首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Protein kinase C (PKC) isoforms regulate many platelet responses in a still incompletely understood manner. Here we investigated the roles of PKC in the platelet reactions implicated in thrombus formation as follows: secretion aggregate formation and coagulation-stimulating activity, using inhibitors with proven activity in plasma. In human and mouse platelets, PKC regulated aggregation by mediating secretion and contributing to alphaIIbbeta3 activation. Strikingly, PKC suppressed Ca(2+) signal generation and Ca(2+)-dependent exposure of procoagulant phosphatidylserine. Furthermore, under coagulant conditions, PKC suppressed the thrombin-generating capacity of platelets. In flowing human and mouse blood, PKC contributed to platelet adhesion and controlled secretion-dependent thrombus formation, whereas it down-regulated Ca(2+) signaling and procoagulant activity. In murine platelets lacking G(q)alpha, where secretion reactions were reduced in comparison with wild type mice, PKC still positively regulated platelet aggregation and down-regulated procoagulant activity. We conclude that platelet PKC isoforms have a dual controlling role in thrombus formation as follows: (i) by mediating secretion and integrin activation required for platelet aggregation under flow, and (ii) by suppressing Ca(2+)-dependent phosphatidylserine exposure, and consequently thrombin generation and coagulation. This platelet signaling protein is the first one identified to balance the pro-aggregatory and procoagulant functions of thrombi.  相似文献   

2.
In agonist-induced platelet activation, the collagen platelet receptor integrin alpha2beta1 is activated to high-affinity states through ADP involvement [Jung, S.M. & Moroi, M. (2000) J. Biol. Chem. 275, 8016-8026]. Here we determined the ADP-receptor subtypes involved and their relative contributions to alpha2beta1 activation (assessed by soluble-collagen binding) using the P2Y12 antagonist AR-C69931MX and P2Y1 antagonists adenosine 3',5'-diphosphate (Ado(3,5)PP) and adenosine 3'-phosphate 5'-phosphosulfate (AdoPPS). All three inhibited alpha2beta1 activation induced by low or high ADP, low thrombin, or low collagen-related peptide (CRP) concentrations; however, AR-C69931MX was markedly more inhibitory than the P2Y1 antagonists, suggesting the greater contribution of P2Y12. Inhibition patterns by various combinations of AR-C69931MX, AdoPPS, and wortmannin suggested that P2Y1 and P2Y12 mediate alpha2beta1 activation through different pathways, with possible involvement of phosphoinositide 3-kinase in both. Low concentrations of the acetoxy-methyl derivative of 1,2-bis(o-aminophenoxy) ethane-N,N,N',N'-tetra-acetic acid (calcium chelator) markedly decreased alpha2beta1 activation by low thrombin or CRP, but did not affect that by low or high ADP. Measurements of intracellular Ca2+ level (fluorimetric method) and alpha2beta1 activation (soluble-collagen binding) in the same platelet preparation indicated that alpha2beta1 activation via ADP receptors was independent of intracellular Ca2+ release. Our data indicate that integrin alpha2beta1 activation by ADP occurs through an inside-out signaling mechanism involving differential contributions by P2Y1 and P2Y12 wherein each contributes to some portion of the activation, with the stronger contribution of P2Y12. Furthermore, intracellular Ca2+ increase is not directly related to integrin alpha2beta1 activation, meaning that it is separate from the calcium mobilization pathways that these two ADP receptors are involved in.  相似文献   

3.
Human platelets express protease-activated receptor 1 (PAR1) and PAR4 but limited data indicate for differences in signal transduction. We studied the involvement of PAR1 and PAR4 in the cross-talk between thrombin and epinephrine. The results show that epinephrine acted via alpha(2A)-adrenergic receptors to provoke aggregation, secretion, and Ca(2+) mobilization in aspirin-treated platelets pre-stimulated with subthreshold concentrations of thrombin. Incubating platelets with antibodies against PAR4 or the PAR4-specific inhibitor pepducin P4pal-i1 abolished the aggregation. Furthermore, platelets pre-exposed to the PAR4-activating peptide AYPGKF, but not to the PAR1-activating peptide SFLLRN, were aggregated by epinephrine, whereas both AYPGKF and SFLLRN synergized with epinephrine in the absence of aspirin. The roles of released ATP and ADP were elucidated by using antagonists of the purinergic receptors P2X(1), P2Y(1), and P2Y(12) (i.e. NF449, MRS2159, MRS2179, and cangrelor). Intriguingly, ATP, but not ADP, was required for the epinephrine/thrombin-induced aggregation. In Western blot analysis, a low concentration of AYPGKF, but not SFLLRN, stimulated phosphorylation of Akt on serine 473. Moreover, the phosphatidyl inositide 3-kinase inhibitor LY294002 antagonized the effect of epinephrine combined with thrombin or AYPGKF. Thus, in aspirin-treated platelets, PAR4, but not PAR1, interacts synergistically with alpha(2A)-adrenergic receptors, and the PI3-kinase/Akt pathway is involved in this cross-talk. Furthermore, in PAR4-pretreated platelets, epinephrine caused dense granule secretion, and subsequent signaling from the ATP-gated P2X(1)-receptor and the alpha(2A)-adrenergic receptor induced aggregation. These results suggest a new mechanism that has ATP as a key element and circumvents the action of aspirin on epinephrine-facilitated PAR4-mediated platelet activation.  相似文献   

4.
Stimulation of human platelets by cross-linking of the low affinity receptor for immunoglobulin, FcgammaRIIA, caused the rapid activation of the small GTPase Rap1B, as monitored by accumulation of the GTP-bound form of the protein. This process was totally dependent on the action of secreted ADP since it was completely prevented in the presence of either apyrase or creatine phosphate and creatine phosphokinase. Dose-dependent experiments revealed that the inhibitory effect of ADP scavengers was not related to the reduced increase of cytosolic Ca(2+) concentration in stimulated platelets. Activation of Rap1B induced by clustering of FcgammaRIIA was totally suppressed by AR-C69931MX, a specific antagonist of the G(i)-coupled ADP receptor P2Y12, but was not affected by blockade of the G(q)-coupled receptor, P2Y1. Similarly, direct stimulation of platelets with ADP induced the rapid activation of Rap1B. Pharmacological blockade of the P2Y1 receptor totally prevented ADP-induced Ca(2+) mobilization but did not affect activation of Rap1B. By contrast, prevention of ADP binding to the P2Y12 receptor totally suppressed activation of Rap1B without affecting Ca(2+) signaling. In platelets stimulated by cross-linking of FcgammaRIIA, inhibition of Rap1B activation by ADP scavengers could be overcome by the simultaneous recruitment of the G(i)-coupled alpha(2A)-adrenergic receptor by epinephrine. By contrast, serotonin, which binds to a G(q)-coupled receptor, could not restore activation of Rap1B. When tested alone, epinephrine was found to be able to induce GTP binding to Rap1B, whereas serotonin produced only a slight effect. Finally, activation of Rap1B induced by stimulation of the G(q)-coupled thromboxane A(2) receptor by was completely inhibited by ADP scavengers under conditions in which intracellular Ca(2+) mobilization was unaffected. Inhibition of -induced Rap1B activation was also observed upon blockade of the P2Y12 but not of the P2Y1 receptor for ADP. These results demonstrate that stimulation of a G(i)-dependent signaling pathway by either ADP of epinephrine is necessary and sufficient to activate the small GTPase Rap1B.  相似文献   

5.
CD38, a multifunctional enzyme that catalyzes the synthesis of intracellular Ca(2+) messengers, cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP), is known to be expressed on platelets. However, the role of CD38 in platelets remains unclear. Our present results show that treatment of platelets with thrombin results in a rapid and sustained Ca(2+) signal, resulting from a coordinated interplay of Ca(2+)-mobilizing messengers, inositol 1,4,5-trisphosphate, cADPR, and NAADP. By dissecting the signaling pathway using various agents, we delineated that cADPR and NAADP are sequentially produced through CD38 internalization by protein kinase C via myosin heavy chain IIA following phospholipase C activation in thrombin-induced platelets. An inositol 1,4,5-trisphosphate receptor antagonist blocked the thrombin-induced formation of cADPR and NAADP as well as Ca(2+) signals. An indispensable response of platelets relying on cytosolic calcium is the surface exposure of phosphatidylserine (PS), which implicates platelet procoagulant activity. Scrutinizing this parameter reveals that CD38(+/+) platelets fully express PS on the surface when stimulated with thrombin, whereas this response was decreased on CD38(-/-) platelets. Similarly, PS exposure and Ca(2+) signals were attenuated when platelets were incubated with 8-bromo-cADPR, bafilomycin A1, and a PKC inhibitor. Furthermore, in vivo, CD38-deficient mice exhibited longer bleeding times and unstable formation of thrombus than wild type mice. These results demonstrate that CD38 plays an essential role in thrombin-induced procoagulant activity of platelets and hemostasis via Ca(2+) signaling mediated by its products, cADPR and NAADP.  相似文献   

6.
Extracellular ATP and ADP have been shown to exhibit potent angiogenic effects on pulmonary artery adventitial vasa vasorum endothelial cells (VVEC). However, the molecular signaling mechanisms of extracellular nucleotide-mediated angiogenesis remain not fully elucidated. Since elevation of intracellular Ca(2+) concentration ([Ca(2+)](i)) is required for cell proliferation and occurs in response to extracellular nucleotides, this study was undertaken to delineate the purinergic receptor subtypes involved in Ca(2+) signaling and extracellular nucleotide-mediated mitogenic responses in VVEC. Our data indicate that stimulation of VVEC with extracellular ATP resulted in the elevation of [Ca(2+)](i) via Ca(2+) influx through plasma membrane channels as well as Ca(2+) mobilization from intracellular stores. Moreover, extracellular ATP induced simultaneous Ca(2+) responses in both cytosolic and nuclear compartments. An increase in [Ca(2+)](i) was observed in response to a wide range of purinergic receptor agonists, including ATP, ADP, ATPγS, ADPβS, UTP, UDP, 2-methylthio-ATP (MeSATP), 2-methylthio-ADP (MeSADP), and BzATP, but not adenosine, AMP, diadenosine tetraphosphate, αβMeATP, and βγMeATP. Using RT-PCR, we identified mRNA for the P2Y1, P2Y2, P2Y4, P2Y13, P2Y14, P2X2, P2X5, P2X7, A1, A2b, and A3 purinergic receptors in VVEC. Preincubation of VVEC with the P2Y1 selective antagonist MRS2179 and the P2Y13 selective antagonist MRS2211, as well as with pertussis toxin, attenuated at varying degrees agonist-induced intracellular Ca(2+) responses and activation of ERK1/2, Akt, and S6 ribosomal protein, indicating that P2Y1 and P2Y13 receptors play a major role in VVEC growth responses. Considering the broad physiological implications of purinergic signaling in the regulation of angiogenesis and vascular homeostasis, our findings suggest that P2Y1 and P2Y13 receptors may represent novel and specific targets for treatment of pathological vascular remodeling involving vasa vasorum expansion.  相似文献   

7.
Thromboxane A2 (TXA2)-mediated platelet secretion and aggregation are important in thrombosis. Here, we present a novel finding that the stable TXA2 analogue, U46619, induces two waves of platelet secretion, each of which precedes a distinct wave of platelet aggregation. ADP released from platelets during the first wave of secretion played a major role in augmenting the first wave of platelet aggregation. The second wave of platelet secretion and aggregation required the first wave of both ADP secretion and aggregation and were blocked by either the integrin inhibitor RGDS or a P2Y12 receptor antagonist, indicating a requirement for both the integrin outside-in signal and ADP-activated Gi pathway. U46619 stimulated phosphoinositide 3-kinase (PI3K)-dependent phosphorylation of Akt, which was augmented by ADP but did not require integrin outside-in signaling. Platelets from PI3Kgamma knock-out mice or PI3K inhibitor-treated platelets showed an impaired second wave of platelet secretion and aggregation. However, the second wave of platelet aggregation was restored by addition of exogenous ADP to PI3Kgamma deficient or PI3K inhibitor-treated platelets. Thus, our data indicate that PI3K, together with the integrin outside-in signaling, play a central role in inducing the second wave of platelet secretion, which leads to the second wave of irreversible platelet aggregation.  相似文献   

8.
Thrombin activates human platelets through three different membrane receptors, the protease-activated receptors PAR-1 and PAR-4 and the glycoprotein Ib (GPIb)-IX-V complex. We investigated the contribution of these three receptors to thrombin-induced activation of the small GTPase Rap1B. We found that, similarly to thrombin, selective stimulation of either PAR-1 or PAR-4 by specific activating peptides caused accumulation of GTP-bound Rap1B in a dose-dependent manner. By contrast, in PAR-1- and PAR-4-desensitized platelets, thrombin failed to activate Rap1B. Thrombin, PAR-1-, or PAR-4-activating peptides also induced the increase of intracellular Ca(2+) concentration and the release of serotonin in a dose-dependent manner. We found that activation of Rap1B by selected doses of agonists able to elicit comparable intracellular Ca(2+) increase and serotonin release was differently dependent on secreted ADP. In the presence of the ADP scavengers apyrase or phosphocreatine-phosphocreatine kinase, activation of Rap1B induced by stimulation of either PAR-1 or PAR-4 was totally inhibited. By contrast, thrombin-induced activation of Rap1B was only minimally affected by neutralization of secreted ADP. Concomitant stimulation of both PAR-1 and PAR-4 in the presence of ADP scavengers still resulted in a strongly reduced activation of Rap1B. A similar effect was also observed upon blockade of the P2Y12 receptor for ADP, as well as in P2Y12 receptor-deficient human platelets, but not after blockade of the P2Y1 receptor. Activation of Rap1B induced by thrombin was not affected by preincubation of platelets with the anti-GPIbalpha monoclonal antibody AK2 in the absence of ADP scavengers or a P2Y12 antagonist but was totally abolished when secreted ADP was neutralized or after blockade of the P2Y12 receptor. Similarly, cleavage of the extracellular portion of GPIbalpha by the cobra venom mocarhagin totally prevented Rap1B activation induced by thrombin in the presence of apyrase and in P2Y12 receptor-deficient platelets. By contrast, inhibition of MAP kinases or p160ROCK, which have been shown to be activated upon thrombin binding to GPIb-IX-V, did not affect agonist-induced activation of Rap1B in the presence of ADP scavengers. These results indicate that although both PAR-1 and PAR-4 signal Rap1B activation, the ability of thrombin to activate this GTPase independently of secreted ADP involves costimulation of both receptors as well as binding to GPIb-IX-V.  相似文献   

9.
Phosphoinositide (PI) 3-kinases play an important role in regulating the adhesive function of a variety of cell types through affinity modulation of integrins. Two type I PI 3-kinase isoforms (p110 beta and p110 gamma) have been implicated in G(i)-dependent integrin alpha(IIb)beta(3) regulation in platelets, however, the mechanisms by which they coordinate their signaling function remains unknown. By employing isoform-selective PI 3-kinase inhibitors and knock-out mouse models we have identified a unique mechanism of PI 3-kinase signaling co-operativity in platelets. We demonstrate that p110 beta is primarily responsible for G(i)-dependent phosphatidylinositol 3,4-bisphosphate (PI(3,4)P(2)) production in ADP-stimulated platelets and is linked to the activation of Rap1b and AKT. In contrast, defective integrin alpha(IIb)beta(3) activation in p110 gamma(-/-) platelets was not associated with alterations in the levels of PI(3,4)P(2) or active Rap1b/AKT. Analysis of the effects of active site pharmacological inhibitors confirmed that p110 gamma principally regulated integrin alpha(IIb)beta(3) activation through a non-catalytic signaling mechanism. Inhibition of the kinase function of PI 3-kinases, combined with deletion of p110 gamma, led to a major reduction in integrin alpha(IIb)beta(3) activation, resulting in a profound defect in platelet aggregation, hemostatic plug formation, and arterial thrombosis. These studies demonstrate a kinase-independent signaling function for p110 gamma in platelets. Moreover, they demonstrate that the combined catalytic and non-catalytic signaling function of p110 beta and p110 gamma is critical for P2Y(12)/G(i)-dependent integrin alpha(IIb)beta(3) regulation. These findings have potentially important implications for the rationale design of novel antiplatelet therapies targeting PI 3-kinase signaling pathways.  相似文献   

10.
It has become increasingly appreciated that receptors coupled to G(alpha)(i) family members can stimulate platelet aggregation, but the mechanism for this has remained unclear. One possible mediator is the small GTPase, Rap1, which has been shown to contribute to integrin activation in several cell lines and to be activated by a calcium-dependent mechanism in platelets. Here, we demonstrate that Rap1 is also activated by G(alpha)(i) family members in platelets. First, we show that platelets from mice lacking the G(alpha)(i) family member G(alpha)(z) (which couples to the alpha(2A) adrenergic receptor) are deficient in epinephrine-stimulated Rap1 activation. We also show that platelets from mice lacking G(alpha)(i2), which couples to the ADP receptor, P2Y12, exhibit reduced Rap1 activation in response to ADP. In contrast, platelets from mice that lack G(alpha)(q) show no decrease in the ability to activate Rap1 in response to epinephrine but show a partial reduction in ADP-stimulated Rap1 activation. This result, combined with studies of human platelets treated with ADP receptor-selective inhibitors, indicates that ADP-stimulated Rap1 activation in human platelets is dependent on both the G(alpha)(i)-coupled P2Y12 receptor and the G(alpha)(q)-coupled P2Y1 receptor. G(alpha)(i)-dependent activation of Rap1 in platelets does not appear to be mediated by enhanced intracellular calcium release because no increase in intracellular calcium concentration was detected in response to epinephrine and because the calcium response to ADP was not diminished in platelets from the G(alpha)(i2)-/- mouse. Finally, using human platelets treated with selective inhibitors of phosphatidylinositol 3-kinase (PI3K) and mouse platelets selectively lacking the G(beta)(gamma)-activated form of his enzyme (PI3Kgamma), we show that G(i)-mediated Rap1 activation is PI3K-dependent. In summary, activation of Rap1 can be stimulated by G(alpha)(i)- and PI3K-dependent mechanisms in platelets and by G(q)- and Ca(2+)-dependent mechanisms, both of which may play a role in promoting platelet activation.  相似文献   

11.
Shear stress triggers von Willebrand factor (VWF) binding to platelet glycoprotein Ibalpha and subsequent integrin alpha(IIb)beta(3)-dependent platelet aggregation. Concomitantly, nucleotides are released from plateletdense granules, and ADP is known to contribute to shear-induced platelet aggregation (SIPA). We found that the impaired SIPA of platelets from a Hermansky-Pudlak patient lacking dense granules was restored by exogenous l-beta,gamma-methylene ATP, a stable P2X(1) agonist, as well as by ADP, confirming that in addition to ADP (via P2Y(1) and P2Y(12)), ATP (via P2X(1)) also contributes to SIPA. Likewise, SIPA of apyrase-treated platelets was restored upon P2X(1) activation with l-beta,gamma-methylene ATP, which promoted granule centralization within platelets and stimulated P-selectin expression, which is a marker of alpha-granule release. In addition, during SIPA, platelet degranulation required both extracellular Ca(2+) and VWF-glycoprotein Ibalpha interactions without involving alpha(IIb)beta(3). Neither platelet release nor SIPA was affected by protein kinase C inactivation, even though protein kinase C blockade inhibits platelet responses to collagen and thrombin in stirring conditions. In contrast, inhibiting myosin light chain (MLC) kinase with ML-7 reduced platelet release and SIPA by 30%. Accordingly, the potentiating effect of P2X(1) stimulation on the aggregation of apyrase-treated platelets coincided with intensified phosphorylation of MLC and was abrogated by ML-7. SIPA-induced MLC phosphorylation occurred exclusively through released nucleotides and selective antagonism of P2X(1) with MRS2159-reduced SIPA, ATP release, and potently inhibited MLC phosphorylation. We conclude that the P2X(1) ion channel induces MLC-mediated cytoskeletal rearrangements, thus contributing to SIPA and degranulation during VWF-triggered platelet activation.  相似文献   

12.
This study presents evidence that phosphoinositide (PI) 3-kinase is involved in T cell Ca(2+) signaling via a phosphatidylinositol 3,4, 5-trisphosphate PI(3,4,5)P(3)-sensitive Ca(2+) entry pathway. First, exogenous PI(3,4,5)P(3) at concentrations close to its physiological levels induces Ca(2+) influx in T cells, whereas PI(3,4)P(2), PI(4, 5)P(2), and PI(3)P have no effect on [Ca(2+)](i). This Ca(2+) entry mechanism is cell type-specific as B cells and a number of cell lines examined do not respond to PI(3,4,5)P(3) stimulation. Second, inhibition of PI 3-kinase by wortmannin and by overexpression of the dominant negative inhibitor Deltap85 suppresses anti-CD3-induced Ca(2+) response, which could be reversed by subsequent exposure to PI(3,4,5)P(3). Third, PI(3,4,5)P(3) is capable of stimulating Ca(2+) efflux from Ca(2+)-loaded plasma membrane vesicles prepared from Jurkat T cells, suggesting that PI(3,4,5)P(3) interacts with a Ca(2+) entry system directly or via a membrane-bound protein. Fourth, although D-myo-inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4, 5)P(4)) mimics PI(3,4,5)P(3) in many aspects of biochemical functions such as membrane binding and Ca(2+) transport, we raise evidence that Ins(1,3,4,5)P(4) does not play a role in anti-CD3- or PI(3,4,5)P(3)-mediated Ca(2+) entry. This PI(3,4,5)P(3)-stimulated Ca(2+) influx connotes physiological significance, considering the pivotal role of PI 3-kinase in the regulation of T cell function. Given that PI 3-kinase and phospholipase C-gamma form multifunctional complexes downstream of many receptor signaling pathways, we hypothesize that PI(3,4,5)P(3)-induced Ca(2+) entry acts concertedly with Ins(1,4,5)P(3)-induced Ca(2+) release in initiating T cell Ca(2+) signaling. By using a biotinylated analog of PI(3,4,5)P(3) as the affinity probe, we have detected several putative PI(3,4,5)P(3)-binding proteins in T cell plasma membranes.  相似文献   

13.
Arrestins can facilitate desensitization or signaling by G protein-coupled receptors (GPCR) in many cells, but their roles in platelets remain uncharacterized. Because of recent reports that arrestins can serve as scaffolds to recruit phosphatidylinositol-3 kinases (PI3K)s to GPCRs, we sought to determine whether arrestins regulate PI3K-dependent Akt signaling in platelets, with consequences for thrombosis. Co-immunoprecipitation experiments demonstrate that arrestin-2 associates with p85 PI3Kα/β subunits in thrombin-stimulated platelets, but not resting cells. The association is inhibited by inhibitors of P2Y12 and Src family kinases (SFKs). The function of arrestin-2 in platelets is agonist-specific, as PAR4-dependent Akt phosphorylation and fibrinogen binding were reduced in arrestin-2 knock-out platelets compared with WT controls, but ADP-stimulated signaling to Akt and fibrinogen binding were unaffected. ADP receptors regulate arrestin recruitment to PAR4, because co-immunoprecipitates of arrestin-2 with PAR4 are disrupted by inhibitors of P2Y1 or P2Y12. P2Y1 may regulate arrestin-2 recruitment to PAR4 through protein kinase C (PKC) activation, whereas P2Y12 directly interacts with PAR4 and therefore, may help to recruit arrestin-2 to PAR4. Finally, arrestin2(-/-) mice are less sensitive to ferric chloride-induced thrombosis than WT mice, suggesting that arrestin-2 can regulate thrombus formation in vivo. In conclusion, arrestin-2 regulates PAR4-dependent signaling pathways, but not responses to ADP alone, and contributes to thrombus formation in vivo.  相似文献   

14.
The small GTP-binding protein Rap1B is activated in human platelets upon stimulation of a G(i)-dependent signaling pathway. In this work, we found that inhibition of platelet adenylyl cyclase by dideoxyadenosine or SQ22536 did not cause activation of Rap1B and did not restore Rap1B activation in platelets stimulated by cross-linking of Fcgamma receptor IIA (FcgammaRIIA) in the presence of ADP scavengers. Moreover, elevation of the intracellular cAMP concentration did not impair the G(i)-dependent activation of Rap1B. Two unrelated inhibitors of phosphatidylinositol 3-kinase (PI3K), wortmannin and LY294002, totally prevented Rap1B activation in platelets stimulated by cross-linking of FcgammaRIIA, by stimulation of the P2Y(12) receptor for ADP, or by epinephrine. However, in platelets from PI3Kgamma-deficient mice, both ADP and epinephrine were still able to normally stimulate Rap1B activation through a PI3K-dependent mechanism, suggesting the involvement of a different isoform of the enzyme. Moreover, the lack of PI3Kgamma did not prevent the ability of epinephrine to potentiate platelet aggregation through a G(i)-dependent pathway. The inhibitory effect of wortmannin on Rap1B activation was overcome by addition of phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)), but not PtdIns(3,4)P(2), although both lipids were found to support phosphorylation of Akt. Moreover, PtdIns(3,4,5)P(3) was able to relieve the inhibitory effect of apyrase on FcgammaRIIA-mediated platelet aggregation. We conclude that stimulation of a G(i)-dependent signaling pathway causes activation of the small GTPase Rap1B through the action of the PI3K product PtdIns(3,4,5)P(3), but not PtdIns(3,4)P(2), and that this process may contribute to potentiation of platelet aggregation.  相似文献   

15.
Thrombopoietin (TPO) is the main regulator of megakaryopoiesis and influences also the function of mature platelets. TPO has been shown to synergize in multiple platelet activation processes induced by various agonists. Our aim was to elucidate whether TPO affects calcium signaling during platelet activation processes. TPO demonstrated a synergistic effect on the exocytosis induced by suboptimal doses of adenosine diphosphate (ADP) and the thrombin receptor agonist peptide (TRAP). We detected synergistic effects of TPO on the ADP or TRAP induced Ca(2+) mobilization in a small range of very low agonist concentrations. The TPO synergism on Ca(2+) mobilization and CD62P expression was measurable in different, nonoverlapping ranges of ADP or TRAP concentrations. Sustaining the agonist-induced calcium signal with thapsigargin led to a detectable TPO synergism in CD62P expression even in agonist concentrations in which the synergism only occurs in Ca(2+) signaling without thapsigargin.  相似文献   

16.
Akt activation in platelets depends on Gi signaling pathways   总被引:10,自引:0,他引:10  
The serine-threonine kinase Akt has been established as an important signaling intermediate in regulating cell survival, cell cycle progression, as well as agonist-induced platelet activation. Stimulation of platelets with various agonists including thrombin results in Akt activation. As thrombin can stimulate multiple G protein signaling pathways, we investigated the mechanism of thrombin-induced activation of Akt. Stimulation of platelets with a PAR1-activating peptide (SFLLRN), PAR4-activating peptide (AYPGKF), and thrombin resulted in Thr308 and Ser473 phosphorylation of Akt, which results in its activation. This phosphorylation and activation of Akt were dramatically inhibited in the presence of AR-C69931MX, a P2Y12 receptor-selective antagonist, or GF 109203X, a protein kinase C inhibitor, but Akt phosphorylation was restored by supplemental Gi or Gz signaling. Unlike wild-type mouse platelets, platelets from Galphaq-deficient mice failed to trigger Akt phosphorylation by thrombin and AYPGKF, whereas Akt phosphorylation was not affected by these agonists in platelets from mice that lack P2Y1 receptor. However, ADP caused Akt phosphorylation in Galphaq- and P2Y1-deficient platelets, which was completely blocked by AR-C69931MX. In contrast, ADP failed to cause Akt phosphorylation in platelets from mice treated with clopidogrel, and thrombin and AYPGKF induced minimal phosphorylation of Akt, which was not affected by AR-C69931MX in these platelets. These data demonstrate that Gi, but not Gq or G12/13, signaling pathways are required for activation of Akt in platelets, and Gi signaling pathways, stimulated by secreted ADP, play an essential role in the activation of Akt in platelets.  相似文献   

17.
High concentrations of adenosine-5'-diphosphate ADP are able to induce partial aggregation without shape change of P2Y(1) receptor-deficient mouse platelets through activation of the P2Y(12) receptor. In the present work we studied the transduction pathways selectively involved in this phenomenon. Flow cytometric analyses using R-phycoerythrin-conjugated JON/A antibody (JON/A-PE), an antibody which recognizes activated mouse alpha(IIb)beta(3) integrin, revealed a low level activation of alpha(IIb)beta(3) in P2Y(1) receptor-deficient platelets in response to 100 microM ADP or 1 microM 2MeS-ADP. Adrenaline induced no such activation but strongly potentiated the effect of ADP in a dose-dependent manner. Global phosphorylation of (32)P-labeled platelets showed that P2Y(12)-mediated aggregation was not accompanied by an increase in the phosphorylation of myosin light chain (P(20)) or pleckstrin (P(47)) and was not affected by the protein kinase C (PKC) inhibitor staurosporine. On the other hand, two unrelated phosphoinositide 3-kinase inhibitors, wortmannin and LY294002, inhibited this aggregation. Our results indicate that (i) the P2Y(12) receptor is able to trigger a P2Y(1) receptor-independent inside-out signal leading to alpha(IIb)beta(3) integrin activation and platelet aggregation, (ii) ADP and adrenaline use different signaling pathways which synergize to activate the alpha(IIb)beta(3) integrin, and (iii) the transduction pathway triggered by the P2Y(12) receptor is independent of PKC but dependent on phosphoinositide 3-kinase.  相似文献   

18.
19.
Rat brain capillary endothelial (B10) cells express an unidentified nucleotide receptor linked to adenylyl cyclase inhibition. We show that this receptor in B10 cells is identical in sequence to the P2Y(12) ADP receptor ("P2Y(T)") of platelets. When expressed heterologously, 2-methylthio-ADP (2-MeSADP; EC(50), 2 nm), ADP, and adenosine 5'-O-(2-thio)diphosphate were agonists of cAMP decrease, and 2-propylthio-D-beta,gamma-difluoromethylene-ATP was a competitive antagonist (K(B), 28 nm), as in platelets. However, 2-methylthio-ATP (2-MeSATP) (EC(50), 0.4 nm), ATP (1.9 microm), and 2-chloro-ATP (190 nm), antagonists in the platelet, were also agonists. 2-MeSADP activated (EC(50), 0.1 nm) GIRK1/GIRK2 inward rectifier K(+) channels when co-expressed with P2Y(12) receptors in sympathetic neurons. Surprisingly, P2Y(1) receptors expressed likewise gave that response; however, a full inactivation followed, absent with P2Y(12) receptors. A new P2Y(12)-mediated transduction was found, the closing of native N-type Ca(2+) channels; again both 2-MeSATP and 2-MeSADP are agonists (EC(50), 0.04 and 0.1 nm, respectively). That action, like their cAMP response, was pertussis toxin-sensitive. The Ca(2+) channel inhibition and K(+) channel activation are mediated by beta gamma subunit release from a heterotrimeric G-protein. G alpha subunit types in B10 cells were also identified. The presence in the brain capillary endothelial cell of the P2Y(12) receptor is a significant extension of its functional range.  相似文献   

20.
Inhibitory guanine-nucleotide-binding proteins (Gi proteins) are substrates for pertussis toxin and the decreased pertussis-toxin-dependent ADP ribosylation of Gi proteins upon prior specific hormonal stimulation of cells is thought to reflect the receptor-mediated activation of Gi proteins, leading to their subsequent dissociation into alpha i and beta/gamma subunits. In the present study, the effect of various platelet stimuli on the subsequent pertussis-toxin-dependent ADP ribosylation of the alpha subunit of Gi (Gi alpha) in saponized platelets and platelet membranes were studied. Stimulation of intact platelets with the Ca(2+)-ionophore A23187 or thrombin, but not phorbol 12,13-dibutyrate, decreased the subsequent pertussis-toxin-dependent ADP ribosylation of Gi alpha in saponin-permeabilized platelets in a time-dependent and dose-dependent manner. Thrombin was more effective than A23187. Parallel measurements of Ca2+ mobilization and pertussis-toxin-dependent ADP ribosylation of Gi alpha in platelets showed that Ca2+ mobilization could only partly account for the decrease in pertussis-toxin-dependent ADP ribosylation in platelets stimulated by thrombin. When the ADP-ribosylation reaction was carried out in platelet membranes, a decrease in ADP ribosylation was still observed after stimulation of platelets with thrombin, but not with A23187. In addition to Gi alpha, two other proteins were found to be ADP ribosylated by pertussis toxin; their ADP ribosylation was also decreased after A23187 and thrombin stimulation of platelets. The results indicate that Ca2+ mobilization can decrease the pertussis-toxin-dependent ADP ribosylation of Gi alpha in saponized platelets; the decrease of pertussis-toxin-dependent ADP ribosylation of Gi alpha after thrombin stimulation of platelets can only, in part, be explained by Ca2+ mobilization and involves additional mechanisms; the decrease in pertussis-toxin-dependent ADP ribosylation after A23187 and thrombin stimulation is not confined to G1 alpha and involves other proteins. We conclude that the decrease in pertussis-toxin-dependent ADP ribosylation of Gi in thrombin-stimulated platelets might not be solely caused by a specific structural change, such as dissociation of Gi. It is likely that A23187 and thrombin stimulation of platelets generates substances which interfere with the ADP-ribosylating activity of pertussis toxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号