首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Uncapped messenger RNAs (mRNAs) encoding calf preprochymosin, chicken prelysozyme, or Escherichia coli beta-glucuronidase (GUS) were synthesized in vitro, with or without a 5'-terminal 67-nucleotide sequence (omega') derived from the untranslated 5'-leader (omega) of tobacco mosaic virus (TMV) RNA. Messenger RNAs were translated in vitro, in messenger-dependent systems derived from rabbit reticulocytes (MDL), wheat-germ (WG) or E. coli (EC). The omega' sequence enhanced expression of each mRNA in almost every translation system. While MDL was the least responsive to omega', this sequence proved particularly efficient in permitting translation of the eukaryotic mRNAs in EC, despite the absence of a consensus Shine-Dalgarno sequence in either the mRNAs or omega'. The local context of the initiation codon (AUG) in two GUS mRNA constructs did not influence the relative enhancement caused by the omega' sequence. These findings extend the utility of omega' as a general enhancer of translation for both prokaryotic and eukaryotic mRNAs in either 80S- or 70S-ribosome-based systems.  相似文献   

3.
M Altmann  S Blum  T M Wilson  H Trachsel 《Gene》1990,91(1):127-129
Messenger RNAs encoding chloramphenicol acetyltransferase (CAT) with or without the 5'-leader sequence of tobacco mosaic virus (TMV) RNA were synthesized in vitro and translated in Saccharomyces cerevisiae extracts dependent on eukaryotic initiation factors eIF-4E or eIF-4A. The 5'-leader sequence of TMV RNA renders translation of CAT mRNA eIF-4E-independent but still 4A-dependent.  相似文献   

4.
5.
The tobacco etch virus (TEV) 5'-leader promotes cap-independent translation in a 5'-proximal position and promotes internal initiation when present in the intercistronic region of a dicistronic mRNA, indicating that the leader contains an internal ribosome entry site. The TEV 143-nucleotide 5'-leader folds into a structure that contains two domains, each of which contains an RNA pseudoknot. Mutational analysis of the TEV 5'-leader identified pseudoknot (PK) 1 within the 5'-proximal domain and an upstream single-stranded region flanking PK1 as necessary to promote cap-independent translation. Mutations to either stem or to loops 2 or 3 of PK1 substantially disrupted cap-independent translation. The sequence of loop 3 in PK1 is complementary to a region in 18 S rRNA that is conserved throughout eukaryotes. Mutations within L3 that disrupted its potential base pairing with 18 S rRNA reduced cap-independent translation, whereas mutations that maintained the potential for base pairing with 18 S rRNA had little effect. These results indicated that the TEV 5'-leader functionally substitutes for a 5'-cap and promotes cap-independent translation through a 45-nucleotide pseudoknot-containing domain.  相似文献   

6.
7.
8.
9.
10.
The efficiency of translation of alfalfa mosaic virus (AMV) RNA 4, barley alpha-amylase (B alpha A) mRNA, and two chimeric mRNAs, AMV 4-B alpha A and B alpha A-AMV 4 (in which the 5' leader sequences of the two mRNAs were interchanged), was measured in an S30 extract from wheat germ and a fractionated system from wheat germ in which translation could be made dependent upon initiation factor (eIF) 3, 4A, 4F, or 4G. In the S30 system, AMV RNA 4 and the chimeric mRNA AMV 4-B alpha A are translated much more efficiently than B alpha A mRNA and the chimeric mRNA B alpha A-AMV 4. When the S30 system was supplemented with high amounts of purified eIF-3, eIF-4A, eIF-4F, and eIF-4G, B alpha A and B alpha A-AMV 4 mRNAs were translated as efficiently as AMV RNA 4 and AMV 4-B alpha A mRNA. These findings indicated that the mRNAs containing the B alpha A leader sequence required higher amounts of one or more of the initiation factors (eIF-3, eIF-4A, eIF-4F, and eIF-4G) for efficient translation. Determination of the amounts of the initiation factors required for translation in the fractionated system showed that AMV RNA 4 required 2-4-fold lower amounts of eIF-3, eIF-4A, eIF-4F, and eIF-4G than did B alpha A mRNA. Replacement of the B alpha A leader sequence with that of AMV RNA 4 decreased the amounts of eIF-4A, eIF-4G, and eIF-3 required, but did not affect the amount of eIF-4F required. Replacement of the AMV RNA 4 leader sequence with that of B alpha A mRNA increased the amounts of eIF-4F, eIF-4G, and eIF-3 required, but did not affect the amount of eIF-4A required. These data strongly suggest that the amounts of the factors required are affected not only by the 5' leader itself but also by interactions between the 5' leader and a region(s) of the mRNA 3' to the initiation codon.  相似文献   

11.
12.
Poliovirus infection is accompanied by translational control that precludes translation of 5'-capped mRNAs and facilitates translation of the uncapped poliovirus RNA by an internal initiation mechanism. Previous reports have suggested that the capped alfalfa mosaic virus coat protein mRNA (AIMV CP RNA), which contains an unstructured 5' leader sequence, is unusual in being functionally active in extracts prepared from poliovirus-infected HeLa cells (PI-extracts). To identify the cis-acting nucleotide elements permitting selective AIMV CP expression, we tested capped mRNAs containing structured or unstructured 5' leader sequences in addition to an mRNA containing the poliovirus internal ribosome entry site (IRES). Translations were performed with PI-extracts and extracts prepared from mock-infected HeLa cells (MI-extracts). A number of control criteria demonstrated that the HeLa cells were infected by poliovirus and that the extracts were translationally active. The data strongly indicate that translation of RNAs lacking an internal ribosome entry site, including AIMV CP RNA, was severely compromised in PI-extracts, and we find no evidence that the unstructured AIMV CP RNA 5' leader sequence acts in cis to bypass the poliovirus translational control. Nevertheless, cotranslation assays in the MI-extracts demonstrate that mRNAs containing the unstructured AIMV CP RNA 5' untranslated region have a competitive advantage over those containing the rabbit alpha-globin 5' leader. Previous reports of AIMV CP RNA translation in PI-extracts likely describe inefficient expression that can be explained by residual cap-dependent initiation events, where AIMV CP RNA translation is competitive because of a diminished quantitative requirement for initiation factors.  相似文献   

13.
We have studied the influence of the 600 nt long leader sequence of cauliflower mosaic virus 35S RNA on downstream translation. Plant protoplasts were transfected with plasmids expressing a CAT reporter gene from a mRNA, containing wild-type or mutant forms of the 35S RNA leader. Deletion analysis revealed the presence of three separate stimulatory sequence regions, S1, S2 and S3. The latter two interact with each other to enhance downstream translation 5- to 10-fold. This enhancement was not observed in protoplasts from a non-host plant. In the absence of either S2 or S3, the region I2, located in between, exerts an inhibitory effect on downstream translation, probably due to the presence of short open reading frames. Expression of a reporter gene inserted into I2 increases 2-fold upon deletion of either S2 or S3. We propose that mRNA regions S2 and S3 form a complex with cellular factors that allows scanning ribosomes to bypass region I2.  相似文献   

14.
15.
The regulation of cauliflower mosaic virus (CaMV) pregenomic 35S RNA translation occurs via nonlinear ribosome migration (ribosome shunt) and is mediated by an elongated hairpin structure in the leader. The replacement of the viral leader by a series of short, low-energy stems in either orientation supports efficient ribosomal shunting, showing that the stem per se, and not its sequence, is recognized by the translation machinery. The requirement for cis-acting sequences from the unstructured terminal regions of the viral leader was analyzed: the 5'-terminal polypyrimidine stretch and the short upstream open reading frame (uORF) A stimulate translation, whereas the 3'-flanking region seems not to be essential. Based on these results, an artificial leader was designed with a stable stem flanked by unstructured sequences derived from parts of the 5'- and 3'-proximal regions of the CaMV 35S RNA leader. This artificial leader is shunt-competent in translation assays in vivo and in vitro, indicating that a low-energy stem, broadly used as a device to successfully interfere with ribosome scanning, can efficiently support translation, if preceded by a short uORF. The synthetic 140-nt leader can functionally replace the CaMV 35S RNA 600-nt leader, thus implicating the universal role that nonlinear ribosome scanning could play in translation initiation in eukaryotes.  相似文献   

16.
Several mature mRNAs of Trypanosoma brucei were previously shown to have a common 5' terminal sequence of 35 nucleotides (nt) encoded by a separate mini-exon. To verify whether all trypanosome mRNAs contain this mini-exon sequence at their 5' end, we have tested oligodeoxynucleotides complementary to different parts of the 35 nt leader sequence for their ability to inhibit translation of total trypanosome mRNA. All oligomers tested inhibited translation of trypanosome mRNAs in a wheat germ extract. They had no effect on translation of Brome mosaic virus mRNA and of a trypanosome mRNA for phosphoglycerate kinase modified to remove the mini-exon sequence. Three different 12mers inhibited translation 35-60%; both the 22- and 34mer inhibited translation 95-100%. Incorporation of amino acids decreased proportionally in all protein bands detected in high resolution polyacrylamide gels. Our results show that all trypanosome mRNAs that yield a product detectable in gel contain a mini-exon sequence. We infer that most, if not all, trypanosome mRNAs contain a 5' terminal mini-exon sequence acquired by discontinuous synthesis.  相似文献   

17.
18.
I Edery  K A Lee  N Sonenberg 《Biochemistry》1984,23(11):2456-2462
We examined the effects of a eukaryotic mRNA cap binding protein (CBP) complex purified by cap analogue affinity chromatography [Edery, I., Humebelin, M., Darveau, A., Lee, K.A. W., Milburn, S., Hershey, J.W.B., Trachsel, H., & Sonenberg, N. (1983) J. Biol. Chem. 258, 11398 11403], on translation of several capped and naturally uncapped mRNAs in extracts prepared from poliovirus-infected or mock-infected HeLa cells. The CBP complex has activity that restores capped mRNA (globin, tobacco mosaic virus, and others) function in extracts from poliovirus-infected HeLa cells. Translation of two naturally uncapped RNAs (poliovirus and mengovirus RNAs), the translation of which is not restricted in extracts from poliovirus-infected cells, is also not stimulated by the CBP complex. Translation of several capped eukaryotic mRNAs (vesicular stomatitis virus, reovirus, and tobacco mosaic virus) in extracts from mock-infected cells is inhibited when the potassium ion concentration is increased. However, translation of capped AMV-4 RNA, which has negligible secondary structure at its 5' end, is resistant to this inhibition. Furthermore, the CBP complex reverses the high salt induced inhibition of translation of the former mRNAs. Since mRNA secondary structure is more stable at elevated salt concentrations, these data are consistent with a model in which the CBP complex has a role in melting mRNA secondary structure involving 5'-proximal sequences, to facilitate ribosome binding.  相似文献   

19.
Summary Synthetic oligonucleotides encoding the 5-non-translated (leader) sequence of the coat protein mRNA of alfalfa mosaic virus RNA 4 or the leader sequence of tobacco mosaic virus RNA were used to replace the natural leader region of the yeast phosphoglycerate kinase (PGK1) mRNAs and the translational efficiency of the chimeric mRNA was determined in yeast cells. In neither case did we observed a significant increase compared to the translational efficiency shown by the wild-type PGK mRNA, in contrast to the known stimulatory effect of these leader sequences on translation in mammalian, plant and bacterial in-vivo and/or in-vitro systems. The same result was obtained when the translational efficiencies in yeast cells of Escherichia coli -galactosidase mRNAs carrying the PGK or either of the two viral leader sequences were compared. Offprint requests to: H. A. Raué  相似文献   

20.
Wu HY  Brian DA 《Journal of virology》2007,81(7):3206-3215
Coronaviruses have a positive-strand RNA genome and replicate through the use of a 3' nested set of subgenomic mRNAs each possessing a leader (65 to 90 nucleotides [nt] in length, depending on the viral species) identical to and derived from the genomic leader. One widely supported model for leader acquisition states that a template switch takes place during the generation of negative-strand antileader-containing templates used subsequently for subgenomic mRNA synthesis. In this process, the switch is largely driven by canonical heptameric donor sequences at intergenic sites on the genome that match an acceptor sequence at the 3' end of the genomic leader. With experimentally placed 22-nt-long donor sequences within a bovine coronavirus defective interfering (DI) RNA we have shown that matching sites occurring anywhere within a 65-nt-wide 5'-proximal genomic acceptor hot spot (nt 33 through 97) can be used for production of templates for subgenomic mRNA synthesis from the DI RNA. Here we report that with the same experimental approach, template switches can be induced in trans from an internal site in the DI RNA to the negative-strand antigenome of the helper virus. For these, a 3'-proximal 89-nt acceptor hot spot on the viral antigenome (nt 35 through 123), largely complementary to that described above, was found. Molecules resulting from these switches were not templates for subgenomic mRNA synthesis but, rather, ambisense chimeras potentially exceeding the viral genome in length. The results suggest the existence of a coronavirus 5'-proximal partially double-stranded template switch-facilitating structure of discrete width that contains both the viral genome and antigenome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号