首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, we present evidence of Fe2+ transport by rat heart mitochondrial F1Fo ATP synthase. Iron uptake by the vesicles containing the enzyme was concentration- and temperature-dependent, with an optimum temperature of 37 °C. Both ATP and ADP stimulated iron uptake in a concentration-dependent manner, whereas AMP, AMPPCP, and mADP did not. Inhibitors of the enzyme, oligomycin, and resveratrol similarly blocked iron transport. The iron uptake was confirmed by inhibition using specific antibodies against the α, β, and c subunits of the enzyme. Interestingly, slight transport of common divalent and trivalent metal ions such as Mg+2, Ca+2, Mn+2, Zn+2, Cu+2, Fe+3, and Al+3 was observed. Moreover, Cu+2, even in the nM range, inhibited iron uptake and attained maximum inhibition of approximately 56%. Inorganic phosphate (Pi) in the medium exerted an opposite effect depending on the type of adenosine nucleotide, which was suppressed with ATP, but enhanced with ADP. A similarly stimulating effect of ATP and ADP with an inverse effect of Pi suggests that the activity of ATPase and ATP synthase may be associated with iron uptake in a different manner, probably via antiport of H+.  相似文献   

2.
Aluminum chloride (AlCl3), a neurotoxic compound, inhibited ATP diphosphohydrolase activity of synaptosomes obtained from cerebral cortex of adult rats. The metal ion significantly inhibited ATPase and ADPase activities of the enzyme at all concentrations tested in vitro (0.01, 0.05, 0.5, 5 and 10 mM) in the presence of 1.5 mM calcium. When tested in the absence of Ca2+, and with increasing amounts of Al3+, enzyme activity remained below basal levels, suggesting that the trivalent cation Al3+ is not a substitute for the divalent cation Ca2+ in ATP-Ca2+ and ADP-Ca2+ complexes. The Al3+ inhibition was competitive with respect to Ca2+. The enzyme inhibition was reversed by the addition of deferoxamine (DFO). NaF significantly inhibited ATP diphosphohydrolase activity, and this inhibition was reversed by the addition of Ca2+ to the medium. Such inhibition was not potentiated by AlF4, which is an inhibitor of cation-transport ATPases.  相似文献   

3.
Inverted membrane vesicles of Gram-positive actinobacteria Streptomyces fradiae, S. lividans, and S. avermitilis have been prepared and membrane-bound F0F1 ATP synthase has been biochemically characterized. It has been shown that the ATPase activity of membrane-bound F0F1 complex is Mg2+-dependent and moderately stimulated by high concentrations of Ca2+ ions (10–20 mM). The ATPase activity is inhibited by N,N′-dicyclohexylcarbodiimide and oligomycin A, typical F0F1 ATPase inhibitors that react with the membrane-bound F0 complex. The assay of biochemical properties of the F0F1 ATPases of Streptomycetes in all cases showed the presence of ATPase populations highly susceptible and insensitive to oligomycin A. The in vitro labeling and inhibitory assay showed that the inverted phospholipid vesicles of S. fradiae contained active membrane-bound Ser/Thr protein kinase(s) phosphorylating the proteins of the F0F1 complex. Inhibition of phosphorylation leads to decrease of the ATPase activity and increase of its susceptibility to oligomycin. The in vivo assay confirmed the enhancement of actinobacteria cell sensitivity to oligomycin after inhibition of endogenous phosphorylation. The sequencing of the S. fradiae genes encoding oligomycin-binding A and C subunits of F0F1 ATP synthase revealed their close phylogenetic relation to the genes of S. lividans and S. avermitilis.  相似文献   

4.
For many bacteria Na+ bioenergetics is important as a link between exergonic and endergonic reactions in the membrane. This article focusses on two primary Na+ pumps in bacteria, the Na+-translocating oxaloacetate decarboxylase ofKlebsiella pneumoniae and the Na+-translocating F1F0 ATPase ofPropionigenium modestum. Oxaloacetate decarboxylase is an essential enzyme of the citrate fermentation pathway and has the additional function to conserve the free energy of decarboxylation by conversion into a Na+ gradient. Oxaloacetate decarboxylase is composed of three different subunits and the related methylmalonyl-CoA decarboxylase consists of five different subunits. The genes encoding these enzymes have been cloned and sequenced. Remarkable are large areas of complete sequence identity in the integral membrane-bound -subunits including two conserved aspartates that may be important for Na+ translocation. The coupling ratio of the decarboxylase Na+ pumps depended on and decreased from two to zero Na+ uptake per decarboxylation event as increased from zero to the steady state level.InP. modestum, is generated in the course of succinate fermentation to propionate and CO2. This is used by a unique Na+-translocating F1F0 ATPase for ATP synthesis. The enzyme is related to H+-translocating F1F0 ATPases. The F0 part is entirely responsible for the coupling of ion specificity. A hybrid ATPase formed by in vivo complementation of anEscherichia coli deletion mutant was completely functional as a Na+-ATP synthase conferring theE. coli strain the ability of Na+-dependent growth on succinate. The hybrid consisted of subunits a, c, b, and part of fromP. modestum and of the remaining subunits fromE. coli. Studies on Na+ translocation through the F0 part of theP. modestum ATPase revealed typical transporter-like properties. Sodium ions specifically protected the ATPase from the modification of glutamate-65 in subunit c by dicyclohexylcarbodiimide in a pH-dependent manner indicating that the Na+ binding site is at this highly conserved acidic amino acid residue of subunit c within the middle of the membrane.  相似文献   

5.
SolubilizedRhodospirillum rubrum RrF1-ATPase, depleted of loosely bound nucleotides, retains 2.6 mol of tightly bound ATP and ADP/mol of enzyme. Incubation of the depleted RrF1 with Mg2+-ATP or Mg2+-AMP-PNP, followed by passage through two successive Sephadex centrifuge columns, results in retention of a maximal number of 4 mol of tightly bound nucleotides/mol of RrF1. They include 1.5 mol of nonexchangeable ATP, whereas all tightly bound ADP is fully exchangeable. A similar retention of only four out of the six nucleotide binding sites present on CF1 has been observed after its passage through one or two centrifuge columns. These results indicate that the photosynthetic, unlike the respiratory, F1-ATPases have fasterk off constants for two of the Mg-dependent nucleotide binding sites. This could be the reason for the tenfold lower Mg2+ than Ca2+-ATPase activity observed with native RrF1, as with -depleted, activated CF1. An almost complete conversion of both RrF1 and CF1 from Ca2+- to Mg2+-dependent ATPases is obtained upon addition of octylglucoside, at concentrations below its CMC, to the ATPase assay medium. Thus, octylglucoside seems to affect directly the RrF1 and CF1 divalent cation binding site(s), in addition to its proposed role in relieving their inhibition by free Mg2+ ions. The RrF1-ATPase activity is 30-fold more sensitive than CF1 to efrapeptin, and completely resistant to either inhibition or stimulation by the CF1 effector, tentoxin. Octylglucoside decreases the inhibition by efrapeptin and tentoxin, but exposes on CF1 a low-affinity, stimulatory site for tentoxin.Abbreviations: CF1, EcF1, MF1, and TF1, the soluble F1-ATPase from chloroplasts, PE. coli, mitochondria,R. rubrum, and the thermophilic bacterium PS3, respectively: AMP-PNP, adenylyl-, -imidodiphosphate; CMC, critical micellar concentration; DTT, dithiothreitol, LDAO, lauryl dimethylamine oxide.Dedicated to Professor Achim Trebst in honor of this 65th birthday.  相似文献   

6.
Methanopyrus kandleri belongs to a novel group of abyssal methanogenic archaebacteria that can grow at 110°C on H2 and CO2 and that shows no close phylogenetic relationship to any methanogen known so far. Methyl-coenzyme M reductase, the enzyme catalyzing the methane forming step in the energy metabolism of methanogens, was purified from this hyperthermophile. The yellow protein with an absorption maximum at 425 nm was found to be similar to the methyl-coenzyme M reductase from other methanogenic bacteria in that it was composed each of two -, - and -subunits and that it contained the nickel porphinoid coenzyme F430 as prosthetic group. The purified reductase was inactive. The N-terminal amino acid sequence of the -subunit was determined. A comparison with the N-terminal sequences of the -subunit of methyl-coenzyme M reductases from other methanogenic bacteria revealed a high degree of similarity.Besides methyl-coenzyme M reductase cell extracts of M. kandleri were shown to contain the following enzyme activities involved in methanogenesis from CO2 (apparent Vmax at 65°C): formylmethanofuran dehydrogenase, 0.3 U/mg protein; formyl-methanofuran: tetrahydromethanopterin formyltransferase, 13 U/mg; N 5,N10-methenyltetrahydromethanopterin cyclohydrolase, 14 U/mg; N 5,N10-methylenetetrahydromethanopterin dehydrogenase (H2-forming), 33 U/mg; N 5,N10-methylenetetrahydromethanopterin reductase (coenzyme F420 dependent), 4 U/mg; heterodisulfide reductase, 2 U/mg; coenzyme F420-reducing hydrogenase, 0.01 U/mg; and methylviologen-reducing hydrogenase, 2.5 U/mg. Apparent Km values for these enzymes and the effect of salts on their activities were determined.The coenzyme F420 present in M. kandleri was identified as coenzyme F420-2 with 2 -glutamyl residues.Abbreviations H–S-CoM coenzyme M - CH3–S-CoM methylcoenzyme M - H–S-HTP 7-mercaptoheptanoylthreonine phosphate - MFR methanofuran - CHO-MFR formyl-MFR - H4MPT tetrahydromethanopterin - CHO–H4MPT N 5-formyl-H4MPT - CH=H4MPT+ N 5,N10-methenyl-H4MPT - CH2=H4MPT N 5,N10-methylene-H4MPT - CH3–H4MPT N 5-methyl-H4MPT - F420 coenzyme F420 - 1 U= 1 mol/min  相似文献   

7.
The distribution of the F420-reactive and F420-nonreactive hydrogenases from the methylotrophic Methanosarcina strain Gö1 indicated a membrane association of the F420-nonreactive enzyme. The membrane-bound F420-nonreactive hydrogenase was purified 42-fold to electrophoretic homogeneity with a yield of 26.7%. The enzyme had a specific activity of 359 mol H2 oxidized · min-1 · mg protein-1. The purification procedure involved dispersion of the membrane fraction with the detergent Chaps followed by anion exchange, hydrophobic and hydroxylapatite chromatography. The aerobically prepared enzyme had to be reactivated anaerobically. Maximal activity was observed at 80°C. The molecular mass as determined by native gel electrophoresis and gel filtration was 77000 and 79000, respectively. SDS gel electrophoresis revealed two polypeptides with molecular masses of 60000 and 40000 indicating a 1:1 stoichiometry. The purified enzyme contained 13.3 mol S2-, 15.1 mol Fe and 0.8 mol Ni/mol enzyme. Flavins were not detected. The amino acid sequence of the N-termini of the subunits showed a higher degree of homology to cubacterial uptake-hydrogenases than to F420-dependent hydrogenases from other methanogenic bacteria. The physiological function of the F420-nonreactive hydrogenase from Methanosarcina strain Gö1 is discussed.Abbreviations transmembrane electrochemical gradient of H- - CoM-SH 2-mercaptoethanesulfonate - F420 (N-l-lactyl--l-glutamyl)-l-glutamic acid phospodiester of 7,8-didemethyl-8-hydroxy-5-deazariboflavin-5-phosphate - F420H2 reduced F420 - HTP-SH 7-mercaptoheptanoylthreonine phosphate - Mb. Methanobacterium - PMSF phenylmethyl-sulfonylfluoride - Cl3AcOH trichloroacetic acid  相似文献   

8.
It was recently reported that the extreme thermophile Methanopyrus kandleri contains only a H2-forming N 5, N 10-methylenetetrahydromethanopterin dehydrogenase which uses protons as electron acceptor. We describe here the presence in this Archaeon of a second N 5,N 10-methylenetetrahydromethanopterin dehydrogenase which is coenzyme F420-dependent. This enzyme was purified and characterized. The enzyme was colourless, had an apparent molecular mass of 300 kDa, an isoelectric point of 3.7±0.2 and was composed of only one type of subunit of apparent molecular mass of 36 kDa. The enzyme activity increased to an optimum with increasing salt concentrations. Optimal salt concentrations were e.g. 2 M (NH4)2SO4, 2 M Na2HPO4, 1.5 M K2HPO4, and 2 M NaCl. In the absence of salts the enzyme exhibited almost no activity. The salts affected mainly the V max rather than the K m of the enzyme. The catalytic mechanism of the dehydrogenase was determined to be of the ternary complex type, in agreement with the finding that the enzyme lacked a chromophoric prosthetic group. In the presence of M (NH4)2SO4 the V max was 4000 U/mg (k cat=2400 s-1) and the K m for N 5,N 10-methylenetetrahydromethanopterin and for coenzyme F420 were 80 M and 20 M, respectively. The enzyme was relatively heat-stable and lost no activity when incubated anaerobically in 50 mM K2HPO4 at 90°C for one hour. The N-terminal amino acid sequence was found to be similar to that of the F420-dependent N 5, N 10-methylenetetrahydromethanopterin dehydrogenase from Methanobacterium thermoautotrophicum, Methanosarcina barkeri, and Archaeoglobus fulgidus.Abbreviations H4MPT tetrahydromethanopterin - F420 coenzyme F420 - CH2=H4MPT N 5,N 10-methylenetrahydromethanopterin - CHH4MPT+ N 5,N 10-methenyltetrahydromethanopterin - methylene-H4MPT dehydrogenase N 5,N 10-methylenetetrahydromethanopterin dehydrogenase - Mops N-morpholinopropane sulfonic acid - Tricine N-[Tris(hydroxymethyl)-methyl]glycine - 1 U = 1 mol/min  相似文献   

9.
ATPases with unusual membrane-embedded rotor subunits were found in both F1F0 and A1A0 ATP synthases. The rotor subunit c of A1A0 ATPases is, in most cases, similar to subunit c from F0. Surprisingly, multiplied c subunits with four, six, or even 26 transmembrane spans have been found in some archaea and these multiplication events were sometimes accompanied by loss of the ion-translocating group. Nevertheless, these enzymes are still active as ATP synthases. A duplicated c subunit with only one ion-translocating group was found along with “normal” F0 c subunits in the Na+ F1F0 ATP synthase of the bacterium Acetobacterium woodii. These extraordinary features and exceptional structural and functional variability in the rotor of ATP synthases may have arisen as an adaptation to different cellular needs and the extreme physicochemical conditions in the early history of life.  相似文献   

10.

Background

The macrolide antibiotics oligomycin, venturicidin and bafilomycin, sharing the polyketide ring and differing in the deoxysugar moiety, are known to block the transmembrane ion channel of ion-pumping ATPases; oligomycins are selective inhibitors of mitochondrial ATP synthases.

Methods

The inhibition mechanism of macrolides was explored on swine heart mitochondrial F1FO-ATPase by kinetic analyses. The amphiphilic membrane toxicant tributyltin (TBT) and the thiol reducing agent dithioerythritol (DTE) were used to elucidate the nature of the macrolide–enzyme interaction.

Results

When individually tested, the macrolide antibiotics acted as uncompetitive inhibitors of the ATPase activity. Binary mixtures of macrolide inhibitors I1 and I2 pointed out a non-exclusive mechanism, indicating that each macrolide binds to its binding site on the enzyme. When co-present, the two macrolides acted synergistically in the formed quaternary complex (ESI1I2), thus mutually strengthening the enzyme inhibition. The enzyme inhibition by macrolides displaying a shared mechanism was dose-dependently reduced by TBT ≥ 1 μM. The TBT-driven enzyme desensitization was reversed by DTE.

Conclusions

The macrolides tested share uncompetitive inhibition mechanism by binding to a specific site in a common macrolide-binding region of FO. The oxidation of highly conserved thiols in the ATP synthase c-ring of FO weakens the interaction between the enzyme and the macrolides. The native macrolide-inhibited enzyme conformation can be restored by reducing crucial thiols oxidized by TBT.

General significance

The findings, by elucidating the macrolide inhibitory mechanism on FO, indirectly cast light on the F1FO torque generation involving crucial amino acid residues and may address drug design and antimicrobial therapy.  相似文献   

11.
The Mg2+ dependent asymmetry of the F1-ATPase catalytic sites leads to the differences in affinity for nucleotides and is an essential component of the binding-change mechanism. Changes in metal ligands during the catalytic cycle responsible for this asymmetry were characterized by vanadyl (V IV + O)2+, a functional surrogate for Mg2+. The 51V-hyperfine parameters derived from EPR spectra of VO2+ bound to specific sites on F1 provide a direct probe of the metal ligands. Site-directed mutations of metal ligand residues cause measurable changes in the 51V-hyperfine parameters of the bound VO2+, thereby providing a means to identification. Initial binding of the metal–nucleotide to the low-affinity catalytic site conformation results in metal coordination by hydroxyl groups from the P-loop threonine and catch-loop threonine. Upon conversion to the high-affinity conformation, carboxyl groups from the Walker homology B aspartate and MF1E197 become ligands in lieu of the hydroxyl groups.  相似文献   

12.
F430 is the prosthetic group of the methylcoenzyme M reductase of methanogenic bacteria. The compound isolated from Methanosarcina barkeri appears to be identical to the one obtained from the only distinctly related Methanobacterium thermoautotrophicum. F430 is thermolabile and in the presence of acetonitrile or C10 in4 sup- two epimerization products are obtained upon heating; in the absence of these compounds F430 is oxidized to 12, 13-didehydro-F430. The latter is stereoselectively reduced under H2 atmosphere to F430 by cell-free extracts of M. barkeri or M. thermoautotrophicum. H2 may be replaced by the reduced methanogenic electron carrier coenzyme F420.Abbreviations CH3S-CoM methylcoenzyme M, 2-methylthioethanesulfonic acid - HS-CoM coenzyme M, 2-mercaptoethanesulfonic acid - F430 Ni(II) tetrahydro-(12, 13)-corphin with a uroporphinoid (III) ligand skeleton - 13-epi-F430 and 12,13-di-epi-F430 the 12, 13- and 12, 13-derivatives of F430 - 12, 13-didehydro-F430 F430 oxidized at C-12 and C-13 - coenzyme F420 7,8-didemethyl-8-hydroxy-5-deazaflavin derivative - coenzyme F420H2 reduced coenzyme F420 - MV+ methylviologen semiquinone - HPLC high-performance liquid chromatography  相似文献   

13.
This study demonstrates a pH-dependent inhibition of Mg2+- and Ca2+- ATPase activities ofNostoc linckia andChlorella vulgaris exposed to AlCl3, AlF3, NaF and AlCl3 + NaF together. AlF3 and the combination of AlCl3 + NaF were more inhibitory to both the enzymes as compared with AlCl3 and NaF. Toxicity of the test compounds increased with increasing acidity. Interaction of AlCl3 + NaF was additive onN. linckia andC. vulgaris, respectively, at pH 7.5 and 6.8, and synergistic at pH 6.0 and 4.5. In the presence of 60 and 100 m PO4 3- an increased NaF concentration (in the AlCl3 + NaF combination) was required to produce the same degree of inhibition in ATP synthesis and ATPase activity. Toxicity of fluoroaluminate was reduced in the presence of EDTA and citrate. Except for beryllium to some extent, combinations of cadmium, cobalt, iron, manganese, tin and zinc with fluoride were not as effective as aluminium in inhibiting the ATPase activity. The presence of a 100 kDa protein band in SDS-PAGE of both control as well as AlCl3 + NaF-treated samples suggested that AlF4 inhibits the ATPase activity by acting as a functional barrier without affecting the structure of the enzyme.  相似文献   

14.
The ATP synthase complex of Klebsiella pneumoniae (KF1F0) has been purified and characterized. SDS-gel electrophoresis of the purified F1F0 complexes revealed an identical subunit pattern for E. coli (EF1F0) and K. pneumoniae. Antibodies raised against EF1 complex and purified EF0 subunits recognized the corresponding polypeptides of EF1F0 and KF1F0 in immunoblot analysis. Protease digestion of the individual subunits generated an identical cleavage pattern for subunits , , , , a, and c of both enzymes. Only for subunit different cleavage products were obtained. The isolated subunit c of both organisms showed only a slight deviation in the amino acid composition. These data suggest that extensive homologies exist in primary and secondary structure of both ATP synthase complexes reflecting a close phylogenetic relationship between the two enterobacteric tribes.Abbreviations ACMA 9-amino-6-chloro-2-methoxyacridine - DCCD N,N-dicyclohexylcarbodiimide - FITC fluorescein isothiocyanate - SDS sodium dodecyl sulfate - TTFB 4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazole  相似文献   

15.
Tributyltin (TBT), a persistent lipophilic contaminant found especially in the aquatic environment, is known to be toxic to mitochondria with the F1F0-ATPase as main target. Recently our research group pointed out that in mussel digestive gland mitochondria TBT, apart from decreasing the catalytic efficiency of Mg-ATPase activity, at concentrations ≥1.0 μM in the ATPase reaction medium lessens the enzyme inhibition promoted by the specific inhibitor oligomycin. The present work aims at casting light on the mechanisms involved in the TBT-driven enzyme desensitization to inhibitors, a poorly explored field. The mitochondrial Mg-ATPase desensitization is shown to be confined to inhibitors of transmembrane domain F0, namely oligomycin and N,N′-dicyclohexylcarbodiimide (DCCD). Accordingly, quercetin, which binds to catalytic portion F1, maintains its inhibitory efficiency in the presence of TBT. Among the possible mechanisms involved in the Mg-ATPase desensitization to oligomycin by ≥1.0 μM TBT concentrations, a structural detachment of the two F1 and F0 domains does not occur according to experimental data. On the other hand TBT covalently binds to thiol groups on the enzyme structure, which are apparently only available at TBT concentrations approaching 20 μM. TBT is able to interact with multiple sites on the enzyme structure by bonds of different nature. While electrostatic interactions with F0 proton channel are likely to be responsible for the ATPase activity inhibition, possible changes in the redox state of thiol groups on the protein structure due to TBT binding may promote structural changes in the enzyme structure leading to the observed F1F0-ATPase oligomycin sensitivity loss.  相似文献   

16.
A cyanide-hydrolysing enzyme from Burkholderia cepacia strain C-3 isolated from soil was purified to electrophoretic homogeneity by ammonium sulphate precipitation and column chromatography on HiTrap Q (DEAE-agarose) and phenyl-Sepharose HP. The enzyme was purified 48-fold with a 0.8% yield and a final specific activity of 26.8 u/mg protein. The purified enzyme was observed as a single polypeptide band of molecular mass 38 kDa during both denaturing and non-denaturing gel electrophoresis. Enzymatic activity was optimal at pH 8.0–8.5 and at 30–35 °C. Activity was stimulated by Mo2+, Sn2+, and Zn2+, and inhibited by Al3+, Co2+, Cu2+ and Hg2+. The enzyme was specific for cyanide and thiocyanate with formate and ammonia as the main products from KCN degradation. Its K m and V max values were 1.4 mM and 15.2 u/mg protein, respectively. Apparent substrate inhibition occurred at cyanide concentrations greater than 2 mM.  相似文献   

17.
K+ uptake by the Escherichia coli TrkA system is unusual in that it requires both ATP and ; a relation withH+ circulation through the membrane is thereforesuggested. The relationship of this system with theF0F1-ATPase was studied in intact cells grownunder different conditions. A significant increase of theN,N-dicyclohexylcarbodiimide(DCCD)-inhibitedH+ efflux through the F0F1 by 5 mMK+, but not by Na+ added into thepotassium-free medium was revealed only in fermenting wild-type orparent cells, that were grown under anaerobic conditions withoutanaerobic or aerobic respiration and with the production ofH2. Such an increase disappeared in the unc or the trkA mutants that have alteredF0F1 or defective TrkA, respectively.This finding indicates a closed relationship between TrkA andF0F1, with these transport systems beingassociated in a single mechanism that functions as an ATP-drivenH+–K+-exchanging pump. ADCCD-inhibited H+–K+-exchangethrough these systems with the fixed stoichiometry of H+and K+ fluxes(2H+/K+) and a higherK+ gradient between the cytoplasm and the externalmedium were also found in these bacteria. They were not observed incells cultured under anaerobic conditions in the presence of nitrate orunder aerobic conditions with respiration and without production ofH2. The role of anaerobic or aerobic respiration as adeterminant of the relationship of the TrkA with theF0F1 is postulated. Moreover, an increase ofDCCD-inhibited H+ efflux by added K+, aswell as the characteristics of DCCD-sensitiveH+–K+-exchange found in a parentstrain, were lost in the arcA mutant with a defectiveArc system, suggesting a repression of enzymes in respiratorypathways. In addition, K+ influx in the latest mutantwas not markedly changed by valinomycin or with temperature. ThearcA gene product or the Arc system is proposed to beimplicated in the regulation of the relationship between TrkAand F0F1.  相似文献   

18.
Acetate-grown cells of Methanosarcina barkeri MS were found to form methane from H2:CO2 at the same rate as hydrogen-grown cells. Cells grown on acetate had similar levels of soluble F420-reactive hydrogenase I, and higher levels of cytochrome-linked hydrogenase II compared to hydrogen-grown cells. The hydrogenase I and II activities in the crude extract of acetate-grown cells were separated by differential binding properties to an immobilized Cu2+ column. Hydrogenase II did not react with ferredoxin or F420, whereas hydrogenase I coupled to both ferredoxin and F420. A reconstituted soluble protein system composed of purified CO dehydrogenase, F420-reactive hydrogenase I fraction, and ferredoxin produced H2 from CO oxidation at a rate of 2.5 nmol/min · mg protein. Membrane-bound hydrogenase II coupled H2 consumption to the reduction of CoM-S-S-HTP and the synthesis of ATP. The differential function of hydrogenase I and II is ascribed to ferredoxin-linked hydrogen production from CO and cytochrome b-linked H2 consumption coupled to methanogenesis and ATP synthesis, respectively.  相似文献   

19.
A functional F0F1 ATP synthase that contains the endogenous inhibitor protein (F0F1I) was isolated by the use of two combined techniques [Adolfsen, R., McClung, J.A., and Moudrianakis, E. N. (1975).Biochemistry 14, 1727–1735; Dreyfus, G., Celis, H., and Ramirez, J. (1984).Anal. Biochem. 142, 215–220]. The preparation is composed of 18 subunits as judged by SDS-PAGE. A steady-state kinetic analysis of the latent ATP synthase complex at various concentrations of ATP showed aV max of 1.28mol min–1 mg–1, whereas theV max of the complex without the inhibitor was 8.3mol min–1 mg–1. In contrast, theK m for Mg-ATP of F0F1 I was 148M, comparable to theK m value of 142M of the F0F1 complex devoid of IF1. The hydrolytic activity of the F0F1I increased severalfold by incubation at 60C at pH 6.8, reaching a maximal ATPase activity of 9.5mol min–1 mg–1; at pH 9.0 a rapid increase in the specific activity of hydrolysis was followed by a sharp drop in activity. The latent ATP synthase was reconstituted into liposomes by means of a column filtration method. The proteoliposomes showed ATP-Pi exchange activity which responded to phosphate concentration and was sensitive to energy transfer inhibitors like oligomycin and the uncouplerp-trifluoromethoxyphenylhydrazone.  相似文献   

20.
The vacuolar ATPases (V-type ATPases) are a family of ATP-dependent ion pumps and found in two principal locations, in endomembranes and in plasma membranes. This family of ATPases is responsible for acidification of intracellulare compartments and, in certain cases, ion transport across the plasma membrane of eucaryotic cells. V-ATPases are composed of two distinct domains: a catalytic V1 sector, in which ATP hydrolysis takes place, and the membrane-embedded sector, V0, which functions in ion conduction. In the past decade impressive progress has been made in elucidating the properties structure, function and moleculare biology. These knowledge sheds light also on the evolution of V-ATPases and their related families of A-(A1A0-ATPase) and F-type (F1F0-ATPases)ATPases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号