首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
2.
3.
4.
The effect of selective PDE-I (vinpocetine), PDE-III (milrinone, CI-930), PDE-IV (rolipram, nitroquazone), and PDE-V (zaprinast) isozyme inhibitors on TNF-alpha and IL-1beta production from LPS stimulated human monocytes was investigated. The PDE-IV inhibitors caused a concentration dependent inhibition of TNF-alpha production, but only partially inhibited IL-1beta at high concentrations. High concentrations of the PDE-III inhibitors weakly inhibited TNF-alpha, but had no effect on IL-1beta production. PDE-V inhibition was associated with an augmentation of cytokine secretion. Studies with combinations of PDE isozyme inhibitors indicated that PDE-III and PDE-V inhibitors modulate rolipram's suppression of TNF production in an additive manner. These data confirm that TNF-alpha and IL-1beta production from LPS stimulated human monocytes are differentially regulated, and suggest that PDE-IV inhibitors have the potential to suppress TNF levels in man.  相似文献   

5.
Monocyte chemotactic protein (MCP-1) is a specific monocyte chemoattractant and activating factor produced by both immune cells (mononuclear phagocytes and lymphocytes) and non-immune cells (parenchymal and stromal cells). In order to define the conditions under which human monocytes express MCP-1, monocytes were exposed to IFN-gamma, IL- lbeta, TNF-alpha, IL-4 or PHA under serum free conditions. There was no significant MCP-1 production by monocytes following exposure to IL-lbeta, TNF-alpha or IL-4. In contrast, stimulation with IFN-gamma resulted in a dose dependent increase in MCP-1 protein and mRNA expression. Simultaneous stimulation with IFN-gamma and IL-1beta or TNF-alpha resulted in no further increase in MCP-1 production. It is concluded that IFN-gamma, primarily a product of T(H)1 T lymphocytes, stimulates the expression of MCP-1 by monocytes.  相似文献   

6.
TNF-alpha mediates both protective and detrimental manifestations of the host immune response. Our previous work has shown thalidomide to be a relatively selective inhibitor of TNF-alpha production in vivo and in vitro. Additionally, we have recently reported that thalidomide exerts a costimulatory effect on T cell responses. To develop thalidomide analogues with increased anti-TNF-alpha activity and reduced or absent toxicities, novel TNF-alpha inhibitors were designed and synthesized. When a selected group of these compounds was examined for their immunomodulatory activities, different patterns of cytokine modulation were revealed. The tested compounds segregated into two distinct classes: one class of compounds, shown to be potent phosphodiesterase 4 inhibitors, inhibited TNF-alpha production, increased IL-10 production by LPS-induced PBMC, and had little effect on T cell activation; the other class of compounds, similar to thalidomide, were not phosphodiesterase 4 inhibitors and markedly stimulated T cell proliferation and IL-2 and IFN-gamma production. These compounds inhibited TNF-alpha, IL-1beta, and IL-6 and greatly increased IL-10 production by LPS-induced PBMC. Similar to thalidomide, the effect of these agents on IL-12 production was dichotomous; IL-12 was inhibited when PBMC were stimulated with LPS but increased when cells were stimulated by cross-linking the TCR. The latter effect was associated with increased T cell CD40 ligand expression. The distinct immunomodulatory activities of these classes of thalidomide analogues may potentially allow them to be used in the clinic for the treatment of different immunopathological disorders.  相似文献   

7.
Flow cytometry has become a powerful technique to measure intracellular cytokine production in lymphocytes and monocytes. Appropriate inhibition of the secretion of the produced cytokines is required for studying intracellular cytokine expression. The aim of this study was to compare the capacity of cytokine secretion inhibitors, monensin and brefeldin A, in order to trap cytokine production (interleukin-1 beta [IL-1beta], IL-6, tumor necrosis factor-alpha [TNF-alpha]) within peripheral blood monocytes. A two-color flow cytometric technique was used to measure intracellular spontaneous and lipopolysaccharide (LPS)-stimulated IL-1beta, IL-6, and TNF-alpha production in monocytes (CD14+) of whole blood cultures. The viability of monensin-treated monocytes was slightly lower than that of brefeldin A-inhibited monocytes, as measured with propidium iodide (PI). The percentage of IL-6 and TNF-alpha-producing monocytes after 8 h of culture without stimulation revealed significant lower values for monensin-treated than for brefeldin A-treated monocytes. The percentages for stimulated cells did not differ. The spontaneous intracellular production in molecules of equivalent soluble fluorochrome units (MESF) of IL-1beta, IL-6, and TNF-alpha after 8 h of culture was higher in brefeldin A than in monensin-inhibited monocytes. The LPS-stimulated intracellular production of IL-1beta, IL-6, and TNF-alpha was increased in brefeldin A-inhibited monocytes. In conclusion, for flow cytometric determination of intracellular monocytic cytokines (IL-1beta, IL-6, and TNF-alpha), brefeldin A is a more potent, effective, and less toxic inhibitor of cytokine secretion than monensin.  相似文献   

8.
We compared the production of IL-1alpha, IL-1beta, and of IL-1Ra isoforms by cultured human dermal (HDF) and synovial fibroblasts (HSF) in response to IL-1alpha, TNF-alpha, or direct T cell membrane contact. IL-1Ra was constitutively present in the cell lysates of cultured HDF and its synthesis increased in stimulated cells, whereas IL-1Ra was present in low amounts in the supernatants. Secreted IL-1Ra (sIL-1Ra) and intracellular IL-1Ra type 1 (icIL-1Ra1) mRNA levels followed the same pattern. In stimulated HDF, IL-1alpha and IL-1beta were increased intracellularly but remained undetectable in the supernatants. In HSF, IL-1Ra levels increased in both cell lysates and supernatants upon stimulation. IL-1beta was only present in HSF cell lysates after stimulation, whereas IL-1alpha was undetectable. Both sIL-1Ra and icIL-1Ra1 mRNAs were detected in stimulated HSF. icIL-1Ra1 was the predominant intracellular isoform in both cell types. In conclusion, stimulated HDF produce high amounts of intracellular IL-1Ra, IL-1alpha, and IL-1beta. In contrast, HSF synthesized both intracellular and secreted IL-1Ra, whereas IL-1beta was present only in cell lysates. The presence of high amounts of icIL-1Ra1 and intracellular IL-1alpha in HDF suggests that these cytokines may carry out important function inside cells.  相似文献   

9.
10.
The biological activities of type I interferons (IFNs) are mediated by their binding to a heterodimer receptor complex (IFNAR1 and IFNAR2), resulting in the activation of the JAK (JAK1 and TYK2)-STAT (1, 2, 3, 5 isotypes) signalling pathway. Although several studies have indicated that IFN-alpha and IFN-beta can activate complexes containing STAT6, the biological role of this activation is still unknown. We found that exposure of hepatoma cells (HuH7 and Hep3B) to IFN-alpha or IFN-beta led to the activation of STAT6. Activated STAT6 in turn induced the formation of STAT2: STAT6 complexes, which led to the secretion of IL-1Ra. The activation of STAT6 by type I IFN in hepatocytes was mediated by JAK1 and Tyk2. In addition, IFN-alpha or IFN-beta significantly enhanced the stimulatory effect of IL-1beta on production of IL-1Ra. The present study suggests a novel function of IFN-alpha and IFN-beta signalling in human hepatocytes. Our results provide evidence for the mechanism how IFN-alpha and IFN-beta modulate inflammatory responses through activation of STAT6 and production of secreted IL-1Ra.  相似文献   

11.
When HLA-DR, -DQ, and -DP were cross-linked by solid-phase mAbs, monocytes produced monokines and only anti-DR markedly activated mitogen-activated protein (MAP) kinase extracellular signal-related kinase, whereas anti-DR, anti-DQ, and anti-DP all activated MAP kinase p38. Activation of extracellular signal-related kinase was not inhibited by neutralizing Ab to TNF-alpha. Anti-DR and DR-restricted T cells stimulated monocytes to produce relatively higher levels of proinflammatory monokines, such as IL-1beta, whereas anti-DQ/DP and DQ-/DP-restricted T cells stimulated higher levels of anti-inflammatory monokine IL-10. IL-10 production was abrogated by the p38 inhibitor SB203580, but rather enhanced by the MAP/extracellular signal-related kinase kinase-I-specific inhibitor PD98059, whereas IL-1beta was only partially abrogated by SB203580 and PD98059. Furthermore, DR-restricted T cells established from PBMC, which are reactive with mite Ags, purified protein derivative, and random 19-mer peptides, exhibited a higher IFN-gamma:IL-4 ratio than did DQ- or DP-restricted T cells. These results indicate that HLA-DR, -DQ, and -DP molecules transmit distinct signals to monocytes via MAP kinases and lead to distinct monokine activation patterns, which may affect T cell responses in vivo. Thus, the need for generation of a multigene family of class II MHC seems apparent.  相似文献   

12.
13.
Infections by coxsackievirus B3 (CVB3) have previously been shown to cause acute and chronic myocarditis characterized by a heavy mononuclear leukocyte infiltration and myocyte necrosis. Because clinical and experimental evidence suggested that cardiac damage may result from immunologic rather than viral mechanisms, we examined in this study the in vitro interaction of CVB3 with human monocytes. CVB3 was capable of infecting freshly harvested monocytes as revealed by immunofluorescence and release of infectious virus particles. Virus infection did not reduce monocyte viability but, on the contrary, enhanced spreading and adherence. In a dose-dependent manner, CVB3 stimulated the release of cytokines from monocytes. Whereas a potent production of TNF-alpha, IL-1 beta, and IL-6 was dependent on exposure to infectious CVB3, IFN release was also induced by UV-inactivated virus. On a molecular level, CVB3 stimulated cytokine gene expression as shown by a marked TNF-alpha, IL-1 beta, and IL-6 mRNA accumulation. Supernatants of CVB3-infected monocytes displayed cytotoxic activity against Girardi heart cells which could be abrogated by an anti-TNF-alpha antiserum. These data suggest that CVB3-induced cytokine release from monocytes may participate in virus-induced organ damage such as myocarditis, which may either occur by a direct cytotoxicity of cytokines or by activation of cytotoxic lymphocytes.  相似文献   

14.
The T cell signals that regulate the induction of human monocyte IL-1 during primary immune activation were investigated by using anti-CD3 mitogenesis. The induction of monocyte IL-1 alpha and beta mRNA during anti-CD3 mitogenesis was rapid (less than or equal to 1 h) and required the presence of both T cells and anti-CD3. The addition of T cells plus a nonmitogenic anti-CD5 antibody failed to induce IL-1 alpha or beta mRNA, indicating that IL-1 mRNA induction by anti-CD3 required T cell activation. Experiments using double chamber culture wells revealed that the major initial phase of IL-1 alpha and beta mRNA induction (1 to 12 h) required direct cell contact between monocytes and T cells. A subsequent minor late phase (greater than or equal to 12 h) of IL-1 mRNA was induced independently of cell contact in monocytes that received only soluble factors generated during anti-CD3 mitogenesis and was temporally associated with the appearance in culture supernatants of the late phase IL-1-inducing cytokines, IL-2, IFN-gamma, and TNF-alpha. Metabolic inactivation of T cells using paraformaldehyde demonstrated that the ability of T cells to induce IL-1 mRNA via cell contact was acquired only after activation of T cells via solid phase anti-CD3. Furthermore, pretreatment of T cells with the protein synthesis inhibitor emetine had no effect on T cell-mediated induction of monocyte IL-1 mRNA or cell-associated IL-1 alpha and beta, indicating that the expression of the IL-1 inductive signal did not require protein synthesis. Despite their ability to induce monocyte IL-1 alpha and beta mRNA, activated T cells treated with paraformaldehyde or emetine were no longer able to induce monocytes to secrete IL-1 beta into culture supernatants. However, supernatants from purified T cells that were activated with solid-phase anti-CD3 restored the ability of paraformaldehyde or emetine-treated T cells to induce IL-1 secretion. These studies provide evidence that supports a two-signal model of monocyte IL-1 production during primary immune activation. The first signal leads to the induction of monocyte IL-1 mRNA and is mediated by direct contact with activated T cells, and the second signal is provided by soluble T cell factors and results in IL-1 secretion.  相似文献   

15.
Mycobacterium tuberculosis bacilli readily activate CD4(+) and gammadelta T cells. CD4(+) and gammadelta T cells were compared for their ability to regulate IFN-gamma, TNF-alpha, and IL-10 production, cytokines with significant roles in the immune response to M. tuberculosis. PBMC from healthy tuberculin positive donors were stimulated with live M. tuberculosis-H37Ra. CD4(+) and gammadelta T cells were purified by negative selection and tested in response to autologous monocytes infected with M. tuberculosis. Both subsets produced equal amounts of secreted IFN-gamma. However, the precursor frequency of IFN-gamma secreting gammadelta T cells was half that of CD4(+) T cells, indicating that gammadelta T cells were more efficient producers of IFN-gamma than CD4(+) T cells. TNF-alpha production was markedly enhanced by addition of CD4(+) and gammadelta T cells to M. tuberculosis infected monocytes, and TNF-alpha was produced by both T cells and monocytes. No differences in TNF-alpha enhancement were noted between CD4(+) and gammadelta T cells. IL-10 production by M. tuberculosis infected monocytes was not modulated by CD4(+) or gammadelta T cells. Thus CD4(+) and gammadelta T cells had similar roles in differential regulation of IFN-gamma, TNF-alpha, and IL-10 secretion in response to M. tuberculosis infected monocytes. However, the interaction between T cells and infected monocytes differed for each cytokine. IFN-gamma production was dependent on antigen presentation and costimulators provided by monocytes. TNF-alpha levels were increased by addition of TNF-alpha produced by T cells and IL-10 production by monocytes was not modulated by CD4(+) or gammadelta T cells.  相似文献   

16.
Production of interleukin 1 beta (IL-1 beta), interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-alpha), interleukin 2 (IL-2), interferon gamma (IFN-gamma) and granulocyte-macrophage colony-stimulating factor (GM-CSF) after stimulation by lipopolysaccharide (LPS) and phytohemagglutinin (PHA) was studied in 1/10 diluted whole blood (WB) culture and in peripheral blood mononuclear cell (PBMC) culture. Cytokines IL-1 beta, TNF-alpha and IL-6 are preferentially stimulated by LPS whereas IL-2, IFN-gamma and GM-CSF are stimulated by PHA. Combination of 5 micrograms/ml PHA and 25 micrograms/ml LPS gave the most reliable production of the six cytokines studied. IL-1 beta, TNF-alpha and IL-6 represent a homogeneous group of early-produced cytokines positively correlated among themselves and with the number of monocytes in the culture (LeuM3). Furthermore, IL-1 beta was negatively correlated with the number of T8 lymphocytes. IL-2, IFN-gamma and GM-CSF represent a group of late-produced cytokines. Kinetics and production levels of IL-6 and GM-CSF are similar in WB and PBMC cultures. In contrast, production levels of TNF-alpha and IFN-gamma are higher in WB than in PBMC whereas production levels of IL-6 and IL-2 are lower in WB than in PBMC. Individual variation in responses to PHA + LPS was always higher in PBMC cultures than in WB cultures. The capacity of cytokine production in relation to the number of mononuclear cells is higher in WB, or in PBMC having the same mononuclear cell concentration as WB, than in conventional cultures of concentrated PBMC (10(6)/ml). Because it mimics the natural environment, diluted WB culture may be the most appropriate milieu in which to study cytokine production in vitro.  相似文献   

17.

Background

Direct cellular contact with stimulated T cells is a potent mechanism that induces cytokine production in human monocytes in the absence of an infectious agent. This mechanism is likely to be relevant to T cell-mediated inflammatory diseases such as rheumatoid arthritis and multiple sclerosis. Microparticles (MP) generated by stimulated T cells (MPT) display similar monocyte activating ability to whole T cells, isolated T cell membranes, or solubilized T cell membranes. We previously demonstrated that high-density lipoproteins (HDL) inhibited T cell contact- and MPT-induced production of IL-1β but not of its natural inhibitor, the secreted form of IL-1 receptor antagonist (sIL-1Ra).

Methodology/Principal Findings

Labeled MPT were used to assess their interaction with monocytes and T lymphocytes by flow cytometry. Similarly, interactions of labeled HDL with monocytes and MPT were assessed by flow cytometry. In parallel, the MPT-induction of IL-1β and sIL-1Ra production in human monocytes and the effect of HDL were assessed in cell cultures. The results show that MPT, but not MP generated by activated endothelial cells, bond monocytes to trigger cytokine production. MPT did not bind T cells. The inhibition of IL-1β production by HDL correlated with the inhibition of MPT binding to monocytes. HDL interacted with MPT rather than with monocytes suggesting that they bound the activating factor(s) of T cell surface. Furthermore, prototypical pro-inflammatory cytokines and chemokines such as TNF, IL-6, IL-8, CCL3 and CCL4 displayed a pattern of production induced by MPT and inhibition by HDL similar to IL-1β, whereas the production of CCL2, like that of sIL-1Ra, was not inhibited by HDL.

Conclusions/Significance

HDL inhibit both MPT binding to monocytes and the MPT-induced production of some but not all cytokines, shedding new light on the mechanism by which HDL display their anti-inflammatory functions.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号