首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Staphylococcus aureus is a Gram-positive pathogen that causes opportunistic infections and a wide variety of diseases. Methicillin-resistant S. aureus (MRSA) is frequently isolated as multidrug-resistant in nosocomial and community infections. Molecular genetic manipulation is an important tool for understanding the molecular mechanism of S. aureus infection. However the number of available antibiotic markers is limited due to multidrug resistance. In this study, we constructed two Escherichia coli-S. aureus shuttle vectors, pKFT and pKFC, that carry a temperature-sensitive origin of replication in S. aureus, lacZ(a) enabling a simple blue-white screening in E. coli, an ampicillin resistant gene, and either a tetracycline resistance gene or a chloramphenicol resistance gene. We report a simple technique using pKFT to construct a markerless gene deletion mutant in S. aureus by allelic replacement without the use of a counter-selection marker. Subculture twice at 25 °C was critical to promote an allelic exchange rate in S. aureus. This technique is very simple and useful to facilitate genetic research on S. aureus.  相似文献   

2.
目的 调查急诊重症监护病房( EICU)耐甲氧西林金黄色葡萄球菌(MRSA)定植与感染状况,为实时控制医院感染暴发流行提供参考依据.方法 对临床资料进行分析,环境卫生学监测采样方法参照卫生部《消毒技术规范》,制定干预措施.结果 6例MRSA定植和感染病例平均年龄62.5岁,原发性基础疾病重;41份环境标本和16份来自接触阳性患者的医务人员手部标本中均分离到病原菌,阳性率分别为24.39%和18.75%.结论MRSA定植是造成医院感染的源头,将仅出现定植的病例并入感染病例进行统计分析,可实时监控院内医院感染的暴发.  相似文献   

3.
Endovascular infections, including endocarditis, are life-threatening infectious syndromes. Staphylococcus aureus is the most common world-wide cause of such syndromes with unacceptably high morbidity and mortality even with appropriate antimicrobial agent treatments. The increase in infections due to methicillin-resistant S. aureus (MRSA), the high rates of vancomycin clinical treatment failures and growing problems of linezolid and daptomycin resistance have all further complicated the management of patients with such infections, and led to high healthcare costs. In addition, it should be emphasized that most recent studies with antibiotic treatment outcomes have been based in clinical settings, and thus might well be influenced by host factors varying from patient-to-patient. Therefore, a relevant animal model of endovascular infection in which host factors are similar from animal-to-animal is more crucial to investigate microbial pathogenesis, as well as the efficacy of novel antimicrobial agents. Endocarditis in rat is a well-established experimental animal model that closely approximates human native valve endocarditis. This model has been used to examine the role of particular staphylococcal virulence factors and the efficacy of antibiotic treatment regimens for staphylococcal endocarditis. In this report, we describe the experimental endocarditis model due to MRSA that could be used to investigate bacterial pathogenesis and response to antibiotic treatment.  相似文献   

4.
Strains (n = 99) of Staphylococcus aureus isolated from a large number of clinical sources and tested for methicillin sensitivity were analysed by MALDI-TOF-MS using the Weak Cation Exchange (CM10) ProteinChip Array (designated SELDI-TOF-MS). The profile data generated was analysed using Artificial Neural Network (ANN) Analysis modelling techniques. Seven key ions identified by the ANNs that were predictive of MRSA and MSSA were validated by incorporation into a model. This model exhibited an area under the ROC curve value of 0.9147 indicating the potential application of this approach for rapidly characterising MRSA and MSSA isolates. Nearly all strains (n = 97) were correctly assigned to the correct group, with only two aberrant MSSA strains being misclassified. However, approximately 21% of the strains appeared to be in a process of transition as resistance to methicillin was being acquired.  相似文献   

5.
Hominicin, antimicrobial peptide displaying potent activity against Staphylococcus aureus ATCC 25923, methicillin-resistant S. aureus (MRSA) ATCC 11435 and vancomycin-intermediate S. aureus (VISA) CCARM 3501, was purified by chloroform extraction, ion-exchange column chromatography and reverse-phase HPLC from culture supernatant of Staphylococcushominis MBBL 2-9. Hominicin exhibited heat stability up to 121 °C for 15 min and activity under both acidic and basic conditions (from pH 2.0 to 10.0). Hominicin was cleaved into two fragments after treatment with proteinase K, resulting in the loss of its antibacterial activity, while it was resistant to trypsin, α-chymotrypsin, pepsin and lipase. The molecular mass of hominicin determined by mass spectrometry was 2038.4 Da. LC-mass spectrometry and NMR spectroscopy analyses of the two fragments revealed the sequence of hominicin as DmIle-Dhb-Pro-Ala-Dhb-Pro-Phe-Dhb-Pro-Ala-Ile-Thr-Glu-Ile-Dhb-Ala-Ala-Val-Ile-Ala-Dmp, which had no similarity with other antimicrobial peptides previously reported. The present study is the first report of this novel antimicrobial peptide, which has uncommon amino acid residues like the ones in Class I group and shows potent activity against clinically relevant S. aureus, MRSA and VISA.  相似文献   

6.
We report the genome sequence of a healthcare-associated MRSA type ST239 clone isolated from a patient with septicemia in Malaysia. This clone typifies the characteristics of ST239 lineage, including resistance to multiple antibiotics and antiseptics.  相似文献   

7.
Anionic glycopolymers known as wall teichoic acids (WTAs) functionalize the peptidoglycan layers of many Gram-positive bacteria. WTAs play central roles in many fundamental aspects of bacterial physiology, and they are important determinants of pathogenesis and antibiotic resistance. A number of enzymes that glycosylate WTA in Staphylococcus aureus have recently been identified. Among these is the glycosyltransferase TarM, a component of the WTA de novo biosynthesis pathway. TarM performs the synthesis of α-O-N-acetylglycosylated poly-5′-phosphoribitol in the WTA structure. We have solved the crystal structure of TarM at 2.4 Å resolution, and we have also determined a structure of the enzyme in complex with its substrate UDP-GlcNAc at 2.8 Å resolution. The protein assembles into a propeller-like homotrimer in which each blade contains a GT-B-type glycosyltransferase domain with a typical Rossmann fold. The enzymatic reaction retains the stereochemistry of the anomeric center of the transferred GlcNAc-moiety on the polyribitol backbone. TarM assembles into a trimer using a novel trimerization domain, here termed the HUB domain. Structure-guided mutagenesis experiments of TarM identify residues critical for enzyme activity, assign a putative role for the HUB in TarM function, and allow us to propose a likely reaction mechanism.  相似文献   

8.
Proteomics is a powerful tool to analyze the differences in gene expression of bacterial strains. Staphylococcus aureus has long been recognized as an important pathogen in human disease. In order to investigate this pathogen, the proteome of a clinical methicillin-resistant S. aureus (MRSA) strain of the sequence type ST398 was determined using 2-DE. Using 2-DE we obtained a total of 105 spots the MRSA strain. Furthermore in correlation with bioinformatic databases, they allowed accurate identification and characterization of proteins, resulting in 227 identified proteins. There were found proteins related to basic function of the cell, but also proteins related to virulence like catalase, specific of S. aureus species, and proteins related to antibiotic resistance. Proteins associated with antibiotic resistance or virulence factors are related to genomic databases. The most abundant classes identified involved glycolysis, energy production, one-carbon metabolism, and oxidation-reduction process, all of which reflect an active metabolism. These results highlight the importance of proteomics to deepen in the knowledge of protein expression of MRSA strain of the lineage ST398, microorganism with diverse and important resistance mechanisms. With this proteome map we have an essential tool for a better understanding of this pathogen and providing new data for protein databases. This article is part of a Special Issue entitled: Proteomics: The clinical link.  相似文献   

9.

Background

The Gram stain can be used to direct initial empiric antimicrobial therapy when complete culture is not available. This rapid test could prevent the initiation of inappropriate therapy and adverse outcomes. However, several studies have attempted to determine the value of the Gram stain in the diagnosis and therapy of bacterial infection in different populations of patients with ventilator-associated pneumonia (VAP) with conflicting results. The objective of this study is to evaluate the accuracy of the Gram stain in predicting the existence of Staphylococcus aureus infections from cultures of patients suspected of having VAP.

Methods

This prospective single-center open cohort study enrolled 399 patients from December 2005 to December 2010. Patients suspected of having VAP by ATS IDSA criteria were included. Respiratory secretion samples were collected by tracheal aspirate (TA) for standard bacterioscopic analysis by Gram stain and culture.

Results

Respiratory secretion samples collected by tracheal aspirates of 392 patients were analyzed by Gram stain and culture. When Gram-positive cocci were arranged in clusters, the sensitivity was 68.4%, specificity 97.8%, positive predictive value 88.1% and negative predictive value 92.8% for predicting the presence of Staphylococcus aureus in culture (p < 0.001).

Conclusions

A tracheal aspirate Gram stain can be used to rule out the presence of Staphylococcus aureus in patients with a clinical diagnosis of VAP with a 92.8% Negative Predictive Value. Therefore, 7.2% of patients with Staphylococcus aureus would not be protected by an empiric treatment that limits antimicrobial coverage to Staphylococcus aureus only when Gram positive cocci in clusters are identified.  相似文献   

10.
Staphylococcus aureus (S. aureus) has entered the spotlight as a globally pervasive drug-resistant pathogen. While historically associated exclusively with hospital-acquired infections in immunocompromised hosts, the methicillin-resistant form of S. aureus has been spreading throughout communities since the 1990s. Indeed, it has now become a common household term: MRSA. S. aureus has developed numerous mechanisms of virulence and strategies to evade the human immune system, including a host of surface proteins, secreted enzymes, and toxins. In hospital intensive care units, the proportion of MRSA-related S. aureus infections has increased strikingly from just 2 percent in 1974 to 64 percent in 2004. Its presence in the community has been rising similarly, posing a significant public health burden. The growing incidence of MRSA unfortunately has been met with dwindling efforts to develop new, more effective antibiotics. The continued emergence of resistant strains of bacteria such as MRSA demands an urgent revival of the search for new antibiotics.  相似文献   

11.
It is widely accepted that β-lactam antimicrobials cause cell death through a mechanism that interferes with cell wall synthesis. Later studies have also revealed that β-lactams modify the autolysis function (the natural process of self-exfoliation of the cell wall) of cells. The dynamic equilibrium between growth and autolysis is perturbed by the presence of the antimicrobial. Studies with Staphylococcus aureus to determine the minimum inhibitory concentration (MIC) have revealed complex responses to methicillin exposure. The organism exhibits four qualitatively different responses: homogeneous sensitivity, homogeneous resistance, heterogeneous resistance and the so-called ‘Eagle-effect’. A mathematical model is presented that links antimicrobial action on the molecular level with the overall response of the cell population to antimicrobial exposure. The cell population is modeled as a probability density function F(x,t) that depends on cell wall thickness x and time t. The function F(x,t) is the solution to a Fokker-Planck equation. The fixed point solutions are perturbed by the antimicrobial load and the advection of F(x,t) depends on the rates of cell wall synthesis, autolysis and the antimicrobial concentration. Solutions of the Fokker-Planck model are presented for all four qualitative responses of S. aureus to methicillin exposure.  相似文献   

12.
Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) possessing the Panton-Valentine leukocidin (PVL) gene (luk(PV)) is associated with skin and soft tissue infections, osteomyelitis, and necrotizing pneumonia. There are geographically two types of CA-MRSA: one (sequence type ST30) that is worldwide (pandemic) and the other (sequence types, e.g., ST1, ST8 or ST80) that is continent-specific. The pandemic type, but not continent-specific type, possessed the bone sialoprotein-adhesin gene (bbp), which was associated with osteomyelitis. No recent hospital-acquired MRSA had the bbp gene, while past PVL-positive nosocomial outbreak-derived strains did possess it. The collagen-adhesin gene (cna) was associated with pandemic CA-MRSA, though with positive cases even in continent-specific CA-MRSA and PVL-negative Japanese region-specific CA-MRSA. Thus, the pandemic type is characterized by the combination of luk(PV) and bbp (and cna) genes. A specific real-time PCR assay for the bbp gene was developed, and dual assay for bbp and luk(PV) in one test tube became possible.  相似文献   

13.
The close correlation between the ability of coagulase to clot blood plasma and their capacity to produce disease, and the corresponding absence of this property in nonpathogenic strains, have led to the assumption that the coagulase, plays important role in the pathogenesis of disease. Currently, crystal structure of coagulase in Staphylococcus aureus remains indefinable. Thus, the objectives of this research is to generate the three dimensional model of coagulase in S. aureus by using homology modeling approach. In this study, we used bioinformatics tools and databases such as BLAST (Basic Local Alignment Search Tool), GenBank, PDB (Protein Databank), and Discovery Studio to gain specific functional insights into coagulase. The model was validated using protein structure checking tools such as PROCHECK, Verify 3D and CE (Combinatorial Extension) for reliability. Therefore, structure prediction of coagulase in S. aureus can provide preliminary knowledge for understanding the function of the protein. The information from this finding will provide important information into the action and regulation mechanism of the coagulase protein in S. aureus.  相似文献   

14.
This study was designed to investigate inducible intrinsic resistance against lactoferricin B in Staphylococcus aureus. Serial passage of seven S. aureus strains in medium with increasing concentrations of peptide resulted in an induced resistance at various levels in all strains. The induced resistance was unstable and decreased relatively rapidly during passages in peptide free medium but the minimum inhibitory concentration remained elevated after thirty passages. Cross-resistance to penicillin G and low-level cross-resistance to the antimicrobial peptides indolicidin and Ala(8,13,18)-magainin-II amide [corrected] was observed. No cross-resistance was observed to the human cathelicidin LL-37. In conclusion, this study shows that S. aureus has intrinsic resistance mechanisms against antimicrobial peptides that can be induced upon exposure, and that this may confer low-level cross-resistance to other antimicrobial peptides.  相似文献   

15.
The aim of this study is to compare methicillin-resistant Staphylococcus aureus (MRSA) detection methods and to generate antibiogram profile of S. aureus clinical isolates from two teaching hospitals in Malaysia including three reference isolates from American Type Culture Collection (ATCC). The mecA/nuc gene PCR amplification, spot inoculation test and oxacillin disc diffusion test were applied to compare its MRSA detection abilities. No disagreement between the three methods was observed. From 29 bacterial isolates (including the ATCC strains) tested, 19 isolates were confirmed as S. aureus with 14 isolates exhibiting multidrug-resistance. All isolates are still susceptible to vancomycin as indicated by the E-test result. Current biochemical tests are comparable with the molecular detection method for MRSA used in this study while multidrug-resistance traits are present in both MRSA and MSSA clinical isolates. Presently, mupirocin seems to be the best alternative for vancomycin against multidrug-resistant S. aureus infections in Malaysia. Susceptibility profile of 19 S. aureus isolates acquired from two teaching hospitals and ATCC towards 16 selected antibiotics was analyzed and an antibiogram was generated. Findings also indicated resistance against many of the available antibiotics and thus an urgent need to search for alternative antibiotics.  相似文献   

16.
Staphylococcus aureus is an opportunistic pathogen whose infectious capacity depends on surface proteins, which enable bacteria to colonize and invade host tissues and cells. We analyzed “trypsin-shaved” surface proteins of S. aureus cultures by high resolution LC-MS/MS at different growth stages and culture conditions. Some modified peptides were identified, with a mass shift corresponding to the addition of a CH2O group (+ 30.0106 u). We present evidence that this shift corresponds to a hyxdroxymethylation of asparagine and glutamine residues. This known but poorly documented post-translational modification was only found in a few proteins of S. aureus grown under specific conditions. This specificity seemed to exclude the hypothesis of an artifact due to sample preparation. Altogether hydroxymethylation was observed in 35 peptides from 15 proteins in our dataset, which corresponded to 41 modified sites, 35 of them being univocally localized. While no function can currently be assigned to this post-translational modification, we hypothesize that it could be linked to modulation of virulence factors, since it was mostly found on some surface proteins of S. aureus.  相似文献   

17.
A method for rapid identification of antiseptic- and methicillin-resistant Staphylococcus aureus (MRSA) based on 3 loop-mediated isothermal amplification (LAMP) assays was developed. LAMP targeting the femB gene identified S. aureus with 100% specificity, and LAMP targeting the mecA gene associated with methicillin resistance identified methicillin-resistant staphylococci with 100% specificity. LAMP targeting the qacA/B gene encoding an efflux pump responsible for antiseptic resistance identified high-acriflavine-resistant (MIC ≥ 100 mg/L) MRSA (92.5% positive) and acriflavine-susceptible (MIC < 25 mg/L) MRSA (100% negative). They were performed under the same reaction conditions within 60 min at 63 °C. The combined LAMP assays will be useful for rapid identification of S. aureus isolates and determination of their antibiotic and antiseptic resistance patterns with regard to methicillin and organic cationic substrates.  相似文献   

18.
Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) with Panton-Valentine leukocidin (PVL) genes is increasing worldwide. Nosocomial outbreak-derived (hospital-acquired) MRSA (HA-MRSA) in Japan in the 1980s was also largely PVL(+). PVL(+) HA-MRSA and CA-MRSA shared the same multi-locus sequence type (ST30) and methicillin resistance cassette (SCCmecIV), but were divergent in oxacillin resistance, spa typing, PFGE analysis or clfA gene analysis. PVL(+) HA-MRSA, which probably originated in PVL(+)S. aureus ST30, was highly adhesive (carrying cna and bbp genes), highly-toxic (carrying luk(PV) and sea genes) and highly drug-resistant. PVL(+) HA-MRSA was once replaced by other PVL(-) HA-MRSA (e.g., ST5), and is re-emerging as CA-MRSA.  相似文献   

19.
20.
Extracellular teichoic acid, an essential constituent of the biofilm produced by Staphylococcus epidermidis strain RP62A, is also an important constituent of the extracellular matrix of another biofilm producing strain, Staphylococcus aureus MN8m. The structure of the extracellular and cell wall teichoic acids of the latter strain was studied by NMR spectroscopy and capillary electrophoresis-mass spectrometry. Both teichoic acids were found to be a mixture of two polymers, a (1-->5)-linked poly(ribitol phosphate), substituted at the 4-position of ribitol residues with beta-GlcNAc, and a (1-->3)-linked poly(glycerol phosphate), partially substituted with the D-Ala at 2-position of glycerol residue. Such mixture is unusual for S. aureus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号