首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mitochondrion plays the key functions in mammalian cells. It is believed that mitochondrion exerts the common biologic functions in many tissues, but also performs some specific functions correspondent with tissues where it is localized. To identify the tissue-specific mitochondrial proteins, we carried out a systematic survey towards mitochondrial proteins in the tissues of C57BL/6J mouse, such as liver, kidney and heart. The mitochondrial proteins were separated by 2DE and identified by MALDI-TOF/TOF MS. Total of 87 unique proteins were identified as the tissue-specific ones, and some representatives were further verified through ICPL quantification and Western blot. Because these issue-specific proteins are coded from nuclear genes, real-time PCR was employed to examine the mRNA status of six typical genes found in the tissues.With combining of the expression data and the co-localization images obtained from confocal microscope, we came to the conclusion that the tissue- specifically mitochondrial proteins were widely distributed among the mouse tissues. Our investigation, therefore, indeed provides a solid base to further explore the biological significance of the mitochondrial proteins with tissue-orientation.  相似文献   

2.
Induction of CYP2E1 by ethanol is one mechanism by which ethanol causes oxidative stress and alcohol liver disease. Although CYP2E1 is predominantly found in the endoplasmic reticulum, it is also located in rat hepatic mitochondria. In the current study, chronic alcohol consumption induced rat hepatic mitochondrial CYP2E1. To study the role of mitochondrial targeted CYP2E1 in generating oxidative stress and causing damage to mitochondria, HepG2 lines overexpressing CYP2E1 in mitochondria (mE10 and mE27 cells) were established by transfecting a plasmid containing human CYP2E1 cDNA lacking the hydrophobic endoplasmic reticulum targeting signal sequence into HepG2 cells followed by G418 selection. A 40-kDa catalytically active NH2-terminally truncated form of CYP2E1 (mtCYP2E1) was detected in the mitochondrial compartment in these cells by Western blot analysis. Cell death caused by depletion of GSH by buthionine sulfoximine (BSO) was increased in mE10 and mE27 cells as compared with cells transfected with empty vector (pCI-neo). Antioxidants were able to abolish the loss of cell viability. Increased levels of reactive oxygen species and mitochondrial 3-nitrotyrosine and 4-hydroxynonenal protein adducts and decreased mitochondrial aconitase activity and mitochondrial membrane potential were observed in mE10 and mE27 cells treated with BSO. The mitochondrial membrane stabilizer, cyclosporine A, was also able to protect these cells from BSO toxicity. These results revealed that CYP2E1 in the mitochondrial compartment could induce oxidative stress in the mitochondria, damage mitochondria membrane potential, and cause a loss of cell viability. The accumulation of CYP2E1 in hepatic mitochondria induced by ethanol consumption might play an important role in alcohol liver disease.  相似文献   

3.
The aldo–keto reductase (AKR) proteins catalyze reduction of diverse aldehydes and play detoxification roles in many organisms. Since many substrates are shared among AKR, it is generally accepted that these enzymes can functionally compensate each other in response to oxidative stress. Their overall abundances are the important factor that partially reflects the capacity of antioxidant and detoxification in tissues. In this study, the strategy was proposed for generation of Pan‐AKR antibodies to recognize most AKR proteins in mouse tissues. Derived from bioinformatic analysis, several consensus peptides with different potential antigenicities were synthesized, conjugated to hemocyanin from keyhole limpets and further delivered to rabbits to generate polyclonal antibodies. Three Pan‐AKR antibodies exhibited the immune specificities and immune sensitivities, Pan‐AKR‐P1 for AKR1B and AKR1C, Pan‐AKR‐P3 for AKR1C and Pan‐AKR‐P4 for all the AKR proteins. Pan‐AKR‐P4 antibody was employed to 2‐DE Western blot to examine the AKR abundances in mouse liver and kidney, resulting in seven immune‐reactive spots from each tissue. Protein identification with MS revealed that most immune‐positive spots were the members of AKR superfamily. Furthermore, Pan‐AKR‐P4 antibody was implemented to compare the different abundances of the AKR proteins in liver and kidney between normal and diabetic mice, suggesting that diabetes did cause some abnormal changes in the AKR protein abundances.  相似文献   

4.
Liver mitochondria undergo dynamic alterations following chronic alcohol feeding to mice. Intragastric alcohol feeding to mice resulted in 1) increased state III respiration (109% compared with control) in isolated liver mitochondria, probably due to increased levels of complexes I, IV, and V being incorporated into the respiratory chain; 2) increased mitochondrial NAD+ and NADH levels (∼2-fold), with no change in the redox status; 3) alteration in mitochondrial morphology, with increased numbers of elongated mitochondria; and 4) enhanced mitochondrial biogenesis in the liver, which corresponded with an up-regulation of PGC-1α (peroxisome proliferator-activated receptor γ coactivator-1α). Oral alcohol feeding to mice, which is associated with less liver injury and steatosis, slightly enhanced respiration in isolated liver mitochondria (30.8% compared with control), lower than the striking increase caused by intragastric alcohol feeding. Mitochondrial respiration increased with both oral and intragastric alcohol feeding despite extensive N-acetylation of mitochondrial proteins. The alcohol-induced mitochondrial alterations are probably an adaptive response to enhance alcohol metabolism in the liver. Isolated liver mitochondria from alcohol-treated mice had a greater rate of acetaldehyde metabolism and respiration when treated with acetaldehyde than control. Aldehyde dehydrogenase-2 levels were unaltered in response to alcohol, suggesting that the greater acetaldehyde metabolism by isolated mitochondria from alcohol-treated mice was due to increased mitochondrial respiration that regenerated NAD+, the rate-limiting substrate in alcohol/acetaldehyde metabolism. Overall, our work suggests that mitochondrial plasticity in the liver may be an important adaptive response to the metabolic stress caused by alcohol intake and could potentially play a role in many other vital functions performed by the liver.  相似文献   

5.
N K Bhat  N G Avadhani 《Biochemistry》1985,24(27):8107-8113
An in vitro system reconstituted with mouse liver polysome translation products was used to study the nature of polypeptide species imported into mitochondria from different mouse tissues such as liver, kidney, brain, and heart, as well as from Ehrlich ascites, Novikoff hepatoma, and Morris hepatoma 3924A tumor lines. Mouse hepatic mitochondria import a number of proteins including 160-kilodalton (kDa) carbamoyl-phosphate synthetase I (CPS-I). Two other proteins of 63 and 57 kDa of unknown function are also imported as major components by mouse liver mitochondria. Under these in vitro conditions, however, mitochondria from non-CPS-I expressing tissues such as brain, kidney, and heart failed to import and process the precursor forms of CPS-I (pCPS-I). Furthermore, mitochondria from three different tumor lines (Novikoff hepatoma, Morris hepatoma, and Ehrlich ascites) containing negligible CPS-I activity were also unable to import and process pCPS-I to any significant level. Similarly, the 63-kDa protein was selectively transported into liver and kidney mitochondria and also into Ehrlich ascites mitochondria at reduced levels, but not into mitochondria from heart and brain. Nevertheless, the 57-kDa protein and a number of proteins of less than 45 kDa are transported efficiently by all of the mitochondrial types studied. These results provide evidence for tissue- or cell-specific selectivity at the mitochondrial membrane level for the transport of some proteins. The transports of 63- and 57-kDa proteins are differentially inhibited by mouse liver mitochondrial matrix and membrane fractions, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The tissue distribution and subcellular location of branched chain aminotransferase was analyzed using polyclonal antibodies against the enzyme purified from rat heart mitochondria (BCATm). Immunoreactive proteins were visualized by immunoblotting. The antiserum recognized a 41-kDa protein in the 100,000 x g supernatant from a rat heart mitochondrial sonicate. The 41-kDa protein was always present in mitochondria which contained branched chain aminotransferase activity, skeletal muscle, kidney, stomach, and brain, but not in cytosolic fractions. In liver mitochondria, which have very low levels of branched chain aminotransferase activity, the 41-kDa protein was not present. However, two immunoreactive proteins of slightly higher molecular masses were identified. These proteins were located in hepatocytes. The 41-kDa protein was present in fetal liver mitochondria but not in liver mitochondria from 5-day neonates. Thus disappearance of the 41-kDa protein coincided with the developmental decline in liver branched chain aminotransferase activity. Two-dimensional immunoblots of isolated BCATm immunocomplexes showed that the liver immunoreactive proteins were clearly different from the heart and kidney proteins which exhibited identical immunoblots. Investigation of BCATm in subcellular fractions prepared from different skeletal muscle fiber types revealed that branched chain aminotransferase is exclusively a mitochondrial enzyme in skeletal muscles. Although total detergent-extractable branched chain aminotransferase activity was largely independent of fiber type, branched chain aminotransferase activity and BCATm protein concentration were highest in mitochondria prepared from white gastrocnemius followed by mixed skeletal muscles with lowest activity and protein concentration found in soleus mitochondria. These quantitative differences in mitochondrial branched chain aminotransferase activity and enzyme protein content suggest there may be differential expression of BCATm in different muscle fiber types.  相似文献   

7.
M Favaron  P Bernardi 《FEBS letters》1985,183(2):260-264
This paper analyzes the kinetics of the Ca2+ uniporter of mitochondria from rat heart, kidney and liver operating in a range of Ca2+ concentrations near the steady-state value (1-4 microM). Heart mitochondria exhibit the lowest activity, and physiological Mg2+ concentrations inhibit the mitochondrial Ca2+ uniporter by approx. 50% in heart and kidney, and by 20% in liver. At physiological Ca2+ and Mg2+ concentrations the external free Ca2+ maintained by respiring mitochondria in vitro is higher in heart and kidney with respect to liver mitochondria. This behaviour could represent an adaptation of different mitochondria to their specific intracellular environment.  相似文献   

8.
Tissue heterogeneity of the mammalian mitochondrial proteome   总被引:3,自引:0,他引:3  
The functionality of the mitochondrion is primarily determined by nuclear encoded proteins. The mitochondrial functional requirements of different tissues vary from a significant biosynthetic role (liver) to a primarily energy metabolism-oriented organelle (heart). The purpose of this study was to compare the mitochondrial proteome from four different tissues of the rat, brain, liver, heart, and kidney, to provide insight into the extent of mitochondrial heterogeneity and to further characterize the overall mitochondrial proteome. Mitochondria were isolated, solubilized, digested, and subjected to quantitative liquid chromatography-mass spectroscopy. Of the 16,950 distinct peptides detected, 8,045 proteins were identified. High-confidence identification threshold was reached by 1,162 peptides, which were further analyzed. Of these 1,162 proteins, 1,149 were significantly different in content (P and q values < 0.05) between at least 2 tissues, whereas 13 were not significantly different between any tissues. Confirmation of the mitochondrial origin of proteins was determined from the literature or via NH2-terminal mitochondrial localization signals. With these criteria, 382 proteins in the significantly different groups were confirmed to be mitochondrial, and 493 could not be confirmed to be mitochondrial but were not definitively localized elsewhere in the cell. A total of 145 proteins were assigned to the rat mitochondrial proteome for the first time via their NH2-terminal mitochondrial localization signals. Among the proteins that were not significantly different between tissues, three were confirmed to be mitochondrial. Most notable of the significantly different proteins were histone family proteins and several structural proteins, including tubulin and intermediate filaments. The mitochondrial proteome from each tissue had very specific characteristics indicative of different functional emphasis. These data confirm the notion that mitochondria are tuned by the nucleus for specific functions in different tissues. structural proteins; oxidative phosphorylation; liquid chromatography; mass spectrometry; electrophoresis; histone; liver; heart; kidney; brain  相似文献   

9.
The effects of prolonged ethanol feeding on both carnitine palmitoyltransferase I activity and enzyme sensitivity to inhibition by malonyl-CoA were studied in rat liver, heart, skeletal muscle and kidney cortex mitochondria. Heart and skeletal muscle enzymes showed the highest specific activity and sensitivity to malonyl-CoA. Carnitine palmitoyltransferase I in extrahepatic tissues showed no changes on ethanol feeding. Only the liver enzyme activity was altered after long term ethanol administration, by suffering a progressive decrease in activity and a parallel increase in sensitivity to malonyl-CoA. These alterations reversed after 10 days of ethanol withdrawal. These results are discussed in relation to the control of carnitine palmitoyltransferase I and the effects of ethanol on fatty acid metabolism.  相似文献   

10.
The ADP/ATP transport across the mitochondrial membrane is achieved by the adenine nucleotide translocase (ANT), an integral inner mitochondrial membrane protein. As deduced from experiments in rat liver in vivo and in isolated rat liver mitochondria this ADP/ATP transport is accelerated by thyroid hormone application, thus explaining, at least to a considerable extent, the thyroid hormone mediated increase in mitochondrial metabolic activity. The present study investigates the effect of T3 on rat liver, heart, and kidney ANT gene expression. As shown by Northern blot analysis, a cDNA for beef heart ANT-mRNA showed cross-hybridization with the ANT-mRNA from rat heart, liver, and kidney. Hypo- and hyperthyroid rats showed no differences in size nor in amounts of heart, liver, and kidney ANT-mRNA. Measurement of heart ANT-protein level revealed no major differences among the various thyroid states. Thus, the long-term action of thyroid hormones on increasing the carrier-mediated ADP/ATP translocation cannot be ascribed to an effect of T3 on ANT gene expression. The mechanism by which T3 activates this transporter system remains to be identified but some possibilities are suggested.  相似文献   

11.
Arrhenius plots were generated on the activity of rat liver mitochondrial cytochrome c oxidase from Metrecal-sucrose fed controls and Metrecal-alcohol fed experimentals. Chronic alcohol feeding resulted in diminished specific activity of cytochrome c oxidase and abolition of the discontinuity temperature at 17.5 degrees C found in the controls. Twenty-four hours after alcohol withdrawal, a discontinuity temperature reappeared at 14.4 degrees C; at 48 h it increased to 22.6 degrees C and returned to normal (17.4 degrees C) at 72 h. Such liver mitochondria also showed a decreased capacity to oxidize the acetyl group of acetyl carnitine immediately following prolonged alcohol feeding. When the assay was performed following withdrawal from alcohol 24 h later, oxidation was enhanced and this effect persisted for another 48 h. These latter results revealed a diminished capacity of such mitochondria to oxidize short chain fatty acids during alcohol feeding and the reverse during alcohol withdrawal. These results, complemented by thermographic data obtained through differential scanning calorimetry (DSC) reinforced the view that chronic alcoholic feeding induced adaptive changes in the fluidity of rat liver mitochondrial membrane lipids. Moreover, they demonstrated that in the microenvironment of the membrane-bound enzymes on withdrawal from ethanol, the membrane readapts to the new conditions without alcohol. This involved modulation of membrane structure and function and at the same time demonstrated a role for the membrane in the expression of tolerance and functional dependence on alcohol.  相似文献   

12.
The effect of ethanol intake on liver mitochondrial functions was investigated by feeding rats with a liquid isocaloric diet containing various concentrations of ethanol. We found that after feeding the liquid diet for 2 to 3 months, the body weight of rats did not show a significant difference between treated and control groups. However, the mitochondrial respiration rate decreased significantly with the increase of ethanol concentration in the diet. We found that when the rats were fed on 10.8% ethanol, the average succinate-supported State 3 respiration rate decreased from 54.5 to 44.8 nmol O2/min/mg and the glutamate-malate-supported State 3 respiration rate decreased from 38.8 to 23.6 nmol O2/min/mg as compared with the control. Interestingly, we noted that ethanol intake caused a more drastic effect on State 3 respiration than on State 4 respiration, irrespective of the substrate utilized by the mitochondria. In addition, the respiratory control and ADP/O ratios were found to decrease concomitantly with the increase of ethanol level in the diet. Moreover, we found that the effect of ethanol on both respiratory control and ADP/O ratios of liver mitochondria was more pronounced in glutamate-malate-supported respiration than succinate-supported respiration. These results clearly demonstrate that ethanol intake by the rat can cause impairment of liver mitochondrial respiration and oxidative phosphorylation, and that these effects are exerted through damage to mitochondrial membranes.  相似文献   

13.
This report demonstrates for the first time that P5, a member of the protein disulphide isomerase (PDI) family, is present in the mitochondria. Various organelles were screened for proteins bearing the CGHC motif using an affinity column conjugated with the phage antibody 5E, which cross-reacts with PDI family proteins. P5 was found in bovine liver mitochondrial extract and identified by Western blot analysis using anti-P5 antibody and by mass spectrometric analysis. Results of cell fractionation, proteinase sensitivity experiments and immuno-electron microscopy supported the mitochondrial localization of P5 and also indicated the presence of ERp57, another PDI family protein, in mitochondria. Our findings will be useful for the elucidation of the translocation mechanism of PDI family proteins and their roles in mitochondria.  相似文献   

14.
Hinshelwood A  McGarvie G  Ellis E 《FEBS letters》2002,523(1-3):213-218
We have characterised a novel aldo-keto reductase (AKR7A5) from mouse liver that is 78% identical to rat aflatoxin dialdehyde reductase AKR7A1 and 89% identical to human succinic semialdehyde (SSA) reductase AKR7A2. AKR7A5 can reduce 2-carboxybenzaldehyde (2-CBA) and SSA as well as a range of aldehyde and diketone substrates. Western blots show that it is expressed in liver, kidney, testis and brain, and at lower levels in skeletal muscle, spleen heart and lung. The protein is not inducible in the liver by dietary ethoxyquin. Immunodepletion of AKR7A5 from liver extracts shows that it is one of the major liver 2-CBA reductases but that it is not the main SSA reductase in this tissue.  相似文献   

15.
1. The effect of thyroidectomy on turnover rates of liver, kidney and brain mitochondrial proteins was examined. 2. In the euthyroid state, liver and kidney mitochondria show a synchronous turnover with all protein components showing more or less identical half-lives compared with the whole mitochondria. The brain mitochondrial proteins show asynchronous turnover, the soluble proteins having shorter half-lives. 3. Mitochondrial DNA (m-DNA) of liver and kidney has half-lives comparable with that of whole mitochondria from these tissues. 4. Thyroidectomy results in increased half-lives of liver and kidney mitochondria, with no apparent change in the half-life of brain mitochondria. 5. A detailed investigation of the turnover rates of several protein components revealed a significant decrease in the turnover rates of mitochondrial insoluble proteins from the three tissues under study. 6. The turnover rates of m-DNA of liver and kidney show a parallel decrease. 7. Thus it is apparent that thyroid hormone(s) may have a regulatory role in maintaining the synchrony of turnover of liver and kidney mitochondria in the euthyroid state. Turnover of brain mitochondria may perhaps be regulated by some other factor(s) in addition to thyroid hormone(s). 8. It seems likely that during mitochondrial turnover m-DNA and insoluble proteins may constitute a major unit. 9. The mitochondrial protein contents of the three tissues are not affected by thyroidectomy. 10. No correlation was seen between the turnover rate of mitochondria and cathepsin activity in any of the tissues under study in normal or thyroidectomized animals. 11. On the other hand, mitochondrial proteinase activity shows good correlation with the turnover rates of mitochondria in normal animals, and a parallel decrease in activity comparable with the decreased rates of turnover is observed after thyroidectomy. 12. It is concluded that mitochondrial proteinase activity may play a significant role in their protein turnover.  相似文献   

16.
The effects of the thyroid state on oxidative damage, antioxidant capacity, susceptibility to in vitro oxidative stress and Ca(2+)-induced permeabilization of mitochondria from rat tissues (liver, heart, and gastrocnemious muscle) were examined. Hypothyroidism was induced by administering methimazole in drinking water for 15 d. Hyperthyroidism was elicited by a 10 d treatment of hypothyroid rats with triiodothyronine (10 micro g/100 g body weight). Mitochondrial levels of hydroperoxides and protein-bound carbonyls significantly decreased in hypothyroid tissues and were reported above euthroid values in hypothyroid rats after T(3) treatment. Mitochondrial vitamin E levels were not affected by changes of animal thyroid state. Mitochondrial Coenzyme Q9 levels decreased in liver and heart from hypothyroid rats and increased in all hyperthyroid tissues, while Coenzyme Q10 levels decreased in hypothyroid liver and increased in all hyperthyroid tissues. The antioxidant capacity of mitochondria was not significantly different in hypothyroid and euthyroid tissues, whereas it decreased in the hyperthyroid ones. Susceptibility to in vitro oxidative challenge decreased in mitochondria from hypothyroid tissues and increased in mitochondria from hyperthyroid tissues, while susceptibility to Ca(2+)-induced swelling decreased only in hypothyroid liver mitochondria and increased in mitochondria from all hyperthyroid tissues. The tissue-dependence of the mitochondrial susceptibility to stressful conditions in altered thyroid states can be explained by different thyroid hormone-induced changes in mitochondrial ROS production and relative amounts of mitochondrial hemoproteins and antioxidants. We suggest that susceptibilities to oxidants and Ca(2+)-induced swelling may have important implications for the thyroid hormone regulation of the turnover of proteins and whole mitochondria, respectively.  相似文献   

17.
《BBA》2022,1863(2):148518
The kinetics and efficiency of mitochondrial oxidative phosphorylation (OxPhos) can depend on the choice of respiratory substrates. Furthermore, potential differences in this substrate dependency among different tissues are not well-understood. Here, we determined the effects of different substrates on the kinetics and efficiency of OxPhos in isolated mitochondria from the heart and kidney cortex and outer medulla (OM) of Sprague-Dawley rats. The substrates were pyruvate+malate, glutamate+malate, palmitoyl-carnitine+malate, alpha-ketoglutarate+malate, and succinate±rotenone at saturating concentrations. The kinetics of OxPhos were interrogated by measuring mitochondrial bioenergetics under different ADP perturbations. Results show that the kinetics and efficiency of OxPhos are highly dependent on the substrates used, and this dependency is distinctly different between heart and kidney. Heart mitochondria showed higher respiratory rates and OxPhos efficiencies for all substrates in comparison to kidney mitochondria. Cortex mitochondria respiratory rates were higher than OM mitochondria, but OM mitochondria OxPhos efficiencies were higher than cortex mitochondria. State 3 respiration was low in heart mitochondria with succinate but increased significantly in the presence of rotenone, unlike kidney mitochondria. Similar differences were observed in mitochondrial membrane potential. Differences in H2O2 emission in the presence of succinate±rotenone were observed in heart mitochondria and to a lesser extent in OM mitochondria, but not in cortex mitochondria. Bioenergetics and H2O2 emission data with succinate±rotenone indicate that oxaloacetate accumulation and reverse electron transfer may play a more prominent regulatory role in heart mitochondria than kidney mitochondria. These studies provide novel quantitative data demonstrating that the choice of respiratory substrates affects mitochondrial responses in a tissue-specific manner.  相似文献   

18.
Cytochrome c oxidase was isolated from rat liver either by affinity chromatography on cytochrome-c--Sepharose 4B or by chromatography on DEAE-Sepharose. Dodecyl sulfate gel electrophoresis of both preparations showed the same subunit pattern consisting of 13 different polypeptides. Kinetic analysis of the two preparations gave a higher Vmax for the enzyme isolated by chromatography on DEAE-Sephacel. Specific antisera were raised in rabbits against nine of the ten nuclear endoded subunits. A monospecific reaction of each antiserum with its corresponding subunit was obtained by Western blot analysis, thus excluding artificial bands in the gel electrophoretic pattern of the isolated enzyme due to proteolysis, aggregation or conformational modification of subunits. With an antiserum against rat liver holocytochrome c oxidase a different reactivity was found by Western blot analysis for subunits VIa and VIII between isolated cytochrome c oxidases from pig liver or kidney and heart or skeletal muscle. For a quantitative analysis of immunological differences a nitrocellulose enzyme-linked immunosorbent assay was developed. Monospecific antisera against 12 of the 13 subunits of rat liver cytochrome c oxidase were titrated with increasing amounts of total mitochondrial proteins from different rat tissues dissolved in dodecyl sulfate and dotted on nitrocellulose. The absorbance of a soluble dye developed by the second peroxidase-conjugated antibody was measured. From the data the following conclusions were obtained: (a) The mitochondrial encoded catalytic subunits I-III of cytochrome c oxidase are probably identical in all rat tissues. (b) All nine investigated nuclear encoded subunits of cytochrome c oxidase showed immunological differences between two or more tissues. Large immunological differences were found between liver, kidney or brain and heart or skeletal muscle. Minor but significant differences were observed for some subunits between heart and skeletal muscle and between liver, kidney and brain. (c) Between corresponding nuclear encoded subunits of cytochrome c oxidase from fetal and adult tissues of liver, heart and skeletal muscle apparent immunological differences were observed. The data could explain cases of fatal infantile myopathy due to cytochrome c oxidase deficiency.  相似文献   

19.
The role of the voltage-dependent anion channels (VDAC) harbored in the outer membrane of mitochondria in the regulation of cellular metabolism was investigated using an experimental model of ethanol toxicity in cultured hepatocytes. It was demonstrated that ethanol inhibits State 3 and uncoupled mitochondrial respirations, decreases the accessibility of mitochondrial adenylate kinase localized in the intermembrane space of mitochondria, and suppresses ureagenic respiration and synthesis of urea in cultured hepatocytes. Increasing the permeability of the outer mitochondrial membrane with closed VDAC with high concentrations of digitonin (> 80 microM), which creates pores in the membrane, allowing the alternative bypass of closed VDAC, and restores all reactions suppressed with ethanol. It is concluded that the effect of ethanol in hepatocytes leads to global loss of mitochondrial functions due to the closure of VDAC, which limits the free diffusion of metabolites into the intermembrane space of mitochondria. Our studies demonstrated that ethanol affects the main mitochondrial functions and revealed the role of VDAC channels in the outer mitochondrial membrane in the regulation of liver specific intracellular processes such as ureagenesis. The data obtained can be used for the development of pharmaceutical drugs that prevent the closure of VDAC in mitochondria of ethanol oxidizing liver, thus protecting liver tissue from the hepatotoxic action of alcohol.  相似文献   

20.
Santiago AP  Chaves EA  Oliveira MF  Galina A 《Biochimie》2008,90(10):1566-1577
Mitochondrial hexokinase (mt-HK) and creatine kinase (mt-CK) activities have been recently proposed to reduce the rate of mitochondrial ROS generation through an ADP re-cycling mechanism. Here, we determined the role of mt-HK and mt-CK activities in regulate mitochondrial ROS generation in rat brain, kidney, heart and liver, relating them to the levels of classical antioxidant enzymes. The activities of both kinases were significantly higher in the brain than in other tissues, whereas the activities of catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) were higher in both liver and kidney mitochondria. In contrast, manganese superoxide dismutase (Mn-SOD) activity was not significantly different among these tissues. Activation of mitochondrial kinases by addition of their substrates increased the ADP re-cycling and thus the respiration by enhancing the oxidative phosphorylation. Succinate induced hydrogen peroxide (H(2)O(2)) generation was higher in brain than in kidney and heart mitochondria, and the lowest in liver mitochondria. Mitochondrial membrane potential (DeltaPsi(m)) and H(2)O(2) production, decreased with additions of 2-DOG or Cr to respiring brain and kidney mitochondria but not to liver. The inhibition of H(2)O(2) production by 2-DOG and Cr correspond to almost 100% in rat brain and about 70% in kidney mitochondria. Together our data suggest that mitochondrial kinases activities are potent preventive antioxidant mechanism in mitochondria with low peroxidase activities, complementing the classical antioxidant enzymes against oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号