首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 594 毫秒
1.
The regulation of the syntheses of two arabinan-degrading extracellular enzymes and several intracellular l-arabinose catabolic enzymes was examined in wild-type and carbon catabolite derepressed mutants of Aspergillus nidulans. α-l-Arabinofuranosidase B, endoarabinase, l-arabinose reductase, l-arabitol dehydrogenase, xylitol dehydrogenase, and l-xylulose reductase were all inducible to varying degrees by l-arabinose and l-arabitol and subject to carbon catabolite repression by d-glucose. With the exception of l-xylulose reductase, all were clearly under the control of creA, a negative-acting wide domain regulatory gene mediating carbon catabolite repression. Measurements of intracellular enzyme activities and of intracellular concentrations of arabitol and xylitol in mycelia grown on d-glucose in the presence of inducer indicated that carbon catabolite repression diminishes, but does not prevent uptake of inducer. Mutations in creA resulted in an apparently, in some instances very marked, elevated inducibility, perhaps reflecting an element of “self” catabolite repression by the inducing substrate. creA mutations also resulted in carbon catabolite derepression to varying degrees. The regulatory effects of a mutation in creB and in creC, two genes whose roles are unclear, but likely to be indirect, were, when observable, more modest. As with previous data showing the effect of creA mutations on structural gene expression, there were striking instances of phenotypic variation amongst creA mutant alleles and this variation followed no discernible pattern, i.e. it was non-hierarchical. This further supports molecular data obtained elsewhere, indicating a direct role for creA in regulating structural gene expression, and extends the range of activities under creA control.  相似文献   

2.
Summary Of five amidohydrolase activities subject to nitrogen metabolite repression in Aspergillus nidulans, l-asparaginase shows clearest evidence of also being subject to repression by atmospheric oxygen. Such oxygen repressibility is only evident under nitrogen metabolite derepressed conditions. Asparaginase levels are also considerably elevated by areA300, an altered function allele of the positive acting wide domain regulatory gene areA mediating nitrogen metabolite repression and are drastically reduced by loss of function mutations in areA. A. nidulans has two l-asparaginase enzymes and it has been shown by the use of appropriate mutants that these regulatory effects are exerted on the expression of that specified by the ahrA gene but probably not that specified by the apnA gene. Present address: (until 25 August, 1988) Department of Genetics, University of Georgia, Athens, GA 30602, USA  相似文献   

3.
Summary The non-metabolizable and toxic glucose analogue 2-deoxy-d-glucose (2-DOG) has been widely employed to screen for regulatory mutants which lack catabolite repression. A number of yeast mutants resistant to 2-DOG have recently been isolated in this laboratory. One such mutant, derived from aSaccharomyces cerevisiae haploid strain, was demonstrated to be derepressed for maltose, galactose and sucrose uptake. Furthermore, kinetic analysis of glucose transport suggested that the high affinity glucose transport system was also derepressed in the mutant strain. In addition, the mutant had an increased intracellular concentration of trehalose relative to the parental strain. These results indicate that the 2-DOG resistant mutant is defective in general glucose repression.  相似文献   

4.
The xylitol dehydrogenase-encoding Arxula adeninivorans AXDH gene was isolated and characterized. The gene includes a coding sequence of 1107 bp encoding a putative 368 amino acid protein of 40.3 kDa. The identity of the gene was confirmed by a high degree of homology of the derived amino acid sequence to that of xylitol dehydrogenases from different sources. The gene activity was regulated by carbon source. In media supplemented with xylitol, D-sorbitol and D-xylose induction of the AXDH gene and intracellular accumulation of the encoded xylitol dehydrogenase was observed. This activation pattern was confirmed by analysis of AXDH promoter – GFP gene fusions. The enzyme characteristics were analysed from isolates of native strains as well as from those of recombinant strains expressing the AXDH gene under control of the strong A. adeninivorans-derived TEF1 promoter. For both proteins, a molecular mass of ca. 80 kDa was determined corresponding to a dimeric structure, an optimum pH at 7.5 and a temperature optimum at 35 °C. The enzyme oxidizes polyols like xylitol and D-sorbitol whereas the reduction reaction is preferred when providing D-xylulose, D-ribulose and L-sorbose as substrates. Enzyme activity exclusively depends on NAD+ or NADH as coenzymes.  相似文献   

5.
Xylose reductase (XR) is a key enzyme in biological xylitol production, and most XRs have broad substrate specificities. During xylitol production from biomass hydrolysate, non-specific XRs can reduce l-arabinose, which is the second-most abundant hemicellulosic sugar, to the undesirable byproduct arabitol, which interferes with xylitol crystallization in downstream processing. To minimize the flux from l-arabinose to arabitol, the l-arabinose-preferring, endogenous XR was replaced by a d-xylose-preferring heterologous XR in Candida tropicalis. Then, Bacillus licheniformis araA and Escherichia coli araB and araD were codon-optimized and expressed functionally in C. tropicalis for the efficient assimilation of l-arabinose. During xylitol fermentation, the control strains BSXDH-3 and KNV converted 9.9 g l-arabinose l−1 into 9.5 and 8.3 g arabitol l−1, respectively, whereas the recombinant strain JY consumed 10.5 g l-arabinose l−1 for cell growth without forming arabitol. Moreover, JY produced xylitol with 42 and 16% higher productivity than BSXDH-3 and KNV, respectively.  相似文献   

6.
Xylitol is the first rare sugar that has global markets. It has beneficial health properties and represents an alternative to current conventional sweeteners. Industrially, xylitol is produced by chemical hydrogenation of d-xylose into xylitol. The biotechnological method of producing xylitol by metabolically engineered yeasts, Saccharomyces cerevisiae or Candida, has been studied as an alternative to the chemical method. Due to the industrial scale of production, xylitol serves as an inexpensive starting material for the production of other rare sugars. The second part of this mini-review on xylitol will look more closely at the biotechnological production and future applications of the rare sugar, xylitol.  相似文献   

7.
Genetic control of lysine permeases in Saccharomycopsis lipolytica   总被引:1,自引:0,他引:1  
In order to obtain strains of Saccharomycopsis lipolytica impaired in the active transport of l-lysine, mutants resistant to a mixture of l-canavanine, l-4-5-transdehydrolysine and l-S-amino ethylcysteine, taken either all three or two by two, were isolated. These compounds were shown previously to be competitive inhibitors of l-lysine uptake.The resistance patterns and excretion capacity of the mutants were established. All mutants behaved as monogenic. Recombination tests indicated that four genes at least were involved. All mutants were impaired in both high and low affinity l-lysine transport systems.Several hypotheses on the functions of these genes are put forward and discussed.  相似文献   

8.
A rare sugar xylitol. Part I: the biochemistry and biosynthesis of xylitol   总被引:1,自引:0,他引:1  
The rare sugar xylitol is a five-carbon polyol (pentitol) that has beneficial health effects. Xylitol has global markets and, therefore, it represents an alternative to current dominant sweeteners. The research on microbial reduction of d-xylose to xylitol has been focused on metabolically engineered Saccharomycess cerevisiae and Candida strains. The Candida strains have an advantage over the metabolically engineered S. cerevisiae in terms of d-xylose uptake and maintenance of the intracellular redox balance. Due to the current industrial scale production of xylitol, it has become an inexpensive starting material for the production of other rare sugar. The first part of this mini-review concentrates on the biochemistry of xylitol biosynthesis and the problems related to intracellular redox balance.  相似文献   

9.
Enzymes of polyol metabolism were studied in basidiospore germination of Schizophyllum commune during periods of in vivo arabitol and mannitol pool depletion (growth on glucose-asparagine) and during their subsequent synthesis (growth on acetate-NH 4 + ). Optimal conditions for assays were established and specific activities of enzymes employing d-arabitol, d-mannitol, d-ribulose, d-fructose and d-xylulose as substrates were traced. Inquiries into the products formed during these reactions showed that d-ribulose generated arabitol while d-fructose produced mannitol with d-xylulose giving rise to xylitol. The dehydrogenase reactions were further investigated using polyacrylamide disc gel electrophoresis. Here was revealed the existence of at least two separate enzymatic activities pertaining to the catabolism of arabitol and mannitol. Also noted were the electrophoretic patterns when d-sorbitol, ribitol, xylitol and ethanol were used as substrates.  相似文献   

10.
In Aeromonas formicans two inducible catabolic pathways of L-arginine have been characterized. The arginine decarboxylase is induced by arginine which also induces the three enzymes of the arginine deiminase pathway but only in stress conditions such as a shift from aerobic growth conditions to very low oxygen tension. Addition of glucose to medium containing arginine leads to repression of the enzymes involved in the arginine deiminase pathway while exogenous cAMP prevents that repression of enzyme synthesis by glucose. This suggests that the induction of arginine deiminase pathway is regulated by carbon catabolite repression and the energetic state of the cell.  相似文献   

11.
Utilization of d-amino acids being substrates of d-amino acid dehydrogenase of Salmonella typhimurium was examined. The experiments were done with wild type strains and the mutants dadA missing the enzyme activity and dadR in which its synthesis is released from catabolite repression. Growth on d-tryptophan, d-histidine and d-methionine used as precursors of the l-amino acids was faster when the respective auxotrophs carried dadR mutations. The dadR mutants grew faster when d-or l-alanine was present as a sole source of nitrogen. Experiments with d-amino acid dehydrogenase in vitro provided evidence that d-tryptophan is its substrate with a very low affinity to the dehydrogenase.  相似文献   

12.
Banerjee  S.  Archana  A.  Satyanarayana  T. 《Current microbiology》1994,29(6):349-352
The thermophilic mouldMalbranchea pulchella var.sulfurea TMD-8 produced extracellular xylanases in wheat straw hemicellulose as well as wheat straw. This mould utilized xylose less efficiently than glucose. Mycelial extracts contained xylose isomerase, xylose reductase, and xylitol dehydrogenase. Xylose isomerase was less thermostable than that from other microorganisms. However, xylitol dehydrogenase and xylose reductase were relatively more thermostable in comparison with these enzymes from other microorganisms. The affinity of xylose isomerase for xylose was very high (Km 10mM), while that of xylose reductase was low (Km 23.5mM). The xylitol dehydrogenase exhibited relatively high affinity for xylitol (Km 0.02mM). The activity of this enzyme, however, declined steeply, in the alkaline range. This is the first report on the occurrence of three intracellular enzymes, xylose isomerase, xylose reductase, and xylitol dehydrogenase in a thermophilic mould, which play an important role in xylose metabolism.  相似文献   

13.
The induction of extracellular arabinases by pentose sugars and polyols generated by the metabolic pathway of l-arabinose and d-xylose catabolism in Aspergillus niger was investigated. Induction occurred with l-arabinose and l-arabitol but not with d-xylose or xylitol. l-arabitol in particular was found to be a good inducer for -l-arabinofuranosidase and endo-arabinase activities. Western blotting analysis showed both -l-arabinofuranosidase A and B to be present. No induction was observed using d-arabitol. Unlike the wild type A. niger N402 strain, the A. niger xylulose kinase negative mutant N572 also showed induction of -l-arabinofuranosidases A and B and endo-arabinase activity on d-xylose and xylitol. This is due to metabolic conversion of these compounds leading to the accumulation of both xylitol and l-arabitol in this mutant, the latter of which then acts as inducer. The induction of the two -l-arabinofuranosidases and endo-arabinase is under the control of two regulatory systems namely pathway specific induction and carbon catabolite repression. Under derepressing conditions in the wild type only -l-arabinofuranosidase B could be detected by Western blotting analysis. This indicates that -l-arabinofuranosidase B is of importance in the initiation of specific induction of the various arabinose activities in A. niger grown on arabinose containing structural polysaccharides.Abbreviations PNA p-nitrophenyl--l-arabinofuranoside  相似文献   

14.
Ko BS  Rhee CH  Kim JH 《Biotechnology letters》2006,28(15):1159-1162
The effects of glycerol and the oxygen transfer rate on the xylitol production rate by a xylitol dehydrogenase gene (XYL2)-disrupted mutant of Candida tropicalis were investigated. The mutant produced xylitol near the almost yield of 100% from d-xylose using glycerol as a co-substrate for cell growth and NADPH regeneration: 50 g d-xylose l−1 was completely converted into xylitol when at least 20 g glycerol l−1 was used as a co-substrate. The xylitol production rate increased with the O2 transfer rate until saturation and it was not necessary to control the dissolved O2 tension precisely. Under the optimum conditions, the volumetric productivity and xylitol yield were 3.2 g l−1 h−1 and 97% (w/w), respectively.  相似文献   

15.
Summary Chlorate resistant mutants of the cyanobacterium Nostoc muscorum isolated after N-methyl-N-nitro-N-nitrosoguanidine (MNNG) mutagenesis were found to be defective/blocked in nitrate reductase (NR).The parent strain possessed active NR in the presence of nitrogen as nitrate and only basal levels of activity in ammonia and N-free grown cultures. Addition of ammonia suppressed the NR activity in the parent strain whereas addition of L-methionine DL-sulphoximine (MSX) restored NR activity. A similar repression by ammonia, glutamine and derepression with MSX were also observed for nitrogenase synthesis.One class of mutants lacked NR activity (nar -) whereas the specific activity of NR was low in another class of mutants (nar def). Unlike the parent, the mutants synthesized nitrogenase and differentiated heterocysts in the presence of nitrate nitrogen. Uptake studies of nitrite and ammonia in mutants revealed that they possessed both nitrite reductase and glutamine synthetases (GS) at low levels, and the same level respectively in comparison with the parent.  相似文献   

16.
Summary An NAD-dependent erythritol dehydrogenase was detected in cell-extracts of basidiospore germinants of Schizophyllum commune following culture on either meso-erythritol or glycerol as sole carbon sources. Induction of erythritol dehydrogenase was also observed in purely vegetative mycelium (str. 845 or str. 699). Erythritol dehydrogenase was not observed in ungerminated basidiospores or germinants which arose on d-glucose, d-mannitol, sorbitol, ribitol, xylitol, d-arabitol or l-arabitol. NAD-coupled polyol dehydrogenases for all the latter sugar alcohols were observed in ungerminated basidiospores, germinants, and vegetative mycelium of S. commune cultured on d-glucose. Basidiospore germination on d-glucose plus meso-erythritol led to a 90% decrease in erythritol dehydrogenase and the specific activity of ribitol dehydrogenase was directly comparable to that seen in d-glucose germinants. Storage experiments of crude extracts of meso-erythritol germinants indicated differential enzyme decay of dehydrogenases for d-mannitol, sorbitol and erythritol while the respective enzymes could be further distinguished by heat-stability as well as preferential utilization of analogues of NAD. DEAE-cellulose column chromatography led to separation of sorbitol dehydrogenase which was also active with xylitol, erythritol dehydrogenase, and mannitol dehydrogenase which was also active with d-arabitol.  相似文献   

17.
Wild-type Aspergillus nidulans has an active transport system specific for urea which concentrates urea at least 50-fold relative to the extracellular concentration. It is substrate concentration dependent, with an apparent K m of 3×10–5 m for urea. Competition studies and the properties of mutants indicate that thiourea is taken up by the same system as urea. Thiourea is toxic at 5mm to wild-type cells of Aspergillus nidulans. Mutants, designated ureA1 to ureA16, resistant to thiourea have been isolated, and transport assays and growth tests show that they are specifically impaired in urea transport. The mutant ureA1 has a higher K m value than the wild type for thiourea uptake. The ureA locus has been assigned to linkage group VIII. ureA1 is recessive for thiourea resistance while semidominant for the low uptake characteristic. The urea uptake system is under nitrogen regulation, with l-glutamine as the probable effector. The mutants, meaA8 and gdhA1, which are insensitive to ammonium control of many nitrogen-regulated metabolic systems, are also insensitive to ammonium control of urea uptake, but both are sensitive to l-glutamine regulation.Formerly at the Department of Genetics, University of Glasgow, Glasgow, Scotland.  相似文献   

18.
Summary WhenKlebsiella aerogenes was grown in continuous culture with xylitol, an unnatural pentitol, as the growth limiting substrate, the structural gene which codes for ribitol dehydrogenase, an enzyme which gratuitously catalyzes the oxidation of xylitol to D-xylulose, was duplicated. It appears that the duplication mechanism only duplicates the gene which is subjected to selective pressure and not any of the other closely linked genes. The degree to which the ribitol dehydrogenase gene is duplicated does not appear to be strictly correlated with the ability to grow faster on xylitol. Duplication mutants do, in fact, grow faster than their parent strain, but when challenged to grow at even higher growth rates there is a catabolic repression of enzyme activity. Thus a situation is created in which a structural gene is duplicated in response to selective pressure; these mutants can grow faster on the new substrate, but faster growth results in a silencing of a portion of the genes by catabolite repression.  相似文献   

19.
 The strain Penicillium purpurogenum P-26 was subjected to UV irradiation and N-methyl-N′-nitro-N-nitrosoguanidine treatment and mutants were isolated capable of synthesizing cellulase under the conditions of a high concentration of glucose. Initially mutants resistant to catabolite repression by 2-deoxy-D-glucose were isolated on Walseth’s cellulose/agar plates containing 15–45 mM 2-deoxy-D-glucose. These mutants were again screened for resistance to catabolite repression by glycerol or glucose on Walseth’s cellulose/agar plates containing 50 g/l glycerol or 50 g/l glucose respectively. Four mutants with different sizes of clearing zone on Walseth’s cellulose/agar plates containing 50 g/l glucose were selected for flask culture. Among them, the mutant NTUV-45-4 showed better carboxymethylcellulase activity in flask culture containing 1% Avicel plus 3% glucose than did the parental strain. Received: 9 October 1995/Received revision: 27 November 1995/Accepted: 8 January 1996  相似文献   

20.
Summary The fermentation ofd-xylose byPachysolen tannophilus, Candida shehatae, andPichia stipitis has been investigated by13C-nuclear magnetic resonance spectroscopy of both whole cells and extracts. The spectra of whole cells metabolizingd-xylose with natural isotopic abundance had significant resonance signals corresponding only to xylitol, ethanol and xylose. The spectra of whole cells in the presence of [1-13C]xylose or [2-13C]xylose had resonance signals corresponding to the C-1 or C-2, respectively, of xylose, the C-1 or C-2, respectively, of xylitol, and the C-2 or C-1, respectively, of ethanol. Xylitol was metabolized only in the presence of an electron acceptor (acetone) and the only identifiable product was ethanol. The fact that the amount of ethanol was insufficient to account for the xylitol metabolized indicates that an additional fate of xylitol carbon must exist, probably carbon dioxide. The rapid metabolism of xylulose to ethanol, xylitol and arabinitol indicates that xylulose is a true intermediate and that xylitol dehydrogenase catalyzes the reduction (or oxidation) with different stereochemical specificity from that which interconverts xylitol andd-xylulose. The amino acidl-alanine was identified by the resonance position of the C-3 carbon and by enzymatic analysis of incubation mixtures containing yeast and [1-13C]xylose or [1-13C]glucose. The position of the label from both substrates and the identification of isotope also in C-1 of alamine indicates flux through the transketolase/transaldolase pathway in the metabolism. The identification of a resonance signal corresponding to the C-1 of ethanol in spectra of yeast in the presence of [1-13C]xylose and fluoroacetate (but not arsenite) indicates the existence of equilibration of some precursor of ethanol (e.g. pyruvate) with a symmetric intermediate (e.g. fumarate or succinate) under these conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号