I by cardiac fibroblasts. We conclude that SPARC regulates collagen in the heart by modulating procollagen processing and interactions with fibroblast cell surfaces. These results are consistent with decreased levels of interstitial collagen in the hearts of SPARC-null mice being due primarily to inefficient collagen deposition into the extracellular matrix rather than to differences in collagen production.  相似文献   

16.
Of the many processes that affect the outcome of wound repair, epidermal-dermal interactions are essential to extracellular matrix (ECM) remodeling and in particular, soluble factors released by keratinocytes are known to have a direct impact on the production of ECM by dermal fibroblasts. Aminopeptidase N (APN) has recently been proposed as a cell-surface receptor for stratifin and is responsible for the stratifin-mediated matrix metalloproteinase-1 (MMP-1) upregulation in fibroblasts. The present study examines whether modulation of APN gene expression has any impact on the fibroblast ECM gene expression profile. The result reveals that in the presence of keratinocyte-derived soluble factors, transient knockdown of APN in dermal fibroblasts affects the expression of key ECM components such as fibronectin, tenascin-C, MMP-1, MMP-3, and MMP-12. The regulatory effects of APN on fibronectin and selective MMPs appear to be associated with receptor-mediated signal transduction independently of its peptidase activity. On the contrary, inhibition of the APN enzymatic activity by bestatin significantly reduces the tenascin-C expression and enhances the contraction of fibroblast-populated collagen gel, suggesting an activity-dependent regulation of fibroblast contractility by APN. The overall effects of APN on the expression of fibronectin, tenascin-C, and MMPs in fibroblasts propose an important role for APN in the regulation of keratinocyte-mediated ECM remodeling and fibroblast contractile activity.  相似文献   

17.
Human recombinant-gamma-interferon was tested on human dental pulp fibroblast activity in vitro. Fibroblast proliferation was estimated by a colorimetric test. Type I and type III collagens and fibronectin were quantified by radioimmunoassay in culture supernatant from confluent fibroblasts. A dose dependent stimulation of the proliferation was observed when fibroblasts were treated with recombinant-gamma-interferon. In contrast, an inhibition of the synthesis of soluble types I and III collagen and fibronectin by confluent cell cultures treated with recombinant-gamma-interferon occurred without apparent modification of the insoluble collagen level in the cell layer. Quantimetric analysis of type I collagen immunoperoxidase labelling have demonstrated that there was no intracellular storage of type I collagen in these cultured fibroblasts. These data support the view that human recombinant-gamma-interferon can affect human dental pulp fibroblast functions and thus may play an important part in the regulation of fibrosis.  相似文献   

18.
19.
Ascorbic acid specifically stimulates collagen production in cultured human skin fibroblasts, an effect that appears to be independent of its cofactor role in prolyl and lysyl hydroxylation. In order to investigate the level of regulation of ascorbic acid on collagen synthesis, we have translated mRNA in a cell-free system derived from rabbit reticulocytes. Total RNA was prepared from normal human skin fibroblasts and similar fibroblasts which had been exposed to 100 uM ascorbic acid for four days. Ascorbic acid treatment resulted in a twofold stimulation of procollagen mRNA whereas non-collagenous mRNA was unchanged. These results reveal that ascorbic acid has a preferential stimulating effect on type I procollagen mRNA.  相似文献   

20.
Bleomycin is a chemotherapeutic agent sometimes associated with pulmonary fibrosis and skin lesions in patients undergoing treatment. We examined the mechanisms of increased collagen deposition on bleomycin-induced fibrosis by incubating human lung and skin fibroblast cultures with [14C]proline; the synthesis of [14C]hydroxyproline relative to DNA or cell protein was taken as an index of procollagen formation. Procollagen synthesis by lung cells in the presence of 0.1 and 1.0 microgram/ml bleomycin was significantly increased and similar results were obtained with skin fibroblasts. The relative synthesis of genetically distinct types of collagen was measured by isolating the newly synthesized type I and type III procollagens by DEAE-cellulose chromatography. The proportion of type III procollagen of total newly synthesized procollagen in control lung fibroblast cultures was 17.4 +/0 0.6% (mean +/- S.E.) while the corresponding value in cells incubated in 1 microgram/ml bleomycin was 12.5 +/- 0.6% (n = 6, P < 0.01). Similar results were obtained when the ratios of newly synthesized type I and type III collagens were estimated by interrupted polyacrylamide disc gel electrophoresis in sodium dodecyl sulfate after a limited proteolytic digestion with pepsin. The results indicate that the increased procollagen synthesis induced by bleomycin in fibroblast cultures is predominantly directed towards the synthesis of type I procollagen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号