首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HIV-1 integrase (HIV-IN) is a well-validated antiviral drug target catalyzing a multistep reaction to incorporate the HIV-1 provirus into the genome of the host cell. Small molecule inhibitors of HIV-1 integrase that specifically target the strand transfer step have demonstrated efficacy in the suppression of virus propagation. However, only few specific strand transfer inhibitors have been identified to date, and the need to screen for novel compound scaffolds persists. Here, the authors describe 2 homogeneous time-resolved fluorescent resonance energy transfer-based assays for the measurement of HIV-1 integrase 3'-processing and strand transfer activities. Both assays were optimized for high-throughput screening formats, and a diverse library containing more than 1 million compounds was screened in 1536-well plates for HIV-IN strand transfer inhibitors. As a result, compounds were found that selectively affect the enzymatic strand transfer reaction over 3beta processing. Moreover, several bioactive molecules were identified that inhibited HIV-1 reporter virus infection in cellular model systems. In conclusion, the assays presented herein have proven their utility for the identification of mechanistically interesting and biologically active inhibitors of HIV-1 integrase that hold potential for further development into potent antiviral drugs.  相似文献   

2.
Several types of novel apio nucleosides were synthesized starting from 1,3-dihydroxyacetone and evaluated for antiviral activity. Among compounds tested, amino substituted apio dideoxynucleosides exhibited anti-HBV activity, while thioapio dideoxynucleosides were found to be active against HIV-1. Apio dideoxydidehydro nucleosides showed moderate to potent anti-HCMV activity, but their bioisosteric thioapio dideoxydidehydro nucleosides did not exhibit any significant antiviral activity.  相似文献   

3.
Several types of novel apio nucleosides were synthesized starting from 1,3-dihydroxyacetone and evaluated for antiviral activity. Among compounds tested, amino substituted apio dideoxynucleosides exhibited anti-HBV activity, while thioapio dideoxynucleosides were found to be active against HIV-1. Apio dideoxydidehydro nucleosides showed moderate to potent anti-HCMV activity, but their bioisosteric thioapio dideoxydidehydro nucleosides did not exhibit any significant antiviral activity.  相似文献   

4.
Human immunodeficiency virus, type 1 (HIV-1) Vif protein plays an essential role in the regulation of the infectivity of HIV-1 virion. Vif functions to counteract an anti-HIV-1 cellular factor in non-permissive cells, CEM15/Apobec-3G, which shares a cytidine deaminase motif. CEM15/Apobec-3G deaminates dC to dU in the minus strand DNA of HIV-1, resulting in G to A hypermutation in the plus strand DNA. In this study, we have done the mutagenesis analysis on two cytidine deaminase motifs in CEM15/Apobec-3G and examined their antiviral functions as well as the DNA editing activity. Point mutations in the C-terminal active site such as E259Q and C291A almost completely abrogated the antiviral function, while those in the N-terminal active site such as E67Q and C100A retained this activity to a lesser extent as compared with that of the wild type. The DNA editing activities of E67Q and E259Q mutants were both retained but impaired to the same extent. This indicates that the enzymatic activity of this protein is essential but not a sole determinant of the antiviral activity. Furthermore, all the deletion mutants tested in this study lost the antiviral activity because of the loss of the activity for dimerization, suggesting that the entire protein structure is necessary for the antiviral function.  相似文献   

5.
Although CD8(+) CTLs are presumed to be an important mediator of protective immunity in HIV-1 infection, the factors that determine CTL antiviral efficiency are poorly understood. Two factors that have been proposed to influence CTL antiviral function are antigenic avidity and epitope specificity. In this study we evaluate these by examining the activity of HIV-1-specific CTL against acutely infected cells. The ability of CTL to kill infected cells is variable and depends more on epitope specificity than functional avidity within the range for the tested clones (50% of maximal killing, 50 pg/ml to 100 ng/ml); killing efficiency is similar for different clones recognizing the same epitope, despite their variation in avidity. When CTL clones are tested for their ability to suppress viral replication, similar results are observed. Inhibition is more dependent on epitope specificity than functional avidity among the tested clones (50% of maximal killing, 20 pg/ml to 20 ng/ml). Thus, CTL specificity can be an overriding factor in the ability of CTL to interact with HIV-1-infected cells, indicating that factors determining the process of epitope presentation on infected cells have a key influence on CTL efficiency. These results suggest that CTL specificity may have a pivotal role in the immunopathogenesis of infection, and that simple quantitative measures of CTL may be insufficient indicators of the CTL response to HIV-1.  相似文献   

6.
7.
Several aurintricarboxylic acid (ATA) monomers, monomer analogs, and polymer fractions have been tested as inhibitors of HIV-1 integration protein (IN). Both of the ATA monomers and all of the ATA polymer fractions inhibited a selective DNA cleavage reaction catalyzed by IN. The ATA monomer analogs were inactive or had low activity. The activities of the substances as inhibitors of HIV IN correlated in a positive way with their activities as inhibitors of the cytopathic effect of HIV-1 in CEM and HIV-2 in MT4 cells. These results suggest that inhibition of HIV IN may contribute to the antiviral activity of the ATA monomers and monomer analogs in cell culture.  相似文献   

8.
A series of 13 hydroxylated 2-arylnaphthalenes have been synthesized and evaluated as HIV-1 integrase inhibitors. 7-(3,4,5-Trihydroxyphenyl)naphthalene-1,2,3-triol 1c revealed chemical instability upon storage, leading to the isolation of a dimer 5c which was also tested. In the 2-arylnaphthalene series, all compounds were active against HIV-1 IN with IC50’s within the 1–10 μM range, except for 1c and 5c which displayed submicromolar activity. Antiviral activity against HIV-1 replication was measured on 1bc and 5c. Amongst the tested molecules, only 5c was found to present antiviral properties with a low cytotoxicity on two different cell lines.  相似文献   

9.
A series of HIV-1 protease inhibitors having new tetrahydrofuran P2/P2' groups have been synthesised and tested for protease inhibition and antiviral activity. Six novel 4-aminotetrahydrofuran derivatives were prepared starting from commercially available isopropylidene-alpha-D-xylofuranose yielding six symmetrical and six unsymmetrical inhibitors. Promising sub nanomolar HIV-1 protease inhibitory activities were obtained. The X-ray crystal structure of the most potent inhibitor (23, K(i) 0.25 nM) co-crystallised with HIV-1 protease is discussed and the binding compared with inhibitors 1a and 1b.  相似文献   

10.
11.
长期以来,病毒潜伏库(latent viral reservoir,LVR)的存在严重阻碍了AIDS的有效治疗,LVR无法被人体免疫系统识别,高效抗逆转录病毒疗法(highly active antiretroviral therapy, HAART)对其无效,一旦中断抗病毒治疗,患者会出现快速耐药和病毒血症反弹.截至...  相似文献   

12.
Novel D- and L-2'-azido-2',3'-dideoxy-4'-thionucleosides were synthesized starting from L- and D-xylose via D- and L-4-thioarabitol derivative as key intermediates and evaluated for antiviral activity, respectively. When the final nucleosides were tested against HIV-1, HSV-1, HSV-2, and HCMV, they were found to be only active against HCMV without cytotoxicity up to 100 micrograms/ml.  相似文献   

13.
14.
Advances in antiviral therapy have dramatically shifted the demographics of pediatric human immunodeficiency virus type 1 (HIV-1) infection in the developed world, and a growing proportion of perinatally HIV-1-infected children are now entering their second or even third decade of life. Although cellular immune responses to HIV are known to be weak in early infancy, the magnitude, breadth, and specificity of responses later in childhood have not been characterized in detail. We performed a comprehensive characterization of HIV-1-specific CD8 responses in 18 perinatally infected children (age range, 6 to 17 years), most of whom were on antiviral therapy, using both previously defined HIV-1 epitopes and overlapping peptides spanning all HIV-1 proteins. Multispecific responses were detected in all subjects and accounted for a median of 0.25 to 0.3% of all peripheral blood mononuclear cells that was similar to the magnitude seen in HIV-infected adults. CD8 responses were broadly directed at an average of 11 epitopes (range, 2 to 27 epitopes) and targeted nearly all HIV-1 proteins, with the highest proportion in Gag. Responses were readily detected even in those children with suppressed viremia on highly active antiretroviral therapy, although the breadth (P = 0.037) and the magnitude (P = 0.021) were significantly lower in these subjects. Each child recognized only a small minority of the HIV-1 optimal epitopes defined for his or her class I HLA alleles. Together, these data indicate that perinatally infected children who survive infancy mount a robust HIV-1-specific CD8 response that is much stronger than previously thought and is comparable in magnitude and breadth to that of adults. Moreover, this response has the potential to be broadened to target more epitopes, making these children attractive candidates for immunotherapeutic interventions.  相似文献   

15.

Background  

Silver nanoparticles have proven to exert antiviral activity against HIV-1 at non-cytotoxic concentrations, but the mechanism underlying their HIV-inhibitory activity has not been not fully elucidated. In this study, silver nanoparticles are evaluated to elucidate their mode of antiviral action against HIV-1 using a panel of different in vitro assays.  相似文献   

16.
No drug has been targeted specifically for HIV-2 (human immunodeficiency virus type 2) infection despite its increasing prevalence worldwide. The antiviral HIV-1 (human immunodeficiency virus type 1) protease (PR) inhibitor darunavir and the chemically related GRL98065 and GRL06579A were designed with the same chemical scaffold and different substituents at P2 and P2′ to optimize polar interactions for HIV-1 PR (PR1). These inhibitors are also effective antiviral agents for HIV-2-infected cells. Therefore, crystal structures of HIV-2 PR (PR2) complexes with the three inhibitors have been solved at 1.2-Å resolution to analyze the molecular basis for their antiviral potency. Unusually, the crystals were grown in imidazole and zinc acetate buffer, which formed interactions with the PR2 and the inhibitors. Overall, the structures were very similar to the corresponding inhibitor complexes of PR1 with an RMSD of 1.1 Å on main-chain atoms. Most hydrogen-bond and weaker C-H…O interactions with inhibitors were conserved in the PR2 and PR1 complexes, except for small changes in interactions with water or disordered side chains. Small differences were observed in the hydrophobic contacts for the darunavir complexes, in agreement with relative inhibition of the two PRs. These near-atomic-resolution crystal structures verify the inhibitor potency for PR1 and PR2 and will provide the basis for the development of antiviral inhibitors targeting PR2.  相似文献   

17.
Tetherin is a broadly active antiviral effector that works by tethering nascent enveloped virions to a host cell membrane, thus preventing their release. In this study, we demonstrate that herpes simplex virus 1 (HSV-1) is targeted by tetherin. We identify the viral envelope glycoprotein M (gM) as having moderate anti-tetherin activity. We show that gM but not gB or gD efficiently removes tetherin from the plasma membrane and can functionally substitute for the human immunodeficiency virus type 1 (HIV-1) Vpu protein, the prototypic viral tetherin antagonist, in rescuing HIV-1 release from tetherin-expressing cells. Our data emphasize that tetherin is a broadly active antiviral effector and contribute to the emerging hypothesis that viruses must suppress or evade an array of host cell countermeasures in order to establish a productive infection.  相似文献   

18.
19.
20.
The synthesis of novel pyrrolo annulated 1,4-benzodiazepines is described. These pyrrolo[1,2-d]-(1,4)-benzodiazepines have been found to have antiviral activity against HIV-1. Like other non nucleoside HIV-1 RT inhibitors, these compounds appear to be specific for HIV-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号