首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The crystal structure of a non-standard peptide, YEA9, in complex with H-2Kb, at 1.5 A resolution demonstrates how YEA9 peptide can bind with surprisingly high affinity through insertion of alternative, long, non-canonical anchors into the B and E pockets. The use of "alternative pockets" represents a new mode of high affinity peptide binding, that should be considered when predicting peptide epitopes for MHC class I. These novel interactions encountered in this non-canonical high affinity peptide-MHC complex should help predict additional binding peptides from primary protein sequences and aid in the design of alternative approaches for peptide-based vaccines.  相似文献   

2.
The complexity of the interaction between major histocompatibility complex class II (MHC II) proteins and peptide ligands has been revealed through structural studies and crystallographic characterization. Peptides bind through side-chain "anchor" interactions with MHC II pockets and an extensive array of genetically conserved hydrogen bonds to the peptide backbone. Here we quantitatively investigate the kinetic hierarchy of these interactions. We present results detailing the impact of single side-chain mutations of peptide anchor residues on dissociation rates, utilizing two I-A(d)-restricted peptides, one of which has a known crystal structure, and 24 natural and non-natural amino acid mutant variants of these peptides. We find that the N-terminal P1, P4 and P6 anchor-pocket interactions can make significant contributions to binding stability. We also investigate the interactions of these peptides with four I-A(d) MHC II proteins, each mutated to disrupt conserved hydrogen bonds to the peptide backbone. These complexes exhibit kinetic behavior suggesting that binding energy is disproportionately invested near the peptide N terminus for backbone hydrogen bonds. We then evaluate the effects of simultaneously modifying both anchor and hydrogen bonding interactions. A quantitative analysis of 71 double mutant cycles reveals that there is little apparent cooperativity between anchor residue interactions and hydrogen bonds, even when they are directly adjacent (<5A).  相似文献   

3.
We report the creation of TCR partial agonists by the novel approach of manipulating the interaction between immunogenic peptide and MHC. Amino acids at MHC anchor positions of the I-E(k)-restricted hemoglobin (64-76) and moth cytochrome c (88-103) peptides were exchanged with MHC anchor residues from the low affinity class II invariant chain peptide (CLIP), resulting in antigenic peptides with altered affinity for MHC class II. Several low affinity peptides were identified as TCR partial agonists, as defined by the ability to stimulate cytolytic function but not proliferation. For example, a peptide containing methionine substitutions at positions one and nine of the I-E(k) binding motif acted as a partial agonist for two hemoglobin-reactive T cell clones (PL.17 and 3.L2). The identical MHC anchor substitutions in moth cytochrome c (88-103) also created a partial agonist for a mCC-reactive T cell (A.E7). Thus, peptides containing MHC anchor modifications mediated similar T cell responses regardless of TCR fine specificity or antigen reactivity. This data contrasts with the unique specificity among individual clones demonstrated using traditional altered peptide ligands containing substitutions at TCR contact residues. In conclusion, we demonstrate that altering the MHC anchor residues of the immunogenic peptide can be a powerful method to create TCR partial agonists.  相似文献   

4.
A new screening procedure is described that uses docking calculations to design enhanced agonist peptides that bind to major histocompatibility complex (MHC) class I receptors. The screening process proceeds via single mutations of one amino acid at the positions that directly interact with the MHC receptor. The energetic and structural effects of these mutations have been studied using fragments of the original ligand that vary in length. The results of these docking studies indicate that the mutant affinity ranking of long peptides can be practically reproduced with a screening approach performed using fragments of six residues. Fragments of four and five residues could mimic, in some cases, the structural arrangement of the side chains of the full-length peptide. We have compared the structural and energetic results of the docking calculations with experimental data using three unrelated ligand peptides that differ greatly in their affinity for the MHC complex. Analysis of the affinity of the fragments led to the identification of three important parameters in the construction of fragments that mimic the structural and energetic properties of the full-length ligand: the length of the fragment; its intermolecular energy; and the number and localization, internal or terminal, of the anchor residues. The results of this new peptide-design methodology have been applied to suggest new peptides derived from the MUC1-8 peptide that could be used as murine vaccines that trigger the immune response through the MHC class I protein H-2K(b).  相似文献   

5.
Peptides presented via the class II MHC (MHCII) pathway are selected based on affinity for MHCII and stability in the presence of HLA-DM. Currently, epitope selection is thought to be controlled by the ability of peptide to sequester "anchor" residues into pockets in the MHCII. Residues exhibiting higher levels of solvent accessibility have been shown to contact TCR, but their roles in affinity and complex stability have not been directly studied. Using the HLA-DR1-binding influenza peptide, hemagglutinin (306-318), as a model, we show that side chain substitutions at these positions influence affinity and HLA-DM stability. Multiple substitutions reduce affinity to a greater extent than the loss of the major P1 anchor residue. We propose that these effects may be mediated through the H-bond network. These results demonstrate the importance of solvent-exposed residues in epitope selection and blur the distinctions between anchor and TCR contact residues.  相似文献   

6.
The binding of antigenic peptide to class II MHC is mediated by hydrogen bonds between the MHC and the peptide, by salt bridges, and by hydrophobic interactions. The latter are confined to a number of deeper pockets within the peptide binding groove, and peptide side chains that interact with these pockets are referred to as anchor residues. T cell recognition involves solvent-accessible peptide residues along with minor changes in MHC helical pitch induced by the anchor residues. In class I MHC there is an added level of epitope complexity that results from binding of longer peptides that bulge out into the solvent-accessible, T cell contact area. Unlike class I MHC, class II MHC does not bind peptides of discrete length, and the possibility of peptide bulging has not been clearly addressed. A peptide derived from position 24-37 of integrin beta(3) can either bind or not bind to the class II MHC molecule HLA DRB3*0101 based on a polymorphism at the P9 anchor. We show that the loss of binding can be compensated by changes at the P10 position. We propose that this could be an example of a class II peptide bulge. Although not as efficient as P9 anchoring, the use of P10 as an anchor adds another possible mechanism by which T cell epitopes can be generated in the class II presentation system.  相似文献   

7.
A common assumption about peptide binding to the class I MHC complex is that each residue in the peptide binds independently. Based on this assumption, modifications in class I MHC anchor positions were used to improve the binding properties of low-affinity peptides (termed altered peptide ligands), especially in the case when tumor-associated peptides are used for immunotherapy. Using a new molecular tool in the form of recombinant Abs endowed with Ag-specific MHC-restricted specificity of T cells, we show that changes in the identity of anchor residues may have significant effects, such as altering the conformation of the peptide-MHC complex, and as a consequence, may affect the TCR-contacting residues. We herein demonstrate that the binding of TCR-like recombinant Abs, specific for the melanoma differentiation Ag gp100 T cell epitope G9-209, is entirely dependent on the identity of a single peptide anchor residue at position 2. An example is shown in which TCR-like Abs can recognize the specific complex only when a modified peptide, G9-209-2 M, with improved affinity to HLA-A2 was used, but not with the unmodified natural peptide. Importantly, these results demonstrate, using a novel molecular tool, that modifications at anchor residues can dramatically influence the conformation of the MHC peptide groove and thus may have a profound effect on TCR interactions. Moreover, these results may have important implications in designing modifications in peptides for cancer immunotherapy, because most such peptides studied are of low affinity.  相似文献   

8.
BACKGROUND: Qa-2 is a nonclassical MHC Ib antigen, which has been implicated in both innate and adaptive immune responses, as well as embryonic development. Qa-2 has an unusual peptide binding specificity in that it requires two dominant C-terminal anchor residues and is capable of associating with a substantially more diverse array of peptide sequences than other nonclassical MHC. RESULTS: We have determined the crystal structure, to 2.3 A, of the Q9 gene of murine Qa-2 complexed with a self-peptide derived from the L19 ribosomal protein, which is abundant in the pool of peptides eluted from the Q9 groove. The 9 amino acid peptide is bound high in a shallow, hydrophobic binding groove of Q9, which is missing a C pocket. The peptide makes few specific contacts and exhibits extremely poor shape complementarity to the MHC groove, which facilitates the presentation of a degenerate array of sequences. The L19 peptide is in a centrally bulged conformation that is stabilized by intramolecular interactions from the invariant P7 histidine anchor residue and by a hydrophobic core of preferred secondary anchor residues that have minimal interaction with the MHC. CONCLUSIONS: Unexpectedly, the preferred secondary peptide residues that exhibit tenuous contact with Q9 contribute significantly to the overall stability of the peptide-MHC complex. The structure of this complex implies a "conformational" selection by Q9 for peptide residues that optimally stabilize the large bulge rather than making intimate contact with the MHC pockets.  相似文献   

9.
Crystal structures of the class II major histocompatibilty complex (MHC) protein, HLA-DR1, generally show a tight fit between MHC and bound peptide except in the P6/P7 region of the peptide-binding site. In this region, there is a shallow water-filled pocket underneath the peptide and between the pockets that accommodate the P6 and P7 side chains. We investigated the properties of this pocket with the idea of engineering substitutions into the corresponding region of peptide antigens to increase their binding affinity for HLA-DR1. We investigated d-amino acids and N-alkyl modifications at both the P6 and P7 positions of the peptide and found that binding of peptides to HLA-DR1 could be increased by incorporating an N-methyl substitution at position 7 of the peptide. The crystal structure of HLA-DR1 bound to a peptide containing a P7 N-methyl alanine was determined. The N-methyl group orients in the P6/P7 pocket, displacing one of the waters usually bound in this pocket. The structure shows that the substitution does not alter the conformation of the bound peptide, which adopts the usual polyproline type II helix. An antigenic peptide carrying the N-methyl modification is taken up by antigen-presenting cells and loaded onto endogenous class II MHC molecules for presentation, and the resultant MHC-peptide complexes activate antigen-specific T-cells. These results suggest a possible strategy for increasing the affinity of weakly immunogenic peptides that might be applicable to the development of vaccines and diagnostic reagents.  相似文献   

10.
Peptide binding to MHC class II (MHCII) molecules is stabilized by hydrophobic anchoring and hydrogen bond formation. We view peptide binding as a process in which the peptide folds into the binding groove and to some extent the groove folds around the peptide. Our previous observation of cooperativity when analyzing binding properties of peptides modified at side chains with medium to high solvent accessibility is compatible with such a view. However, a large component of peptide binding is mediated by residues with strong hydrophobic interactions that bind to their respective pockets. If these reflect initial nucleation events they may be upstream of the folding process and not show cooperativity. To test whether the folding hypothesis extends to these anchor interactions, we measured dissociation and affinity to HLA-DR1 of an influenza hemagglutinin-derived peptide with multiple substitutions at major anchor residues. Our results show both negative and positive cooperative effects between hydrophobic pocket interactions. Cooperativity was also observed between hydrophobic pockets and positions with intermediate solvent accessibility, indicating that hydrophobic interactions participate in the overall folding process. These findings point out that predicting the binding potential of epitopes cannot assume additive and independent contributions of the interactions between major MHCII pockets and corresponding peptide side chains.  相似文献   

11.
Several major histocompatibility complex class II (MHC II) complexes with known minimal immunogenic peptides have now been solved by X-ray crystallography. Specificity pockets within the MHC II binding groove provide distinct peptide contacts that influence peptide conformation and define the binding register within different allelic MHC II molecules. Altering peptide ligands with respect to the residues that contact the T-cell receptor (TCR) can drastically change the nature of the ensuing immune response. Here, we provide an example of how MHC II (I-A) molecules may indirectly effect TCR contacts with a peptide and drive functionally distinct immune responses. We modeled the same immunogenic 12-amino acid peptide into the binding grooves of two allelic MHC II molecules linked to distinct cytokine responses against the peptide. Surprisingly, the favored conformation of the peptide in each molecule was distinct with respect to the exposure of the N- or C-terminus of the peptide above the MHC II binding groove. T-cell clones derived from each allelic MHC II genotype were found to be allele-restricted with respect to the recognition of these N- vs. C-terminal residues on the bound peptide. Taken together, these data suggest that MHC II alleles may influence T-cell functions by restricting TCR access to specific residues of the I-A-bound peptide. Thus, these data are of significance to diseases that display genetic linkage to specific MHC II alleles, e.g. type 1 diabetes and rheumatoid arthritis.  相似文献   

12.
The mouse H13 minor histocompatibility (H) Ag, originally detected as a barrier to allograft transplants, is remarkable in that rejection is a consequence of an extremely subtle interchange, P4(Val/Ile), in a nonamer H2-D(b)-bound peptide. Moreover, H13 peptides lack the canonical P5(Asn) central anchor residue normally considered important for forming a peptide/MHC complex. To understand how these noncanonical peptide pMHC complexes form physiologically active TCR ligands, crystal structures of allelic H13 pD(b) complexes and a P5(Asn) anchored pD(b) analog were solved to high resolution. The structures show that the basis of TCRs to distinguish self from nonself H13 peptides is their ability to distinguish a single solvent-exposed methyl group. In addition, the structures demonstrate that there is no need for H13 peptides to derive any stabilization from interactions within the central C pocket to generate fully functional pMHC complexes. These results provide a structural explanation for a classical non-MHC-encoded H Ag, and they call into question the requirement for contact between anchor residues and the major MHC binding pockets in vaccine design.  相似文献   

13.
TCRs exhibit a high degree of Ag specificity, even though their affinity for the peptide/MHC ligand is in the micromolar range. To explore how Ag specificity is achieved, we studied murine T cells expressing high-affinity TCRs engineered by in vitro evolution for binding to hemoglobin peptide/class II complex (Hb/I-Ek). These TCRs were shown previously to maintain Ag specificity, despite having up to 800-fold higher affinity. We compared the response of the high-affinity TCRs and the low-affinity 3.L2 TCR toward a comprehensive set of peptides containing single substitutions at each TCR contact residue. This specificity analysis revealed that the increase in affinity resulted in a dramatic increase in the number of stimulatory peptides. The apparent discrepancy between observed degeneracy in the recognition of single amino acid-substituted Hb peptides and overall Ag specificity of the high-affinity TCRs was examined by generating chimeric peptides between the stimulatory Hb and nonstimulatory moth cytochrome c peptides. These experiments showed that MHC anchor residues significantly affected TCR recognition of peptide. The high-affinity TCRs allowed us to estimate the affinity, in the millimolar range, of immunologically relevant interactions of the TCR with peptide/MHC ligands that were previously unmeasurable because of their weak nature. Thus, through the study of high-affinity TCRs, we demonstrated that a TCR is more tolerant of single TCR contact residue substitutions than other peptide changes, revealing that recognition of Ag by T cells can exhibit both specificity and degeneracy.  相似文献   

14.
Self tolerance to MHC class I-restricted nonmutated self Ags is a significant hurdle to effective cancer immunotherapy. Compelling evidence is emerging that altered peptide ligands can be far more immunogenic than their corresponding native epitopes; however, there is no way to reliably predict which modifications will lead to enhanced native epitope-specific immune responses. We reasoned that this limitation could be overcome by devising an empirical screen in which the nearly complete combinatorial spectrum of peptides of optimal length can be rapidly assayed for reactivity with a MHC class I-restricted cytotoxic T cell clone. This method, solid-phase epitope recovery, quantitatively ranks all reactive peptides in the library and allows selection of altered peptide ligands having desirable immunogenic properties of interest. In contrast to rationally designed MHC anchor-modified peptides, peptides identified by the present method are highly substituted in predicted TCR contact residues and can reliably activate and expand effector cell populations in vitro which lyse target cells presenting the wild-type epitope. We demonstrate that solid-phase epitope recovery peptides corresponding to a poorly immunogenic epitope of the melanoma Ag, gp100, can reliably induce wild-type peptide-specific CTL using normal donor T cells in vitro. Furthermore, these peptides can complement one another to induce these responses in an overwhelming majority of normal individuals in vitro. These data provide a rationale for the design of superior vaccines comprising a mixture of structurally diverse yet functionally convergent peptides.  相似文献   

15.

Background  

MHC Class I molecules present antigenic peptides to cytotoxic T cells, which forms an integral part of the adaptive immune response. Peptides are bound within a groove formed by the MHC heavy chain. Previous approaches to MHC Class I-peptide binding prediction have largely concentrated on the peptide anchor residues located at the P2 and C-terminus positions.  相似文献   

16.

Background

Class II Major Histocompatibility Complex (MHC) molecules have an open-ended binding groove which can accommodate peptides of varying lengths. Several studies have demonstrated that peptide flanking residues (PFRs) which lie outside the core binding groove can influence peptide binding and T cell recognition. By using data from the AntiJen database we were able to characterise systematically the influence of PFRs on peptide affinity for MHC class II molecules.

Results

By analysing 1279 peptide elongation events covering 19 distinct HLA alleles it was observed that, in general, peptide elongation resulted in increased MHC class II molecule affinity. It was also possible to determine an optimal peptide length for MHC class II affinity of approximately 18–20 amino acids; elongation of peptides beyond this length resulted in a null or negative effect on affinity.

Conclusion

The observed relationship between peptide length and MHC class II affinity has significant implications for the design of vaccines and the study of the epitopic basis of immunological disease.  相似文献   

17.
 The MAGE gene family of tumour antigens are expressed in a wide variety of human cancers. We have identified 43 nonamer peptide sequences, from MAGE-1, -2 and -3 proteins that contain binding motifs for HLA-A3 MHC class I molecules. The T2 cell line, transfected with the cDNA for the HLA-A3 gene, was used in a MHC class I stabilisation assay performed at 37°C and 26°C. At 37°C, 2 peptides were identified that stabilised HLA-A3 with high affinity (fluorescence ratio, FR >1.5), 4 peptides with low affinity (FR 1.11 – 1.49) and 31 peptides that did not stabilise this HLA haplotype (FR <1.1). At 26°C, 12 peptides were identified that stabilised HLA-A3 with high affinity, 8 peptides with low affinity and 17 peptides that did not stabilise this HLA haplotype. Two peptides stabilised HLA-A3 at both temperatures. Small changes in one to three amino acids at positions distinct from the anchor residues altered peptide affinity. Data were compared to a similar study in which a peptide competition assay was used to investigate MAGE-1 peptide binding to several HLA haplotypes. This study demonstrates that anchor residues do not accurately predict peptide binding to specific HLA haplotypes, changes in one to three amino acids at positions distinct from anchor residues influence peptide binding and alternative methods of determining peptide binding yield different results. We are currently investigating the ability of these peptides to induce antitumour cytotoxic T lymphocyte activity as they may be of potential therapeutic value. Received: 4 January 1996 / Accepted: 20 March 1996  相似文献   

18.
Developing a logical and rational methodology for obtaining vaccines, especially against the main parasite causing human malaria (P. falciparum), consists of blocking receptor-ligand interactions. Conserved peptides derived from proteins involved in invasion and having high red blood cell binding ability have thus been identified. Immunization studies using Aotus monkeys have revealed that these peptides were neither immunogenic nor protection inducing. When modified in their critical binding residues, previously identified by Glycine scanning, some of these peptides were immunogenic and non-protection inducers; others induced short-lived antibodies whilst a few were both immunogenic and protection inducing. However, very few of these modified high activity binding peptides (HABPs) reproducibly induced protection without inducing antibody production, but with high cytokine liberation, suggesting that cellular mechanisms had been activated in the protection process. The three-dimensional structure of these peptides inducing protection without producing antibodies was determined by 1H-NMR. Their HLA-DRbeta1* molecule binding ability was also determined to ascertain association between their 3D structure and ability to bind to Major Histocompatibility Complex Class-II molecules (MHC-II). 1H Nuclear Magnetic Resonance analysis and structure calculations clearly showed that these modified HABPs inducing protective cellular immune responses (but not producing antibodies against malaria) adopted special structural configuration to fit into the MHC II-peptide-TCR complex. A different orientation for P7 and P8 TCR contacting residues was clearly recognized when comparing their structure with modified peptides, which induced high antibody titers and protection, suggesting that these residues are involved in activating the immune system associated with antibody production and protection.  相似文献   

19.
Class I major histocompatibility complex (MHC) molecules bind short peptides derived from proteins synthesized within the cell. These complexes of peptide and class I MHC (pMHC) are transported from the endoplasmic reticulum to the cell surface. If a clonotypic T cell receptor expressed on a circulating T cell binds to the pMHC complex, the cell presenting the pMHC is killed. In this manner, some tumor cells expressing aberrant proteins are recognized and removed by the immune system. However, not all tumors are recognized efficiently. One reason hypothesized for poor T cell recognition of tumor-associated peptides is poor binding of those peptides to class I MHC molecules. Many peptides, derived from the proto-oncogene HER-2/neu have been shown to be recognized by cytotoxic T cells derived from HLA-A2(+) patients with breast cancer and other adenocarcinomas. Seven of these peptides were found to bind with intermediate to poor affinity. In particular, GP2 (HER-2/neu residues 654-662) binds very poorly even though it is predicted to bind well based upon the presence of the correct HLA-A2.1 peptide-binding motif. Altering the anchor residues to those most favored by HLA-A2.1 did not significantly improve binding affinity. The crystallographic structure shows that unlike other class I-peptide structures, the center of the peptide does not assume one specific conformation and does not make stabilizing contacts with the peptide-binding cleft.  相似文献   

20.
Peptide presentation by MHC class II is of critical importance to the function of CD4+ T cells. HLA-DM resides in the endosomal pathway and edits the peptide repertoire of newly synthesized MHC class II molecules before they are exported to the cell surface. HLA-DM ensures MHC class II molecules bind high affinity peptides by targeting unstable MHC class II:peptide complexes for peptide exchange. Research over the past decade has implicated the peptide N-terminus in modulating the ability of HLA-DM to target a given MHC class II:peptide combination. In particular, attention has been focused on both the hydrogen bonds between MHC class II and peptide, and the occupancy of the P1 anchor pocket. We sought to solve the crystal structure of a HLA-DR1 molecule containing a truncated hemagglutinin peptide missing three N-terminal residues compared to the full-length sequence (residues 306–318) to determine the nature of the MHC class II:peptide species that binds HLA-DM. Here we present structural evidence that HLA-DR1 that is loaded with a peptide truncated to the P1 anchor residue such that it cannot make select hydrogen bonds with the peptide N-terminus, adopts the same conformation as molecules loaded with full-length peptide. HLA-DR1:peptide combinations that were unable to engage up to four key hydrogen bonds were also unable to bind HLA-DM, while those truncated to the P2 residue bound well. These results indicate that the conformational changes in MHC class II molecules that are recognized by HLA-DM occur after disengagement of the P1 anchor residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号