首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The interaction of mitochondrial creatine kinase and ATP-ADP translocase with 2.3-dialdehyde derivatives of ADP and ATP (oADP and oATP) has been studied. It was shown that these compounds are irreversible and specific inhibitors of creatine kinase (KioADP = 0.6mM, KioATP = 1.12 mM) and ATP-ADP translocase (KioADP = 0.065mM, KioATP = 0.14 mM). The substrates protect both enzymes from inactivation by these compounds. The maximal pseudo-first order rate constants for the 2,3-dialdehyde nucleotide derivative interaction with creatine kinase are 0.2 min-1 for oADP (pH 6.5) and 0.11 min-1 for oATP (pH 7.0). A decrease in the creatine kinase activity correlates with the incorporation of the reagent into the protein. The completely inactivated, isolated and purified enzyme contains 1 mol of oADP per mole of active sites. A procedure for simultaneous determination of the creatine kinase and translocase content in mitochondria and mitoplasts has been developed, which is based on the application of [3H]oADP in combination with specific treatment of mitochondria (or mitoplasts) with carboxyatractyloside 2,4-dinitrofluorobenzene and a mixture of creatine kinase substrates (MgADP + phosphocreatine). It has been found that for heart mitochondria from different animals the content of creatine kinase and translocase is 2.1-2.6 and 2.4-2.9 mol per mol of cytochrome c oxidase, respectively. Thus, the stoiochiometric ratio of creatine kinase and ATP-ADP translocase is close to 1.0 for all mitochondrial preparations under study (i.e. rat, dog, rabbit and chicken).  相似文献   

2.
The formation of creatine phosphate by isolated rabbit heart mitochondria in the presence of creatine, α-ketoglutarate, ATP, and inorganic phosphate was studied. Creatine phosphate formation was inhibited by oligomycin. This was most probably due to increased concentration of ADP favoring the reverse reaction (formation of creatine and ATP from phosphocreatine and ADP). The inhibitory effect of oligomycin disappeared in the presence of phosphoenolpyruvate and pyruvate kinase. The results do not indicate any direct coupling between mitochondrial creatine phosphokinase and ATP-ADP translocase as has been suggested for rat heart mitochondria.  相似文献   

3.
Mitochondrial creatine kinase was purified from rat hearts and used to produce antibodies in chicken and rabbits. Antibodies were purified to a high degree of homogeneity by an affinity chromatography method. Chicken antibodies against mitochondrial creatine kinase inhibited this enzyme in rat-heart mitochondrial inner membrane and matrix preparation, and simultaneously blocked oxidative phosphorylation. Under these conditions respiratory chain activities remained unchanged, but adenine nucleotide translocase was inhibited. Removal of mitochondrial creatine kinase from the membrane by pretreatment with 0.15 M KCl and 20 mM ADP completely abolished the effect of antibodies against mitochondrial creatine kinase on oxidative phosphorylation. Noninhibitory antibodies from rabbit with high affinity to rat mitochondrial creatine kinase inhibited neither creatine kinase activity nor oxidative phosphorylation. These data show close and specific spatial arrangement of mitochondrial creatine kinase and adenine nucleotide translocase in mitochondria. It is supposed that there is a fixed orientation of these proteins in the cardiolipin domain in the membrane and that their interaction may occur by a frequent collision due to their lateral movement.  相似文献   

4.
The maximal content of mitochondrial isoenzyme of creatine kinase (CK) in rat heart mitochondria does not exceed 12.5 moles per mole of ATP-ADP translocase. This value was obtained by titration of mitochondrial CK activity in aged mitochondria by 5,5'-dithiobis-(2-nitrobenzoate) (DTNB) and 2,4-dinitrofluorobenzene (DNFB) and by a more complex and accurate method. The essential thiol groups of membrane-bound mitochondrial CK (and its enzymic activity) can be specifically protected by phosphocreatine (12 mM) + ADP (1-5 mM) against inactivation by DTNB. Mitochondria with protected SH-groups of CK and with groups inactivated by DTNB were repeatedly incubated with DTNB under identical conditions and the number of additionally reacted sulfhydryl groups and the changes in CK activity were measured. The differences in the number of additionally reacted SH-groups correlated with the changes in the CK activity, which made it possible to calculate the molar ratios of mitochondrial CK to cytochrome c oxidase and ATP-ADP translocase (2.16 +/- (0.4): 1:2, respectively).  相似文献   

5.
53-fold purified creatine kinase is isolated from beef heart mitochondria by phosphate buffer extraction followed by chromatography on DEAE-cellulose and KM-cellulose and preparative electrophoresis in phosphate buffer density gradient. The purified enzyme was homogenous under electrophoresis in agarose gel and moved to cathode. The enzyme did not enter into separating gel under disc electrophoresis in conditions for the separation of neutral anc acid proteins, while under conditions for separating alkaline proteins it produced five fractions. The stability of creatine kinase under storage considerably decreased after the purification.  相似文献   

6.
An affinity chromatography technique for purification of creatine kinase is described. Creatine kinase from human skeletal muscle is retained on a column of p-mercuribenzoate-2-aminoethyl-Sepharose. After removal of contaminating proteins with Tris buffer and a solution of p-mercuribenzoate, the creatine kinase is selectively cluted in 80% yield with a gradient of 2-mercaptoethanol. This method yields a highly purified protein with a specific activity of 300 units/mg.  相似文献   

7.
Phosphate extraction of heart mitochondria results in the release of creatine kinase. Under appropriate conditions phosphate-extracted mitochondria are able to rebind the creatine kinase, either from crude extracts or as the purified enzyme. Heart mitochondria are able to bind up to sevenfold more creatine kinase than they originally contained. The association is specific since the cytoplasmic isozyme from heart (MM) does not bind, and does not interfere with the binding of the mitochondrial isozyme even when MM is present in large excess. It is interesting that although liver mitochondria do not contain the mitochondrial isozyme of creatine kinase they are able to bind approximately the same amount of the enzyme as the heart mitochondria.  相似文献   

8.
Creatine kinase from beef heart mitochondria is inactivated by 2,3-butanedione. The kinetics of inactivation of the mitochondrial enzyme is biphasic with a bend at a point corresponding to 50% inactivation. The inactivation rate constants of the first fast and the second slow phases of the reaction differ by one order of magnitude, thus suggesting the existence of two types of arginine residues, i.e. "fast" and "slow" ones, with different reactivities. The inactivation rate constant of the slow phase is very close to that for cytoplasmic creatine kinase. At saturating concentrations MgATP and MgADP afford complete protection of the slow phase of inactivation. It is assumed that the "slow" arginine is involved in the binding of metal-nucleotide substrates in the enzyme active center.  相似文献   

9.
This paper demonstrates that the mitochondrial isoenzyme of creatine kinase (CKm) can be solubilized from rabbit heart mitochondria, the outer membrane of which has been removed or at least broken by a digitonin treatment or a short hypotonic exposure, but which has retained an important part of the capacity to phosphorylate ADP. Phosphate, ADP, or ATP, at concentrations which are used to study oxidative phosphorylation and creatine phosphate synthesis, solubilize CKm; the same is true with MgCl2 and KCl. The effect of adenine nucleotides does not seem to be due to their interaction with the adenine nucleotide translocase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows that CKm is the main protein released in the described conditions; however, it does not amount to more than 1% of the total protein content of the mitoplasts. When the apparent Km for ATP of CKm was estimated by measuring creatine phosphate synthesis, the values obtained using water-treated mitochondria (0.21 mM) were slightly higher than those of intact mitochondria (0.12 mM) but the difference was not significant. In the former preparation 77% of CKm was in a soluble state. If we can extrapolate these results to intact mitochondria and suppose that in this case a fraction of CKm is also soluble in the intermembrane space, this does not support the theory of functional association between CKm and the adenine nucleotide translocase.  相似文献   

10.
The mechanism of functional coupling between mitochondrial creatine kinase (MiCK) and adenine nucleotide translocase (ANT) in isolated heart mitochondria is analyzed. Two alternative mechanisms are studied: 1), dynamic compartmentation of ATP and ADP, which assumes the differences in concentrations of the substrates between intermembrane space and surrounding solution due to some diffusion restriction and 2), direct transfer of the substrates between MiCK and ANT. The mathematical models based on these possible mechanisms were composed and simulation results were compared with the available experimental data. The first model, based on a dynamic compartmentation mechanism, was not sufficient to reproduce the measured values of apparent dissociation constants of MiCK reaction coupled to oxidative phosphorylation. The second model, which assumes the direct transfer of substrates between MiCK and ANT, is shown to be in good agreement with experiments—i.e., the second model reproduced the measured constants and the estimated ADP flux, entering mitochondria after the MiCK reaction. This model is thermodynamically consistent, utilizing the free energy profiles of reactions. The analysis revealed the minimal changes in the free energy profile of the MiCK-ANT interaction required to reproduce the experimental data. A possible free energy profile of the coupled MiCK-ANT system is presented.  相似文献   

11.
The ability of creatine to stimulate the respiration of rat heart mitochondria in vitro is reversibly affected by the concentration of inorganic phosphate. The rate of oxygen consumption due to post-ADP state-4 respiration in the presence of 20 mm creatine is reduced significantly when the potassium phosphate concentration is raised from 5 to 20 mm. State-3 respiration is reduced only by potassium phosphate concentrations higher than 20 mm. The rate of synthesis of creatine phosphate is also affected by phosphate concentration, and the apparent Km of the coupled reactions for ADP is significantly higher at 25 mm phosphate as compared to that at 5 mm phosphate. These observations are consistent with the hypothesis that inorganic phosphate acts as an effector molecule, regulating creatine phosphate synthesis by favoring the dissociation of mitochondrial creatine kinase from the mitochondrial membrane. Such regulation may be important in the case of cells undergoing partial or severe ischemia, where changes in phosphate concentration within this range have been reported.  相似文献   

12.
13.
The kinetic coupling of mitochondrial creatine kinase (MiMi-CK) to ADP/ATP translocase in chicken heart mitochondrial preparations is demonstrated. Measuring the MiMi-CK apparent Km value for MgATP2- (at saturating creatine) gives a value of 36 microM when MiMi-CK is coupled to oxidative phosphorylation. This Km value is threefold lower than the Km for enzyme bound to mitoplasts or free in solution. The nucleotide translocase Km value for ADP decreases from 20 to 10 microM in the presence of 50 mM creatine only with intact mitochondria. Similar experiments with mitoplasts do not give decreased Km values. The observed Km differences can be used to calculate the concentration of ATP and ADP under steady-state conditions showing that the observed differences in the kinetic constants accurately reflect the enzyme activities of MiMi-CK under the different conditions. The behavior of the Km values provides evidence for what we term compartmented coupling. Therefore, like the rabbit heart system (S. Erickson-Viitanen, P. Viitanen, P. J. Geiger, W. C. T. Yang, and S. P. Bessman (1982) J. Biol. Chem. 257, 14395-14404) compartmented coupling requires an intact outer mitochondrial membrane. The apparent Km values for normal or compartmentally coupled systems can be used to calculate steady-state values of ATP and ADP by coupling enzyme theory. Hence, the overall kinetic parameters accurately reflect the behavior of the enzymes whether free in solution or in the intermembrane space.  相似文献   

14.
Experimental evidence is given of mitochondrial creatine kinase ability to dissociate from or reassociate with mitochondrial membrane as compared to the behaviour of adenylate kinase. CK release occurs for Pi concentrations higher than 5 mM and is strongly pH-dependant. Solubilized CK is able to reassociate with mitochondrial inner membrane when either Pi concentration or pH are decreased. The possible physiological effects of events, such as ischemia, which modify the intracellular pH or Pi concentration are discussed, in view of the special role which has been attributed to mitochondrial CK in the transfer of energy in heart cells.  相似文献   

15.
16.
Creatine kinase from pigeon breast muscle was obtained in a homogeneous (as evidenced from polyacrylamide gel SDS electrophoresis) state. The molecular mass of the enzyme monomer is 43,000. Ultracentrifugation in a sucrose density gradient and gel filtration revealed that the enzyme is present in solution as a mixture of two major forms, i.e., octamer and dimer, which differ in their activity. The decrease of ionic strength from 0.25 to 0.02 results in reversible dissociation of the octameric form. A temperature rise from 5 degrees to 20 degrees C or the nature of monovalent anions (e.g., Cl-, CH3COO-, NO3-) and cations (K+, Na+) present in the medium do not influence the distribution of oligomeric forms. At pH 6.0 the major form is represented by the octamer; its dissociation is caused by an increase of pH. The octamer dissociation occurs in a mixture of substrates of the creatine kinase reaction in the presence of Mg2+; no such dissociation is observed in the absence of Mg2+ and in the presence of each of the reaction substrates. The non-interacting pair of substrates--ADP and creatine--causes the dissociation of the octamer in the presence of nitrate ions but not acetate. It is concluded that the dissociating effect of substrates is due to the conformational changes of subunits during catalysis. At physiological concentrations of nucleotide substrates the degree of octamer dissociation depends on the ratio of creatine phosphate and creatine concentrations, as well as on the presence of chlorine and phosphate ions. A qualitative estimation of the rate of pH- and substrate-dependent dissociation of creatine kinase octamer revealed that under the given experimental conditions the pH-dependent dissociation is completed within hours, whereas the substrate-dependent one--within seconds or minutes. According to its properties, mitochondrial creatine kinase from pigeon breast muscle is close to its bovine heart counterpart; the observed differences were found to be quantitative.  相似文献   

17.
Interaction between mitochondrial creatine kinase (MtCK) and adenine nucleotide translocase (ANT) can play an important role in determining energy transfer pathways in the cell. Although the functional coupling between MtCK and ANT has been demonstrated, the precise mechanism of the coupling is not clear. To study the details of the coupling, we turned to molecular dynamics simulations. We introduce a new coarse-grained molecular dynamics model of a patch of the mitochondrial inner membrane containing a transmembrane ANT and an MtCK above the membrane. The membrane model consists of three major types of lipids (phosphatidylcholine, phosphatidylethanolamine, and cardiolipin) in a roughly 2:1:1 molar ratio. A thermodynamics-based coarse-grained force field, termed MARTINI, has been used together with the GROMACS molecular dynamics package for all simulated systems in this work. Several physical properties of the system are reproduced by the model and are in agreement with known data. This includes membrane thickness, dimension of the proteins, and diffusion constants. We have studied the binding of MtCK to the membrane and demonstrated the effect of cardiolipin on the stabilization of the binding. In addition, our simulations predict which part of the MtCK protein sequence interacts with the membrane. Taken together, the model has been verified by dynamical and structural data and can be used as the basis for further studies.  相似文献   

18.
To examine the role of changes in the distribution of the creatine kinase (CK) isoenzymes [BB, MB, MM, and mitochondrial CK (mito-CK)] on the creatine kinase reaction velocity in the intact heart, we measured the creatine kinase reaction velocity and substrate concentrations in hearts from neonatal rabbits at different stages of development. Between 3 and 18 days postpartum, total creatine kinase activity did not change, but the isoenzyme distribution and total creatine content changed. Hearts containing 0, 4, or 9% mito-CK activity were studied at three levels of cardiac performance: KCl arrest and Langendorff and isovolumic beating. The creatine kinase reaction velocity in the direction of MgATP production was measured with 31P magnetization transfer under steady-state conditions. Substrate concentrations were measured with 31P NMR (ATP and creatine phosphate) and conventional biochemical analysis (creatine) or estimated (ADP) by assuming creatine kinase equilibrium. The rate of ATP synthesis by oxidative phosphorylation was estimated with oxygen consumption measurements. These results define three relationships. First, the creatine kinase reaction velocity increased as mito-CK activity increased, suggesting that isoenzyme localization can alter reaction velocity. Second, the reaction velocity increased as the rate of ATP synthesis increased. Third, as predicted by the rate equation, reaction velocity increased with the 3-fold increase in creatine and creatine phosphate contents that occurred during development.  相似文献   

19.
20.
Periodate-oxidized ADP and ATP (oADP and oATP) are substrates and affinity reagents for creatine kinase from rabbit skeletal muscle. oADP and oATP modified a lysine epsilon-amino group in the nucleotide-binding site of the enzyme. Complete inactivation is observed upon binding 2 moles oADP per 1 mole of the enzyme dimer. Modification with oADP is described by a liner dependence of the log of enzyme activity on time, testifying to a pseudo-first-order of the reaction. The reaction rate constant (ki = 8.10(3) min-1) and dissociation constant for the reversible enzyme-oADP complex (Kd = 62 microM) were determined. ADP protected the enzyme from inactivation and covalent binding of the analog, whereas oADP covalently bound to the enzyme was phosphorylated by phosphocreatine. The data obtained allow to suggest that the epsilon-amino group of a lysine residue of the active site is located in close proximity to ribose of ATP and ADP forming a complex with the enzyme. This group seems essential for correct orientation of the nucleotide polyphosphate chain in the enzyme active center, but take no immediate part in the transphosphorylation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号