首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract A consortium of three bacteria was isolated from top soil through their capacity to utilise the chlorinated, aromatic herbicide mecoprop as a single growth substrate. The consortium constituted a tight association of Alcaligenes denitrificans, Pseudomonas glycinea and Pseudomonas marginalis . The culture exclusively degraded the ( R )-(+)-isomer of the herbicide while the ( S )-(−)-enantiomer remained unaffected. The mecoprop-degrading community could also degrade 2,4-dichlorophenoxyacetic acid, 2-methyl-4-chlorophenoxyacetic acid and racemic 2-phenoxypropionic acid. Initially, no single member of the consortium was able to degrade mecoprop as a pure culture but after prolonged incubation, A. denitrificans was able to grow on the herbicide as the sole source of carbon and energy.  相似文献   

2.
Summary The bacterial degradation of mecoprop (2-(2-methyl-4-chlorophenoxy)propionic acid) was studied using a mixed culture under aerobic conditions. The release of chlorine from mecoprop indicated incomplete degradation (75%), which did not proceed to completion upon extended incubation. The UV absorbance initially increased and this was associated with spectral distortion of the shoulder and trough regions and a slight shift in the maximum wavelength of absorption. GC-MS analysis indicated that 4-chloro-2-methylphenol was an intermediate in the degradative pathway of mecoprop. The GC-MS data also suggested the formation of other phenolic compounds with repositioned chloro-and methylgroups.  相似文献   

3.
Combined cell suspensions of the 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-metabolizing organism Pseudomonas cepacia AC1100, and the 2,4-dichlorophenoxyacetic acid (2,4-D)-metabolizing organism Alcaligenes eutrophus JMP134 were shown to effectively degrade either of these compounds provided as single substrates. These combined cell suspensions, however, poorly degraded mixtures of the two compounds provided at the same concentrations. Growth and viability studies revealed that such mixtures of 2,4-D and 2,4,5-T were toxic to AC1100 alone and to combinations of AC1100 and JMP134. High-pressure liquid chromatography analyses of culture supernatants of AC1100 incubated with 2,4-D and 2,4,5-T revealed the accumulation of chlorohydroquinone as an apparent dead-end catabolite of 2,4-D and the subsequent accumulation of both 2,4-dichlorophenol and 2,4,5-trichlorophenol. JMP134 cells incubated in the same medium did not catabolize 2,4,5-T and were also inhibited in initiating 2,4-D catabolism. A new derivative of strain AC1100 was constructed by the transfer into this organism of the 2,4-D-degradative plasmid pJP4 from strain JMP134. This new strain, designated RHJ1, was shown to efficiently degrade mixtures of 2,4-D and 2,4,5-T through the simultaneous metabolism of these compounds.  相似文献   

4.
Summary The tfdA gene encodes for an alpha-ketoglutarate-dependent dioxygenase enzyme which catalyses the first step of the degradation of phenoxyalkanoic acid herbicides such as 2 (2-methyl-4-chlorophenoxy) propionic acid (mecoprop). The bacterial diversity of soil enrichment cultures containing mecoprop was examined by Denaturing Gradient Gel Electrophoresis (DGGE) and clone libraries of both 16S rRNA genes and tfdA genes. The 16S rRNA gene sequences were diverse and clustered with either the Beta- or Gammaproteobacteria. The 16S rRNA gene sequence from a bacterial strain isolated from an enrichment culture, grown on R-mecoprop, which represented a dominant band in the DGGE profiles, had a high 16S rRNA sequence identity (100%) to Burkholderia glathei. This is the first report that B. glathei is implicated in mecoprop degradation. PCR amplification of the tfdA genes detected class III tfdA genes only, and no class I or class II tfdA sequences were detected. To understand the genes involved the degradation of specific mecoprop (R-) and (S-) enantiomers, oligonucleotide probes targeting the tfdA, rdpA, sdpA and cadA genes were hybridized to DNA extracted from enrichment cultures grown on either R-mecoprop or (R/S) racemic mecoprop. Strong hybridization signals were obtained with sdpA and tfdA probes using DNA extracted from cultures grown on racemic mecoprop. A strong hybridization signal was also obtained with the rdpA probe with DNA extracted from the cultures grown on R-mecoprop. This suggests the rdpA gene is involved in R-mecoprop degradation while tfdA, sdpA and cadA genes are involved in the degradation of both R- and S-mecoprop.  相似文献   

5.
Combined cell suspensions of the 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-metabolizing organism Pseudomonas cepacia AC1100, and the 2,4-dichlorophenoxyacetic acid (2,4-D)-metabolizing organism Alcaligenes eutrophus JMP134 were shown to effectively degrade either of these compounds provided as single substrates. These combined cell suspensions, however, poorly degraded mixtures of the two compounds provided at the same concentrations. Growth and viability studies revealed that such mixtures of 2,4-D and 2,4,5-T were toxic to AC1100 alone and to combinations of AC1100 and JMP134. High-pressure liquid chromatography analyses of culture supernatants of AC1100 incubated with 2,4-D and 2,4,5-T revealed the accumulation of chlorohydroquinone as an apparent dead-end catabolite of 2,4-D and the subsequent accumulation of both 2,4-dichlorophenol and 2,4,5-trichlorophenol. JMP134 cells incubated in the same medium did not catabolize 2,4,5-T and were also inhibited in initiating 2,4-D catabolism. A new derivative of strain AC1100 was constructed by the transfer into this organism of the 2,4-D-degradative plasmid pJP4 from strain JMP134. This new strain, designated RHJ1, was shown to efficiently degrade mixtures of 2,4-D and 2,4,5-T through the simultaneous metabolism of these compounds.  相似文献   

6.
The aim of this study was to enrich and characterise bacterial consortia from soils around a herbicide production plant through their capability to degrade the herbicides 4-(2,4-dichlorophenoxy) butyric acid (2,4-DB) and 4-(4-chloro-2-methylphenoxy) butyric acid (MCPB). Partial 16S rRNA gene sequencing revealed members of the genera Stenotrophomonas, Brevundimonas, Pseudomonas, and Ochrobactrum in the 2,4-DB- and MCPB-degrading communities. The degradation of 2,4-DB and MCPB was facilitated by the combined activities of the community members. Some of the members were able to utilise other herbicides from the family of chlorophenoxyalkanoic acids. During degradation of 2,4-DB and MCPB, phenol intermediates were detected, indicating ether cleavage of the side chain as the initial step responsible for the breakdown. This was also verified using an indicator medium. Repeated attempts to amplify putatively conserved tfd genes by PCR indicated the absence of tfd genes among the consortia members. First step cleavage of the chlorophenoxybutyric acid herbicides is by ether cleavage in bacteria and is encoded by divergent or different tfd gene types. The isolation of mixed cultures capable of degrading 2,4-DB and MCPB will aid future investigations to determine both the metabolic route for dissimilation and the fate of these herbicides in natural environments.  相似文献   

7.
Summary We explored the feasibility of using mixed cultures for herbicide degradation, with the ultimate aim of application for effluent treatment. The present study reports on mixed cultures which were developed to grow aerobically with 2,4-dichlorophenoxyacetic acid (2,4-D) as the sole carbon substrate. Degradation of 2,4-D was verified by HPLC and UV-spectroscopic analysis of the residual 2,4-D concentration in the test cultures. Cultures that were initially developed with 2,4-D also grew readily with glucose, but the degradation of 2,4-D was effectively prevented under mixed substrate conditions. Mamor intermediates or metabolites resulting from 2,4-D degradation were not detected with the HPLC methodology except 2,4-dichlorophenol which appeared to accumulate transiently in the growth medium.  相似文献   

8.
Mixed bacterial cultures capable of using 2-methyl-4-chIorophenoxyacetic acid (MCPA) and 2, 4-dichlorophenoxyacetic acid (2, 4-D) as the sole source of carbon and energy were isolated from field soil treated with the herbicide (±)2-(2-methyl-4-chloro)phenoxypropionic acid (mecoprop). An enrichment technique with two aromatic compounds as sources of carbon was used. Effects of temperature and substrate concentration were studied. The mixed cultures retained their ability to degrade MCPA although the bacteria were grown for 3 months (32 successive passages) with glucose as the sole source of carbon and energy. With benzoic acid as co-substrate, one of the cultures was also able to degrade mecoprop and (±)2-(2, 4-dichloro)phenoxypropionic acid (dichlorprop). This ability was not maintained, however, over more than 10 passages.  相似文献   

9.
Twelve mecoprop-degrading bacteria were isolated from soil samples, and their genetic and phenotypic characteristics were investigated. Analysis of 16S rDNA sequences indicated that the isolates were related to members of the genus Sphingomonas. Ten different chromosomal DNA patterns were obtained by polymerase-chain-reaction (PCR) amplification of repetitive extragenic palindromic (REP) sequences from the 12 isolates. The isolates were found to be able to utilize the chiral herbicide mecoprop as a sole source of carbon and energy. While seven of the isolates were able to degrade both (R)- and (S)-mecoprop, four isolates exhibited enantioselective degradation of the (S)-type and one isolate could degrade only the (R)-enantiomer. All of the isolates were observed to possess plasmid DNAs. When certain plasmids were removed from isolates MP11, MP15, and MP23, those strains could no longer degrade mecoprop. This compelling result suggests that plasmid DNAs, in this case, conferred the ability to degrade the herbicide. The isolates MP13, MP15, and MP24 were identified as the same strain; however, they exhibited different plasmid profiles. This indicates that these isolates acquired different mecoprop-degradative plasmids in different soils through natural gene transfer.  相似文献   

10.
11.
Few studies have been done to evaluate the transfer of catabolic plasmids from an introduced donor strain to indigenous microbial populations as a means to remediate contaminated soils. In this work we determined the effect of the conjugative transfer of two 2,4-D degradative plasmids to indigenous soil bacterial populations on the rate of 2,4-D degradation in soil. We also assessed the influence of the presence of 2,4-D on the number of transconjugants formed. The two plasmids used, pEMT1k and pEMT3k, encode 2,4-D degradative genes (tfd) that differ in DNA sequence as well as gene organisation, and confer different growth rates to Ralstonia eutropha JMP228 when grown with 2,4-D as a sole carbon source. In an agricultural soil (Ardoyen) treated with 2,4-D (100 ppm) there were ca. 107CFU of transconjugants per gram bearing pEMT1k as well as a high number of pEMT3k bearing transconjugants (ca. 106 CFU/g). In this soil the formation of a high number of 2,4-D degrading transconjugants resulted in faster degradation of 2,4-D as compared to the uninoculated control soil. In contrast, only transconjugants with pEMT1k were detected (at a level of ca. 103 CFU/g soil) in the untreated Ardoyen soil. High numbers of transconjugants that carried pEMT1k were also found in a second experiment done using forest soil (Lembeke) treated with 100 ppm 2,4-D. However, unlike in the Ardoyen soil, no transconjugants with pEMT3k were detected and the transfer of plasmid pEMT1k to indigenous bacteria did not result in a higher rate of decrease of 2,4-D. This may be because 2,4-D was readily metabolised by indigenous bacteria in this soil. The results indicate that bioaugmentation with catabolic plasmids may be a viable means to enhance the bioremediation of soils which lack an adequate intrinsic ability to degrade a given xenobiotic.  相似文献   

12.
Transfer of the 2,4-dichlorophenoxyacetic acid (2,4-D) degradation plasmids pEMT1 and pJP4 from an introduced donor strain, Pseudomonas putida UWC3, to the indigenous bacteria of two different horizons (A horizon, depth of 0 to 30 cm; B horizon, depth of 30 to 60 cm) of a 2,4-D-contaminated soil was investigated as a means of bioaugmentation. When the soil was amended with nutrients, plasmid transfer and enhanced degradation of 2,4-D were observed. These findings were most striking in the B horizon, where the indigenous bacteria were unable to degrade any of the 2,4-D (100 mg/kg of soil) during at least 22 days but where inoculation with either of the two plasmid donors resulted in complete 2,4-D degradation within 14 days. In contrast, in soils not amended with nutrients, inoculation of donors in the A horizon and subsequent formation of transconjugants (10(5) CFU/g of soil) could not increase the 2,4-D degradation rate compared to that of the noninoculated soil. However, donor inoculation in the nonamended B-horizon soil resulted in complete degradation of 2,4-D within 19 days, while no degradation at all was observed in noninoculated soil during 89 days. With plasmid pEMT1, this enhanced degradation seemed to be due only to transconjugants (10(5) CFU/g of soil), since the donor was already undetectable when degradation started. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes showed that inoculation of the donors was followed by a shift in the microbial community structure of the nonamended B-horizon soils. The new 16S rRNA gene fragments in the DGGE profile corresponded with the 16S rRNA genes of 2,4-D-degrading transconjugant colonies isolated on agar plates. This result indicates that the observed change in the community was due to proliferation of transconjugants formed in soil. Overall, this work clearly demonstrates that bioaugmentation can constitute an effective strategy for cleanup of soils which are poor in nutrients and microbial activity, such as those of the B horizon.  相似文献   

13.
Summary VariousPropionibacteria andLactobacilli have been grown in starch based media in pure and mixed cultures to ascertain the optimum conditions for propionic acid production. A system has been identified using.Propionibacterium freudenreichii ssshermanii grown in mixed culture withLactobacillus amylophilus that yields approximately 20g/l propionic acid from a medium consisting of wheat flour and corn steep liquor. Simple processing of fermentation broths results in a product containing approximately 30% (w/w) propionic acid that may be suitable for use as a food preservative.  相似文献   

14.
The closely linked structural genes tfdCDEF borne on the 2,4-dichlorophenoxyacetic acid (TFD) catabolic plasmid, pRO101, were cloned into vector pRO2321 as a 12.6-kilobase-pair BamHI C fragment and designated pRO2334. The first gene in this cluster, tfdC, encodes chlorocatechol 1,2-dioxygenase and was expressed constitutively. Chlorocatechol 1,2-dioxygenase expression by pRO2334 was repressed in trans by the negative regulatory element, tfdR, on plasmid pRO1949. Derepression of tfdC was achieved when Pseudomonas aeruginosa PAO4032 containing both plasmids pRO2334 and pRO1949 was grown in minimal glucose medium containing TFD, 2,4-dichlorophenol, or 4-chlorocatechol, suggesting that TFD and other pathway intermediates can act as inducing compounds. Genetic organization of the tfdCDEF cluster was established by deletion of the tfdC gene, which resulted in the loss of tfdD and tfdE activity, suggesting that genes tfdCDEF are organized in an operon transcribed from the negatively regulated promoter of tfdC. Deletion subcloning of pRO1949 was used to localize tfdR to a 1.2-kilobase-pair BamHI-XhoI region of the BamHI E fragment of plasmid pRO101. The tfdR gene product was shown not to regulate the expression of tfdB, which encodes 2,4-dichlorophenol hydroxylase.  相似文献   

15.
The herbicide mecoprop [2-(2-methyl-4-chlorophenoxy) propionic acid] is widely applied to corn fields in order to control broad-leaved weeds. However, it is often detected in groundwater where it can be a persistent contaminant. Two mecoprop-degrading bacterial strains were isolated from agricultural soils through their capability to degrade ( R/S )-mecoprop rapidly. 16S rDNA sequencing of the isolates demonstrated that one was closely related to the genera Alcaligenes sp. (designated CS1) and the other to Ralstonia sp. (designated CS2). Additionally, these isolates demonstrated ability to grow on other related herbicides, including 2,4- D (2,4-dichlorophenoxyacetic acid), MCPA [4-chloro-2-methyl phenoxy acetic acid] and ( R/S )-2,4-DP [2-(2,4-dichlorophenoxy)propionic acid] as sole carbon sources. tfdABC gene-specific probes derived from the 2,4- D -degrading Variovorax paradoxus TV1 were used in hybridization analyses to establish whether tfd -like genes are present in mecoprop-degrading bacteria. Hybridization analysis demonstrated that both Alcaligenes sp. CS1 and Ralstonia sp. CS2 harboured tfdA , tfdB and tfdC genes on plasmids that have approximately > 60% sequence similarity to the tfdA , tfdB and tfdC genes of V. paradoxus . It is therefore likely that tfd -like genes may be involved in the degradation of mecoprop, and we are currently investigating this further.  相似文献   

16.
Summary Degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) was examined together with nitrogen conversion by using an activated sludge acclimated to artificial sewage containing 2,4-D and urea-N, which were the sole carbon and nitrogen sources, respevtively. Ammonification of urea and nitrification of ammonia proceeded concurrently with 2,4-D degradation by the acclimated activated sludge.  相似文献   

17.
Seven analogs of methyl-2 [chloro-4' benzoyl)-4 phenoxy]-2 propionic acid, (LF 153) have been tested for their effects on respiration and phosphorylation of rat liver mitochondria suspensions. They differ from one another by the sort of binding between both aromatic cycle as well as by the nature and position of the halogenated substitutions and alpha methylation in the propionic chain. All the compounds which have been tested acted as inhibitors of the electron transport chain and uncouplers of phosphorylations.  相似文献   

18.
The Greenland ice sheet (GrIS) receives organic carbon (OC) of anthropogenic origin, including pesticides, from the atmosphere and/or local sources, and the fate of these compounds in the ice is currently unknown. The ability of supraglacial heterotrophic microbes to mineralize different types of OC is likely a significant factor determining the fate of anthropogenic OC on the ice sheet. Here we determine the potential of the microbial community from the surface of the GrIS to mineralize the widely used herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). Surface ice cores were collected and incubated for up to 529 days in microcosms simulating in situ conditions. Mineralization of side chain- and ring-labeled [(14)C]2,4-D was measured in the samples, and quantitative PCR targeting the tfdA genes in total DNA extracted from the ice after the experiment was performed. We show that the supraglacial microbial community on the GrIS contains microbes that are capable of degrading 2,4-D and that they are likely present in very low numbers. They can mineralize 2,4-D at a rate of up to 1 nmol per m(2) per day, equivalent to ~26 ng C m(-2) day(-1). Thus, the GrIS should not be considered a mere reservoir of all atmospheric contaminants, as it is likely that some deposited compounds will be removed from the system via biodegradation processes before their potential release due to the accelerated melting of the ice sheet.  相似文献   

19.
Abstract Pseudomonas sp. HV3 grows on naphthalene but not on biphenyl, as the sole source of carbon. When the cells of Pseudomonas sp. HV3 grown on naphthalene were shaken with biphenyl as the carbon source in a mineral salt solution, a yellow metabolite identified as the meta -cleavage product of biphenyl was excreted. The degradation of biphenyl stopped here, but was completed if either 2-methyl-4-chlorophenoxy acetic acid (MCPA)-degrading mixed culture or a Nocardia strain was added to the growth solution. Neither of these uses naphthalene or biphenyl as growth substrate. The mixed culture of Pseudomonas sp. HV3 and Nocardia sp. also degrades the commercial polychlorinated biphenyl (PCB) mixture Aroclor 1221. A yellow metabolite was likewise produced in the degradation, and sometimes two different peaks of the yellow metabolite were observed. The gas chromatography-mass spectrometry (GC-MS) analyses showed that 40–87% of Aroclor 1221 was degraded during an incubation time of 6–21 days. Chlorobenzoic acids were found as metabolites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号