首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Albert PS 《Biometrics》2000,56(2):602-608
Binary longitudinal data are often collected in clinical trials when interest is on assessing the effect of a treatment over time. Our application is a recent study of opiate addiction that examined the effect of a new treatment on repeated urine tests to assess opiate use over an extended follow-up. Drug addiction is episodic, and a new treatment may affect various features of the opiate-use process such as the proportion of positive urine tests over follow-up and the time to the first occurrence of a positive test. Complications in this trial were the large amounts of dropout and intermittent missing data and the large number of observations on each subject. We develop a transitional model for longitudinal binary data subject to nonignorable missing data and propose an EM algorithm for parameter estimation. We use the transitional model to derive summary measures of the opiate-use process that can be compared across treatment groups to assess treatment effect. Through analyses and simulations, we show the importance of properly accounting for the missing data mechanism when assessing the treatment effect in our example.  相似文献   

3.
We propose a hidden Markov model for multivariate continuous longitudinal responses with covariates that accounts for three different types of missing pattern: (I) partially missing outcomes at a given time occasion, (II) completely missing outcomes at a given time occasion (intermittent pattern), and (III) dropout before the end of the period of observation (monotone pattern). The missing-at-random (MAR) assumption is formulated to deal with the first two types of missingness, while to account for the informative dropout, we rely on an extra absorbing state. Estimation of the model parameters is based on the maximum likelihood method that is implemented by an expectation-maximization (EM) algorithm relying on suitable recursions. The proposal is illustrated by a Monte Carlo simulation study and an application based on historical data on primary biliary cholangitis.  相似文献   

4.
5.
Polymerase chain reaction (PCR) is a major DNA amplification technology from molecular biology. The quantitative analysis of PCR aims at determining the initial amount of the DNA molecules from the observation of typically several PCR amplifications curves. The mainstream observation scheme of the DNA amplification during PCR involves fluorescence intensity measurements. Under the classical assumption that the measured fluorescence intensity is proportional to the amount of present DNA molecules, and under the assumption that these measurements are corrupted by an additive Gaussian noise, we analyze a single amplification curve using a hidden Markov model(HMM). The unknown parameters of the HMM may be separated into two parts. On the one hand, the parameters from the amplification process are the initial number of the DNA molecules and the replication efficiency, which is the probability of one molecule to be duplicated. On the other hand, the parameters from the observational scheme are the scale parameter allowing to convert the fluorescence intensity into the number of DNA molecules and the mean and variance characterizing the Gaussian noise. We use the maximum likelihood estimation procedure to infer the unknown parameters of the model from the exponential phase of a single amplification curve, the main parameter of interest for quantitative PCR being the initial amount of the DNA molecules. An illustrative example is provided. This research was financed by the Swedish foundation for Strategic Research through the Gothenburg Mathematical Modelling Centre.  相似文献   

6.
Elashoff RM  Li G  Li N 《Biometrics》2008,64(3):762-771
Summary .   In this article we study a joint model for longitudinal measurements and competing risks survival data. Our joint model provides a flexible approach to handle possible nonignorable missing data in the longitudinal measurements due to dropout. It is also an extension of previous joint models with a single failure type, offering a possible way to model informatively censored events as a competing risk. Our model consists of a linear mixed effects submodel for the longitudinal outcome and a proportional cause-specific hazards frailty submodel ( Prentice et al., 1978 , Biometrics 34, 541–554) for the competing risks survival data, linked together by some latent random effects. We propose to obtain the maximum likelihood estimates of the parameters by an expectation maximization (EM) algorithm and estimate their standard errors using a profile likelihood method. The developed method works well in our simulation studies and is applied to a clinical trial for the scleroderma lung disease.  相似文献   

7.
Kozumi H 《Biometrics》2000,56(4):1002-1006
This paper considers the discrete survival data from a Bayesian point of view. A sequence of the baseline hazard functions, which plays an important role in the discrete hazard function, is modeled with a hidden Markov chain. It is explained how the resultant model is implemented via Markov chain Monte Carlo methods. The model is illustrated by an application of real data.  相似文献   

8.
Multistate Markov models are frequently used to characterize disease processes, but their estimation from longitudinal data is often hampered by complex patterns of incompleteness. Two algorithms for estimating Markov chain models in the case of intermittent missing data in longitudinal studies, a stochastic EM algorithm and the Gibbs sampler, are described. The first can be viewed as a random perturbation of the EM algorithm and is appropriate when the M step is straightforward but the E step is computationally burdensome. It leads to a good approximation of the maximum likelihood estimates. The Gibbs sampler is used for a full Bayesian inference. The performances of the two algorithms are illustrated on two simulated data sets. A motivating example concerned with the modelling of the evolution of parasitemia by Plasmodium falciparum (malaria) in a cohort of 105 young children in Cameroon is described and briefly analyzed.  相似文献   

9.
Surveillance data for communicable nosocomial pathogens usually consist of short time series of low-numbered counts of infected patients. These often show overdispersion and autocorrelation. To date, almost all analyses of such data have ignored the communicable nature of the organisms and have used methods appropriate only for independent outcomes. Inferences that depend on such analyses cannot be considered reliable when patient-to-patient transmission is important. We propose a new method for analysing these data based on a mechanistic model of the epidemic process. Since important nosocomial pathogens are often carried asymptomatically with overt infection developing in only a proportion of patients, the epidemic process is usually only partially observed by routine surveillance data. We therefore develop a 'structured' hidden Markov model where the underlying Markov chain is generated by a simple transmission model. We apply both structured and standard (unstructured) hidden Markov models to time series for three important pathogens. We find that both methods can offer marked improvements over currently used approaches when nosocomial spread is important. Compared to the standard hidden Markov model, the new approach is more parsimonious, is more biologically plausible, and allows key epidemiological parameters to be estimated.  相似文献   

10.
Pauler DK  Laird NM 《Biometrics》2000,56(2):464-472
In clinical trials of a self-administered drug, repeated measures of a laboratory marker, which is affected by study medication and collected in all treatment arms, can provide valuable information on population and individual summaries of compliance. In this paper, we introduce a general finite mixture of nonlinear hierarchical models that allows estimates of component membership probabilities and random effect distributions for longitudinal data arising from multiple subpopulations, such as from noncomplying and complying subgroups in clinical trials. We outline a sampling strategy for fitting these models, which consists of a sequence of Gibbs, Metropolis-Hastings, and reversible jump steps, where the latter is required for switching between component models of different dimensions. Our model is applied to identify noncomplying subjects in the placebo arm of a clinical trial assessing the effectiveness of zidovudine (AZT) in the treatment of patients with HIV, where noncompliance was defined as initiation of AZT during the trial without the investigators' knowledge. We fit a hierarchical nonlinear change-point model for increases in the marker MCV (mean corpuscular volume of erythrocytes) for subjects who noncomply and a constant mean random effects model for those who comply. As part of our fully Bayesian analysis, we assess the sensitivity of conclusions to prior and modeling assumptions and demonstrate how external information and covariates can be incorporated to distinguish subgroups.  相似文献   

11.
Albert PS 《Biometrics》1999,55(4):1252-1257
Studies of chronic disease often focus on estimating prevalence and incidence in which the presence of active disease is based on dichotomizing a continuous marker variable measured with error. Examples include hypertension, asthma, and depression, where active disease is defined by setting a threshold on a continuous measure of blood pressure, respiratory function, and mood, respectively. This paper proposes a model for inference about prevalence and incidence when active disease is determined by dichotomizing a continuous marker variable in a population-based study. In this formulation, it is postulated that there are three groups of people, those that are not susceptible to the disease, those who are always in the disease state, and those who have the potential to transition between the disease and the disease-free states over time. The model is used to estimate the prevalence and incidence of the disease in the population while accounting for measurement error in the marker. An EM algorithm is used for parameter estimation and the methodology is illustrated on Framingham heart study hypertension data. A simulation study is conducted in order to demonstrate the importance of accounting for measurement error in estimating prevalence and incidence for this example.  相似文献   

12.
Bartolucci F  Pennoni F 《Biometrics》2007,63(2):568-578
We propose an extension of the latent class model for the analysis of capture-recapture data which allows us to take into account the effect of a capture on the behavior of a subject with respect to future captures. The approach is based on the assumption that the variable indexing the latent class of a subject follows a Markov chain with transition probabilities depending on the previous capture history. Several constraints are allowed on these transition probabilities and on the parameters of the conditional distribution of the capture configuration given the latent process. We also allow for the presence of discrete explanatory variables, which may affect the parameters of the latent process. To estimate the resulting models, we rely on the conditional maximum likelihood approach and for this aim we outline an EM algorithm. We also give some simple rules for point and interval estimation of the population size. The approach is illustrated by applying it to two data sets concerning small mammal populations.  相似文献   

13.
Cook RJ  Zeng L  Lee KA 《Biometrics》2008,64(4):1100-1109
SUMMARY: Interval-censored life-history data arise when the events of interest are only detectable at periodic assessments. When interest lies in the occurrence of two such events, bivariate-interval censored event time data are obtained. We describe how to fit a four-state Markov model useful for characterizing the association between two interval-censored event times when the assessment times for the two events may be generated by different inspection processes. The approach treats the two events symmetrically and enables one to fit multiplicative intensity models that give estimates of covariate effects as well as relative risks characterizing the association between the two events. An expectation-maximization (EM) algorithm is described for estimation in which the maximization step can be carried out with standard software. The method is illustrated by application to data from a trial of HIV patients where the events are the onset of viral shedding in the blood and urine among individuals infected with cytomegalovirus.  相似文献   

14.
A mixture model for determining quantitative trait loci (QTL) affecting growth trajectories has been proposed in the literature. In this article, we extend this model to a more general situation in which longitudinal traits for each subject are measured at unequally spaced time intervals, different subjects have different measurement patterns, and the residual correlation within subjects is nonstationary. We derive an EM-simplex hybrid algorithm to estimate the allele frequencies, Hardy-Weinberg disequilibrium, and linkage disequilibrium between QTL in the original population and parameters contained in the growth equation and in the covariance structure. A worked example of head circumference growth in 145 children is used to validate our extended model. A simulation study is performed to examine the statistical properties of the parameter estimation obtained from this example. Finally, we discuss the implications and extensions of our model for detecting QTL that affect growth trajectories.  相似文献   

15.
A semiparametric additive regression model for longitudinal data   总被引:2,自引:0,他引:2  
Martinussen  T; Scheike  TH 《Biometrika》1999,86(3):691-702
  相似文献   

16.
A recursive algorithm for Markov random fields   总被引:1,自引:0,他引:1  
  相似文献   

17.
Albert PS  Follmann DA  Wang SA  Suh EB 《Biometrics》2002,58(3):631-642
Longitudinal clinical trials often collect long sequences of binary data. Our application is a recent clinical trial in opiate addicts that examined the effect of a new treatment on repeated binary urine tests to assess opiate use over an extended follow-up. The dataset had two sources of missingness: dropout and intermittent missing observations. The primary endpoint of the study was comparing the marginal probability of a positive urine test over follow-up across treatment arms. We present a latent autoregressive model for longitudinal binary data subject to informative missingness. In this model, a Gaussian autoregressive process is shared between the binary response and missing-data processes, thereby inducing informative missingness. Our approach extends the work of others who have developed models that link the various processes through a shared random effect but do not allow for autocorrelation. We discuss parameter estimation using Monte Carlo EM and demonstrate through simulations that incorporating within-subject autocorrelation through a latent autoregressive process can be very important when longitudinal binary data is subject to informative missingness. We illustrate our new methodology using the opiate clinical trial data.  相似文献   

18.
19.
Aging-related changes in a human organism follow dynamic regularities, which contribute to the observed age patterns of incidence and mortality curves. An organism's 'optimal' (normal) physiological state changes with age, affecting the values of risks of disease and death. The resistance to stresses, as well as adaptive capacity, declines with age. An exposure to improper environment results in persisting deviation of individuals' physiological (and biological) indices from their normal state (due to allostatic adaptation), which, in turn, increases chances of disease and death. Despite numerous studies investigating these effects, there is no conceptual framework, which would allow for putting all these findings together, and analyze longitudinal data taking all these dynamic connections into account. In this paper we suggest such a framework, using a new version of stochastic process model of aging and mortality. Using this model, we elaborated a statistical method for analyses of longitudinal data on aging, health and longevity and tested it using different simulated data sets. The results show that the model may characterize complicated interplay among different components of aging-related changes in humans and that the model parameters are identifiable from the data.  相似文献   

20.
This paper discusses a two‐state hidden Markov Poisson regression (MPR) model for analyzing longitudinal data of epileptic seizure counts, which allows for the rate of the Poisson process to depend on covariates through an exponential link function and to change according to the states of a two‐state Markov chain with its transition probabilities associated with covariates through a logit link function. This paper also considers a two‐state hidden Markov negative binomial regression (MNBR) model, as an alternative, by using the negative binomial instead of Poisson distribution in the proposed MPR model when there exists extra‐Poisson variation conditional on the states of the Markov chain. The two proposed models in this paper relax the stationary requirement of the Markov chain, allow for overdispersion relative to the usual Poisson regression model and for correlation between repeated observations. The proposed methodology provides a plausible analysis for the longitudinal data of epileptic seizure counts, and the MNBR model fits the data much better than the MPR model. Maximum likelihood estimation using the EM and quasi‐Newton algorithms is discussed. A Monte Carlo study for the proposed MPR model investigates the reliability of the estimation method, the choice of probabilities for the initial states of the Markov chain, and some finite sample behaviors of the maximum likelihood estimates, suggesting that (1) the estimation method is accurate and reliable as long as the total number of observations is reasonably large, and (2) the choice of probabilities for the initial states of the Markov process has little impact on the parameter estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号