首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two types of erythroid precursors were found by cultivation of the mouse bone marrow in the plasma clot with mouse serum and without adding exogenic erythropoietin to the culture medium. The first precursor had properties similar to the erythroid colony-forming unit (CFUe) previously described while the second resembles in its properties the erythroid burst-forming unit (BFUe). Optimal concentration of mouse serum in the culture medium was 10-15%. Clone nature of the colonies and bursts described is confirmed by linear dependence of their number on the cell concentration in the culture.  相似文献   

2.
Erythroid colony formation in agar cultures of CBA bone marrow cells was stimulated by the addition of pokeweed mitogen-stimulated spleen conditioned medium (SCM). Optimal colony numbers were obtained when cultures contained 20% fetal calf serum and concentrated spleen conditioned medium. By 7 days of incubation, large burst or unicentric erythroid colonies occurred at a maximum frequency of 40–50 per 105 bone marrow cells. In CBA mice the cells forming erythroid colonies were also present in the spleen, peripheral blood, and within individual spleen colonies. A marked strain variation was noted with CBA mice having the highest levels of erythroid colony-forming cells. In CBA mice erythroid colony-forming cells were mainly non-cycling (12.5% reduction in colony numbers after incubation with hydroxyurea or 3H-thymidine). Erythroid colony-forming cells sedimented with a peak of 4.5 mm/hr, compared with CFU-S, which sedimented at 4.25 mm/hr. The addition of erythropoietin (up to 4 units) to cultures containing SCM did not alter the number or degree of hemoglobinisation of erythroid colonies. Analysis of the total number of erythroid colony-forming cells and CFU-S in 90 individual spleen colonies gave a correlation coefficient of r = 0.93 for these two cell types. In addition to benzidine-positive erythroid cells, up to 40% of the colonies contained, in addition, varying proportions of neutrophils, macrophages, eosinophils, and megakaryocytes. Taken together with the close correlation between the numbers of CFU-S in different adult hemopoietic tissues, including individual spleen colonies, the data indicate that the erythroid colony-forming cells expressing multiple hemopoietic differentiation are members of the hemopoietic multipotential stem cell compartment.  相似文献   

3.
Bone marrow contains a small population of primitive erythroid progenitor cells which can be detected by their capacity to form large numbers of erythroid progeny in viscous cultures containing erythropoietin (EP). These cells have been termed erythroid 'burst-forming units' (BFUe). The present study demonstrates that expression of the erythroid differentiation potential of BFUe requires the presence of an activity additional to EP. This activity has been designated as BFA (burst feeder activity). It is shown that the number of BFUe detected and their apparent sensitivity to EP are directly related to the BFA concentration of the cultures. BFA was found to be associated with a population of bone marrow cells of high buoyant density and small volume, which are sensitive to irradiation. The radiation dose-effect curve provided strong evidence that bone marrow BFA is independent of cell proliferation; this was supported by showing that BFA is unaffected by in vivo treatment with hydroxyurea. The findings are compatible with a two-step regulation model for erythroid differentiation in which BFA-induced progeny of BFUe acquire sensitivity to EP.  相似文献   

4.
Bone marrow contains a small population of primitive erythroid progenitor cells which can be detected by their capacity to form large numbers of erythroid progeny in viscous cultures containing erythropoietin (EP). These cells have been termed erythroid ‘burst-forming units’(BFUe). The present study demonstrates that expression of the erythroid differentiation potential of BFUe requires the presence of an activity additional to EP. This activity has been designated as BFA (burst feeder activity). It is shown that the number of BFUe detected and their apparent sensitivity to EP are directly related to the BFA concentration of the cultures. BFA was found to be associated with a population of bone marrow cells of high buoyant density and small volume, which are sensitive to irradiation. The radiation dose-effect curve provided strong evidence that bone marrow BFA is independent of cell proliferation; this was supported by showing that BFA is unaffected by in vivo treatment with hydroxyurea. The findings are compatible with a two-step regulation model for erythroid differentiation in which BFA-induced progeny of BFUe acquire sensitivity to EP.  相似文献   

5.
Summary The erythroid-potentiating effects of a protein fraction produced by 20-day rat fetal liver-adhering cells are studied. Partial purification by gel filtration gave an active fraction (apparent molecular weight = 29×103) that significantly increased the erythroid colony counts (CFUe and late BFUe) in cultures of liver cell fractions depleted of adhering cells at both limiting and saturating concentration of recombinant human erythropoietin. The sensitivity of CFUe and BFUe to erythropoietin was increased by the activator.  相似文献   

6.
It was shown previously that colony formation in vitro by early erythroid progenitor cells (BFUe) requires sequential stimulation with a specific glycoprotein termed BFA and erythropoietin (EP). The action exerted by BFA was characterized as induction of proliferation in BFUe resulting after several cell divisions in EP-responsive progeny. The present study is directed at detection of EP-independent regulation of erythroid progenitor cells in vivo. Haemopoietic regeneration was induced by multiple administrations of hydroxyurea (HU). The femoral regeneration patterns of haemopoietic stem cells (CFUs), granulocyte/macrophage progenitor cells (CFUgm) and erythroid progenitor cells (BFUe, day 3 BFUe and CFUe) were studied in hypertransfused mice in comparison to nontransfused controls. The results show that (1) the phase of exponential regeneration of none of the cell populations studied is affected by hypertransfusion; (2) each of these cell populations exhibit a distinct regeneration pattern, indicating that they behave as separate functional entities; and (3) the three erythroid cell populations are suppressed by hypertransfusion in the post-exponential phase of regeneration in contrast to CFUs and CFUgm. The results support a two-regulator model of erythropoiesis.  相似文献   

7.
In order to clarify the mechanism(s) of increased splenic hematopoiesis noted in lipopolysaccharide (LPS)-injected mice, the effects of spleen cell-conditioned medium (SPCM) on megakaryocyte colony (CFU-meg) formation and early erythroid (BFU-e) differentiation were investigated. After spleen cells from LPS-injected mice were incubated for 3 days, the SPCM was assayed for megakaryocyte colony-stimulating factor (Meg-CSF) in CFU-meg assay and for burst-promoting activity (BPA) and erythropoietin (Epo) in erythroid colony assays (i.e., CFU-e, BFU-e). Colony formation of CFU-meg and BFU-e peaked with the addition of 30 and 10-15% SPCM, respectively. Spleen cells from LPS-injected mice produced Meg-CSF and BPA when compared with controls. However, conditioned medium from spleen cells depleted of phagocytic cells had low Meg-CSF and BPA. SPCM did not contain detectable quantities of Epo. It appears likely that local splenic production of Meg-CSF and BPA may affect proliferation of CFU-meg and erythroid progenitor cells in the spleen.  相似文献   

8.
Supernatants from mouse spleen cell cultures contain a factor which acts in a similar manner to erythropoietin (Ep) to stimulate the formation of 2-day erythroid (CFU-E) colonies in vitro from bone marrow or fetal liver cells. Analysis of conditioned media by high performance liquid chromatography (HPLC) on anion exchange, reverse phase, molecular size exclusion, and hydroxyapatite columns demonstrated that the erythropoietin-like activity (EpLA) has different biochemical characteristics to mouse Ep from anemic mouse serum. In addition, EpLA has a molecular weight (Mr), of 20,000 daltons determined by SDS-polyacrylamide gel electrophoresis (SDS-PAGE), compared to 42,000 for mouse Ep. Partially purified EpLA was found to be active in vivo as well as in vitro. Highly purified preparations of gamma-interferon, Multilineage hemopoietic growth factor (Multi HGF), Interleukin-2 (IL-2), IL-1, and colony stimulating factor 1 (CSF-1) did not support CFU-E colony formation. Thus, it was established that EpLA could not be attributed to other known components of spleen cell conditioned medium. Titration of mouse Ep and EpLA suggests that only a portion of the Ep-responsive CFU-E population in fetal liver is sensitive to EpLA.  相似文献   

9.
Erythroid colony formation in agar cultures of CBA cells was stimulated by the addition of pokeweed mitogen-stimulated C57BL spleen conditioned medium. Both 48-hour colonies ("48-hour benzidine-positive aggregates") and day 7 large burst or unicentric erythroid colonies ("erythroid colonies") developed, together with many neutrophil and/or macrophage colonies. In CBA mice, the cells forming erythroid colonies occurred with maximum frequency (650/10(5) cells) in 10- to 11-day-old yolk sac and fetal liver but were present also in fetal blood, spleen and bone marrow. The frequency of these cells fell sharply with increasing age and only occasional cells (2/10(5) cells) were present in adult marrow. A marked strain variation was noted, CBA mice having the highest levels of erythroid colony-forming cells. The erythroid colony-forming cells in 12-day CBA fetal liver were radiosensitive (DO 110-125 rads), mainly in cycle and were non-adherent, light density, cells sedimenting with a peak velocity of 6-9 mm/hr. These properties are similar to those of other hemopoietic progenitor cells in fetal tissues. The relationship of these apparently erythropoietin-independent erythroid colony-forming cells to those forming similar colonies after stimulation by erythropoietin remains to be determined.  相似文献   

10.
A possible regulatory action of phagocytic cells on erythropoiesis was investigated by infusion of inert polystyrene latex particles (LAT). LAT appeared to induce changes in the femoral content of erythroid progenitor cells. These changes were most pronounced in primitive erythroid progenitor cells (BFUe) and appeared to be gradually damped in more differentiated populations (CFUe and erythroblasts). LAT did not influence granulocyte/macrophage progenitor cells (CFUc). The effects of LAT could not be attributed to changes in the systemic erythropoietin (EP) concentration. Administration of dexamethason nullified the effect of low doses of LAT, suggesting that phagocytosis of the particles is essential to the observed effects. Erythroid burst formation was previously found to be dependent on a bone marrow associated activity, termed BFA (burst feeder activity). BFA acts as an in vitro inducer of EP-responsiveness in BFUe. In this study it was found that LAT-induced changes in femoral erythroid progenitor cell content were characteristically preceded by corresponding changes in BFA. It was concluded that BFA-associated cells probably play a role in vivo in the early differentiation of erythroid progenitor cells. The present data are interpreted as direct in vivo evidence supporting a two-step regulatory model operating in erythropoiesis and provide evidence that phagocytic cells are a component of the erythroid haemopoietic inductive micro-environment.  相似文献   

11.
The progressive growth and development of spleen colonies was studied in heavily irradiated host mice in which erythropoiesis was modified by various procedures. Erythropoietic activity in non-polycythemic hosts bearing spleen colonies was not increased by injections of exogenous erythropoietin. Detectable levels of erythropoietin were found in the heavily irradiated host mice suggesting that the failure of exogenous erythropoietin to modify erythropoiesis was because the host mice were already maximally stimulated by the high endogenous erythropoietin levels. Spleen colonies do not become erythroid in polycythemic mice. The injection of exogenous erythropoietin into heavily irradiated polycythemic hosts did not decrease the total number of spleen colonies produced by a given bone marrow transplant, as would be expected if erythropoietin acted directly on the colony-forming cells. Comparison of growth curves for colony-forming cells in the spleens of polycythemic hosts either receiving or not receiving erythropoietin indicated that the overall doubling time of colony-forming cells during the first ten days after transplantation was not changed by the daily injection of erythropoietin. These experiments are consistent with the concept that erythropoietin is necessary for the development of erythroid colonies. Erythropoietin acts upon some progeny of the colony-forming cell rather than the colony-forming cell itself.  相似文献   

12.
Dialysable leucocyte extract (DLE) prepared from buffy coats of human blood, potentiates the effect of Colony-stimulating factor (CSF) on the growth of granulocyte-macrophage colony forming cell (GM-CFC) colonies in vitro. This relative increase of the number of colonies is apparent when diluted CSF (present in lung conditioning medium) as a control, and DLE, in a wide range of concentrations are added to the culture of mouse bone marrow cells. Fractionation of DLE on Amicon membranes revealed that the activity resides in molecules of 0-5kD. Molecules 5-10kD have no potentiating effect. DLE and its fractions (0-5kD, 0-1kD), except fractions 0-500 D and 5-10kD, when added undiluted i.e. at the initial concentration, exerted a suppressive effect: colonies are not formed despite the presence of CSF. In a pilot experiment, it was shown that DLE is able to stimulate colony-forming activity of earlier progenitors of erythroid cells (BFUe), under the influence of erythropoietin.  相似文献   

13.
We have established permanent lines of nonadherent cells from fresh normal mouse bone marrow in media containing pokeweed mitogen-stimulated spleen cell conditioned medium (PWSCM). These lines continuously produced erythropoietic progenitor cells (detected by their ability to form erythroid bursts in semi-solid medium containing erythropoietin) together with cells having characteristics of the mast cell lineage (as demonstrated by metachromatic staining with toluidine blue, histamine content and membrane receptors for IgE). Sixteen such cell lines have been established in sixteen attempts. Cloning experiments were carried out to determine the nature of the progenitor cell(s) responsible for the permanence of these cultures. When cells were cultured in methylcellulose medium containing PWSCM, colonies were observed which reached macroscopic size after 4 weeks of incubation. Replating of individual primary colonies resulted in secondary colony formation, indicating the presence of progenitor cells with self-renewal potential. Forty-seven primary colonies were picked and their cells were suspended in liquid culture medium containing PWSCM. Of these, twenty-one could be expanded to establish permanently growing sublines. Sixteen of these sublines were found to be composed of both erythroid progenitors and mast cells. In five sublines only mast cells could be seen; none of the sublines appeared to be purely erythroid. Karyotypic analysis of mast cells and of erythroid cells of seven sublines derived from individual colonies which arose in cocultures of male and female cells revealed that the mast cells and erythroid cells were both of the same sex in each of the seven sublines; this demonstrates the single cell origin of each colony and of the two lineages derived from it. We conclude that these nonadherent, factor-dependent cell lines are maintained by self-renewal and differentiation of bipotential progenitor cells apparently restricted to the erythroid and mast cell lineages.  相似文献   

14.
A new in vitro technique has been described for demonstrating the presence of an erythropoietic factor in the circulating blood of frogs. The assay system consisted of MC33 medium, erythropoietically active spleen cells from Rana pipiens, and plasma or serum from frogs made anemic via phenylhydrazine or bleeding. The spleen cells, which remain erythropoietically active for up to nine days, were found to incorporate 59Fe, [3H]thymidine, [3H]uridine, and [3H]leucine at a greater rate in the presence of plasma or serum from anemic versus normal frogs. The hormones triiodothyronine, prolactin, and erythropoietin were not effective in eliciting an hemopoietic response. The data presented suggest that the spleen from that adult frog is a major site of erythroid differentiation and maturation.  相似文献   

15.
We report the effect of four sources of hemopoietic growth factors, alone or in combination, on colony growth in serum-free cultures of bone marrow from normal mice or marrow from mice pre-treated with 5-fluorouracil (5-FU-bm). The four supplements were: mouse spleen conditioned medium (SCM, a source of multi-lineage colony-stimulating activity, multi-CSA), human placental conditioned medium (HPCM, a source of synergistic activity), pregnant mouse uterus extract (PMUE, a source of M-CSA) and erythropoietin (Epo). First, in cultures of normal marrow, only PMUE and SCM induced significant colony growth when added alone. The majority of those colonies contained granulocytes and macrophages (myeloid colonies). In Epo-supplemented cultures, only SCM supported the growth of erythroid bursts and mixed erythroid-myeloid colonies. HPCM thus appears to be a poor source of multi-CSA. Second, in cultures of 5-FU-bm, few colonies developed if any of the above supplements were added alone. Only SCM + Epo together stimulated the formation of a low number of very large, mixed erythroid/myeloid/megakaryocyte colonies. HPCM, but not SCM, synergized with PMUE to augment myeloid colony numbers. Hence, SCM appears to be a poor source of synergistic activity (SA). In cultures of 5-FU-bm already supplemented with HPCM + PMUE, the addition of Epo did not change total colony numbers but did induce erythroid differentiation in one third of the colonies present. These data suggest that multi-CSA and SA may be expressed by different factors and that 5-FU pre-treated marrow contains: a population of primitive multipotential progenitors which form large, mixed colonies in the presence of SCM + Epo, and a larger Epo-sensitive population which also requires HPCM + PMUE to form mixed colonies.  相似文献   

16.
Infection of BALB/c mice with Rauscher leukemia virus (RLV) gives rise to pronounced erythrocytopoiesis manifesting in splenomegaly and is associated with progressive development of anemia. In the spleen erythroid colony forming units (CFU-E) increase exponentially up to 800-fold that of normal levels by the third week of infection. In vitro these CFU-E are dependent on erythropoietin for colony formation, their erythropoietin requirements being higher than that of CFU-E from normal mice. Numbers of CFU-E in spleen and degree of splenomegaly in anemic RLV infected mice were also shown to be modified by red blood cell transfusion, but progression of the disease was not stopped. Erythroid burst forming units (BFU-E) were also responsive to erythropoietin. However, a small proportion of cells also formed BFU-E colonies at concentrations which did not support growth of normal marrow BFU-E. When compared to normal, CFU-E found in RLV-infected spleen have similar velocity sedimentation rates. However, buoyant density separation of leukemic spleen cells indicated that CFU-E were more homogeneous (modal density 1.0695 g/cm3) than CFU-E from normal spleen. Analysis of physical properties of CFU-E and the nonhemoglobinized erythroblast-like cells, which accumulate in the spleen showed that they differed mainly in their distribution of cell diameter. Our findings show that erythroid progenitor cells in RLV infected mice are responsive to erythropoietin in vitro. Also in vivo erythropoiesis appears to be under control of erythropoietin but other factors which lead to progression of RLV disease apparently exist. Most proerythroblast-like cells, which are characteristic of this disease, apparently lack the potential to form colonies and may be more mature than CFU-E.  相似文献   

17.
A cell clone of erythroleukemic mouse cells transformed by the spleen focus forming virus (SFFV) was adapted to growth in serum-free medium. The cells show induced erythroid differentiation if dimethylsulfoxide (DMSO) and iron are added to the serum-free medium. No serum constituents or macromolecules are required for induced differentiation. Serum enhances the capacity of the cells to differentiate. Erythropoietin is ineffective in promoting erythroid differentiation or an increased rate of cell division. Transferrin is not necessary for transport of iron into these cells.  相似文献   

18.
Using long-term culture techniques, it has been shown that stromal cells in the marrow microenvironment are essential for the continued production and self-renewal of hematopoietic stem cells. We previously reported the development of a methylcellulose colony assay for a population of marrow stromal progenitors called CFU-RF. In this paper, a method is described for subculturing cells from individual CFU-RF-derived colonies to allow conditioned medium production (StCM). StCM, prepared in this way, was found to possess an erythroid lineage-specific activity that stimulated the formation of macroscopic erythroid colonies in cultures containing erythropoietin (epo). Using dose-response curves, the KG1 colony assay, and antibody neutralization, it was shown that the activity could not be attributed to interleukin 3 (IL3) or granulocyte-macrophage colony-stimulating factor (GM-CSF). However, it was further shown that a monolayer of stromal cells, which had earlier been producing the erythroid activity, could be stimulated by IL1 to produce granulocytic colony-stimulating activity, but only as long as IL1 was present in the culture medium. These findings indicate a mechanism whereby the same stromal population could be modulated to promote growth and differentiation of different hematopoietic lineages.  相似文献   

19.
We describe a serum-free medium for the formation of erythropoietic bursts by murine bone marrow cells. Iscove's modified Dulbecco's medium supplemented with bovine serum albumin, iron-saturated transferrin, soybean phospholipids and cholesterol supported burst formation. The further addition of hemin increased burst numbers to above those obtained in serum-containing cultures. With or without hemin, a source of burst-promoting activity (BPA) (crude or partially purified spleen conditioned medium) and erythropoietin were essential. This system provides a sensitive assay for BPA. Of all colonies developing in these cultures, 16% were pure erythroid, 17% mixed erythroid/myeloid, 36% macrophage, 19% macrophage/basophil and macrophage/neutrophil, 9% basophil and 2% neutrophil.  相似文献   

20.
Preincubation of C57BL adult marrow cells or CBA fetal liver cells with a 250-fold excess concentration of purified GM-CSF failed to reduce the frequency of cells forming eosinophil, megakaryocyte or erythroid colonies in subsequent agar cultures. When excess concentrations of purified GM-CSF were added to agar cultures stimulated by pokeweed mitogen-stimulated spleen conditioned medium (SCM), no reduction was observed in the frequency of eosinophil, megakaryocyte or erythroid colonies. Addition of 4 units of purified erythropoietin (EPO) to cultures of fetal liver or adult marrow cells stimulated by SCM increased the number of erythroid colonies but did not reduce the number of non-erythroid colonies or the non-erythroid content of mixed erythroid colonies. Although neither GM-CSF nor EPO alone was able to stimulate erythroid colony formation in agar cultures of fetal liver cells, small numbers of large erythroid colonies were stimulated to develop in cultures containing both purified regulators. Purified GM-CSF was also able to support the survival in vitro of a small proportion of erythroid colony-forming cells in fetal liver populations cultured initially in the absence of SCM and the survival of some eosinophil and megakaryocyte colony-forming cells in similar cultures of adult marrow cells. The results do not support the hypothesis that GM-CSF and EPO compete for a common pool of uncommitted progenitor cells. On the contrary, the data indicate that GM-CSF und EPO are able to collaborate in stimulating the proliferation of some erythropoietic cells. Furthermore, purified GM-CSF appears to be able to support temporarily the survival and/or initial proliferation of at least some cells forming erythroid, eosinophil and megakaryocyte colonies, even though GM-CSF is unable to stimulate the formation of colonies of these types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号