首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rab11是一种在真核生物细胞生命活动过程中发挥多种调控作用的小分子GTP酶.EoRab11a是八肋游仆虫中的Rab11蛋白同源物,为了解EoRab11a蛋白在细胞中的功能,本研究将EoRab11a基因克隆到哺乳动物表达载体pEGFP-C2中,构建重组表达质粒pEGFP-C2-EoRab11a,转染HEK293T细胞并观察其细胞定位.在间期HEK293T细胞中,EoRab11a定位于细胞核附近;在游仆虫细胞中,EoRab11a具有相似的分布模式.在HEK293T细胞的胞质分裂过程中,EoRab11a在分裂沟附近、分裂沟收缩区、以及最后形成的中间体处分布,提示EoRab11a可能参与了胞质分离过程中分裂沟及中间体处的膜泡运输事件.  相似文献   

2.
八肋游仆虫Rab家族基因克隆和多样性分析   总被引:1,自引:1,他引:0  
Rab蛋白是在真核细胞内膜泡运输过程中起重要调节作用的一类小分子Ras-like蛋白,为Ras超家族中最大的家族。Rab家族成员在不同的生物中表现出数量的多样性和功能上的分化。为进一步了解Rab蛋白的多样性及其在真核细胞内膜泡运输网络中的功能,本研究利用游仆虫大核染色体特异的端粒结构和基因大小的染色体结构特征,通过简并引物PCR方法从八肋游仆虫(Euplotes octocarinatus)中克隆到9种新的Rab基因,分别为EoRab1A、EoRab2b、EoRab2c、EoRab2d、EoRab6、EoRab7、EoRab2-like、EoRabL2和EoRan(GenBank登陆号为HM371131~HM371139)。序列分析表明,游仆虫中Rab基因家族成员既包括具有维持细胞结构核心功能保守基因,又包括为适应环境而进化出的特殊功能的新基因。  相似文献   

3.
EoRab43为八肋游仆虫中编码非典型Rab的基因   总被引:1,自引:0,他引:1  
Rab蛋白是与真核细胞内的膜泡运输密切相关的调节分子。本研究运用简并引物PCR技术从原生动物八肋游仆虫大核基因组中克隆获得了一个全新的Rab基因,EoRab43 (GenBank登陆号为EU365391) ,该基因拟编码蛋白的氨基酸序列基本包括Rab蛋白保守的GTP结合区以及RabF模序。Blast结果显示,EoRab43序列与其它生物中Rab5A、Rab6和Rab13的一致性相对较高,但也仅为36·4 %-38·5 %,无法将其归类于任何现有的Rab蛋白亚家族。序列分析显示该基因拟编码的蛋白质属于非典型Rab,这是首次在游仆虫中发现的编码非典型Rab蛋白的基因,推测其在原生动物八肋游仆虫细胞内可能执行某些特殊的生理功能。  相似文献   

4.
为对单细胞原生动物纤毛虫中Rab蛋白的功能进行研究 ,进而探讨以胞吞和胞吐为主要物质交换途径的纤毛虫中囊泡定向运输的机理 .利用PCR技术从游仆虫大核DNA及cDNA中扩增出rab基因 ,并进行了序列分析 ,该基因全长为 783bp ,两端为端粒序列 ,编码框为 6 2 4bp ,编码 2 0 7个氨基酸 ,开放读框中有 3个TGA ,在此编码半胱氨酸 .利用定点突变将rab基因中 3个TGA突变为通用半胱氨酸密码子TGC .将游仆虫Rab蛋白基因构建于原核表达载体pGEX 4T 2中 ,得到的重组质粒pGEX Eorab1转化至大肠杆菌BL2 1(DE3)中 ,IPTG诱导表达 .表达产物与抗GST抗体在 4 9kD处有很强的交叉反应 .融合蛋白GST EoRab1通过亲和层析柱纯化和凝血酶的切割 ,再经两步纯化得到电泳纯的游仆虫Rab蛋白 .  相似文献   

5.
EoRab43参与游仆虫细胞内大核周围的物质运输   总被引:1,自引:0,他引:1  
Rab家族蛋白是真核细胞内膜泡运输途径中重要的调节因子。EoRab43是八肋游仆虫中一种编码非典型Rab蛋白的基因。本研究依据已获得的EoRab43基因序列设计引物.从八肋游仆虫大核DNA中扩增了EoRab43基因的3’端153bp片段,即EoRab43 153bp(对应于EoRab43蛋白的C末端50个氨基酸,EoRab43C),构建重组表达质粒pGEX—EoRab43,53bp转化大肠杆菌BL21(DE3)进行表达.纯化后的融合蛋白GST—EoRab43C免疫BALB/c小鼠制备多克隆抗体。经检测,制备的抗体具有较高的效价及良好的特异性。利用制备的抗体对EoRab43在游仆虫细胞内进行免疫荧光定位.结果显示该蛋白主要定位于该生物细胞内大核染色体的周围。  相似文献   

6.
Rab GTPase家族蛋白是真核细胞内膜系统转运途径中重要的调控因子,不同的Rab家族成员在细胞具有功能多样性。为了解Rab2的功能,八肋游仆虫EoRab2a基因连接入原核表达质粒pGEX-6P-1中,获得重组表达质粒pGEX-6P-1-EoRab2a。质粒pGEX-6P-1-EoRab2a转化大肠杆菌BL21(DE3),经IPTG诱导,大肠杆菌BL21(DE3)/pGEX-6P-1-EoRab2a高效表达了可溶性GST-EoRab2a蛋白。融合蛋白GST-EoRab2a经亲和层析获得电泳纯蛋白。纯化后的GST-EoRab2a免疫BALB/c小鼠制备多克隆抗体。ELISA和Western blotting检测显示制备的抗体效价1∶25600,特异性良好。免疫荧光定位表明EoRab2a在游仆虫细胞质中点状分布,推测参与内质网与高尔基体间膜泡转运。    相似文献   

7.
Rab proteins belong to the largest family of the Ras superfamily of small GTPase that play an important role in intracellular vesicular traffic. So far, almost 60 members of Rab family have been identified in mammalian cells. To further study the diversity and function of Rab protein in evolution, unicellular protozoa ciliates, Euplotes octocarinatus, were used in this study, Rab genes were screened by PCR method from macronuclear DNA of E. octocarinatus. Sixteen Rab genes were obtained. They share 87.6-99.5% identities. Highly conserved GTP-binding domains were found. There are some hot regions that diverse sharply in these genes as well.  相似文献   

8.
Rab11 small G protein has been implicated in vesicle recycling, but its upstream regulators or downstream targets have not yet been identified. We isolated here a downstream target of Rab11, named rabphilin-11, from bovine brain. Moreover, we isolated from a rat brain cDNA library its cDNA, which encoded a protein with a M(r) of 100,946 and 908 amino acids (aa). Rabphilin-11 bound GTP-Rab11 more preferentially than GDP-Rab11 at the N-terminal region and was specific for Rab11 and inactive for other Rab and Rho small G proteins. Both GTP-Rab11 and rabphilin-11 were colocalized at perinuclear regions, presumably the Golgi complex and recycling endosomes, in Madin-Darby canine kidney cells. In HeLa cells cultured on fibronectin, both the proteins were localized not only at perinuclear regions but also along microtubules, which were oriented toward membrane lamellipodia. Treatment of HeLa cells with nocodazole caused disruption of microtubules and dispersion of GTP-Rab11 and rabphilin-11. Overexpression of the C-terminal fragment of rabphilin-11 (aa 607-730), lacking the GTP-Rab11 binding domain, in HeLa cells reduced accumulation of transferrin at perinuclear regions and cell migration. Rabphilin-11 turned out to be a rat counterpart of recently reported bovine Rab11BP. These results indicate that rabphilin-11 is a downstream target of Rab11 which is involved in vesicle recycling.  相似文献   

9.
八肋游仆虫Rab家族新成员Eo-rab-1N基因的克隆与序列分析   总被引:2,自引:1,他引:1  
李凌燕  柴宝峰  梁爱华  孙永华  王伟 《遗传》2006,28(4):437-442
Rab蛋白家族属于小分子GTP结合蛋白家族Ras超家族中最大的亚家族,主要在囊泡运输中起作用。本实验运用PCR、RT-PCR等技术,从八肋游仆虫中克隆到一种新的rab基因。序列分析结果表明:在大核中,该基因全长884bp,除去两端的端粒与非编码区,该基因在大核中由723bp组成。从小核中克隆相应的基因片段,此基因片段序列与大核中序列一致,表明该基因在小核中无内部删除序列的存在。通过RT-PCR,从mRNA获得的该基因的开放读框为663bp,表明该基因在转录过程中有内含子的删除。大核基因序列和cDNA序列比较,发现60bp的内含子序列位于大核基因的153~212bp之间,并符合一类内含子GU-AG剪切规则。在遗传密码使用上,该基因内部含有2个TGA,在游仆虫中编码半胱氨酸。同时首次发现,八肋游仆虫基因使用TAG作为终止密码子。NCBI上序列比对表明该基因翻译的蛋白与其它物种Rab1蛋白的同源性达49%~52%,因此我们将它命名为Eo-rab-1N,GenBank登录号为DQ105562。Eo-rab-1N与其他物种的Rab1蛋白构建进化树,发现该蛋白的进化与物种的进化保持一致,表明该基因在细胞中具有重要功能。  相似文献   

10.
The epithelial Na+ channel (ENaC) is an essential channel responsible for Na+ reabsorption. Coexpression of Rab11a and Rab3a small G proteins with ENaC results in a significant increase in channel activity. In contrast, coexpression of Rab5, Rab27a, and Arf-1 had no effect or slightly decreased ENaC activity. Inhibition of MEK with PD98059, Rho-kinase with Y27632 or PI3-kinase with LY294002 had no effect on ENaC activity in Rab11a-transfected CHO cells. Fluorescence imaging methods demonstrate that Rab11a colocalized with ENaC. Rab11a increases ENaC activity in an additive manner with dominant-negative dynamin, which is a GTPase responsible for endocytosis. Brefeldin A, an inhibitor of intracellular protein translocation, blocked the stimulatory action of Rab11a on ENaC activity. We conclude that ENaC channels, present on the apical plasma membrane, are being exchanged with channels from the intracellular pool in a Rab11-dependent manner.  相似文献   

11.
We have identified two LIM domain proteins, LimF and ChLim, from Dictyostelium that interact with each other and with the small, Rab5-related, Rab21 GTPase to collectively regulate phagocytosis. To investigate in vivo functions, we generated cell lines that lack or overexpress LimF and ChLim and strains that express activating or inhibiting variants of Rab21. Overexpression of LimF, loss of ChLim, or expression of constitutively active Rab21 increases the rate of phagocytosis above that of wild type. Conversely, loss of LimF, overexpression of ChLim, or expression of a dominant-negative Rab21 inhibits phagocytosis. Our studies using cells carrying multiple mutations in these genes further indicate that ChLim antagonizes the activating function of Rab21-GTP during phagocytosis; in turn, LimF is required for Rab21-GTP function. Finally, we demonstrate that ChLim and LimF localize to the phagocytic cup and phago-lysosomal vesicles. We suggest that LimF, ChLim, and activated Rab21-GTP participate as a novel signaling complex that regulates phagocytic activity.  相似文献   

12.
以八肋游仆虫第二类肽链释放因子eRF3基因为模板,用PCR的方法获得eRF3的C端(eRF3C)和C端缺失76个氨基酸的突变体eRF3Ct片段,并构建重组表达质粒pGEX-6p-1-eRF3C和pGEX-6p-1-eRF3Ct,转入大肠杆菌BL21(DE3)中获得了可溶性表达。通过Glutathione Sepharose 4B柱亲和层析纯化,重组蛋白GST-eRF3C和GST-eRF3Ct获得纯化。Western blotting分析表明获得的蛋白为目的蛋白。PreScission酶切割后得到eRF3C和eRF3Ct蛋白。体外pull down分析显示eRF3C和eRF3Ct均能与八肋游仆虫第一类释放因子eRF1a相互作用,这表明八肋游仆虫eRF3 C端的76个氨基酸对于释放因子eRF1a的结合不是必需的。  相似文献   

13.
Rab GTPases constitute the largest family of small monomeric GTPases, including over 60 members in humans. These GTPases share conserved residues related to nucleotide binding and hydrolysis, and main sequence divergences lie in the carboxyl termini. They cycle between inactive (GDP-bound) and active (GTP-bound) forms and the active site regions, termed Switch I and II, undergo the larger conformational changes between the two states. The Rab11 subfamily members, comprising Rab11a, Rab11b, and Rab25, act in recycling of proteins from the endosomes to the plasma membrane, in transport of molecules from the trans-Golgi network to the plasma membrane and in phagocytosis. In this work, we describe Rab11b-GDP and Rab11b-GppNHp crystal structures solved to 1.55 and 1.95 angstroms resolution, respectively. Although Rab11b shares 90% amino acid identity to Rab11a, its crystal structure shows critical differences relative to previously reported Rab11a structures. Inactive Rab11a formed dimers with unusually ordered Switch regions and missing the magnesium ion at the nucleotide binding site. In this work, inactive Rab11b crystallized as a monomer showing a flexible Switch I and a magnesium ion which is coordinated by four water molecules, the phosphate beta of GDP (beta-P) and the invariant S25. S20 from the P-loop and S42 from the Switch I are associated to GTP hydrolysis rate. In the active structures, S20 interacts with the gamma-P oxygen in Rab11b-GppNHp but does not in Rab11a-GppNHp and the Q70 side chain is found in different positions. In the Rab11a-GTPgammaS structure, S40 is closer to S25 and S42 does not interact with the gamma-P oxygen. These differences indicate that the Rab11 isoforms may possess different GTP hydrolysis rates. In addition, the Switch II of inactive Rab11b presents a 3(10)-helix (residues 69-73) that disappears upon activation. This 3(10)-helix is not found in the Rab11a-GDP structure, which possesses a longer alpha2 helix, spanning from residue 73 to 82 alpha-helix 5.  相似文献   

14.
In eukaryotes, eRF3 participates translation termination and belongs to the superfamily of GTPase. In this work, dissociation constants for E. octocarinatus eRF3 binding to nucleosides in presence and absence of eRF1a were determined using fluorescence spectra methods. Furthermore, the GTP hydrolyzing assay of Eo-eRF3 was carried out by HPLC methods and the kinetic parameter for GTP hydrolysis by eRF3 was determined. The results showed eRF1a could promote GTP binding to eRF3 and hydrolyzing GTP activity of eRF3. The observation is consistent with the data from human. Whereas E. octocarinatus eRF3 alone can bind GTP in contrast to no GTP binding observed in the absence of eRF1 in human eRF3. The affinity for Eo-eRF3 binding nucleotides is different from that in human. Structure model and amino acids sequence alignment of potential G domains indicated these different may be due to Valine 317 and Glutamate 452 displacing conserved Glycine and Lysine, which were involved in GTP binding.  相似文献   

15.
核糖体蛋白L11(ribosome protein L11)是一种高度保守的蛋白质.为研究真核生物的核糖体蛋白L11的功能,从八肋游仆虫(Euplotes octocarinatus)大核基因组中克隆到核糖体蛋白L11基因,构建了重组表达质粒pGEX-6p1-L11,通过谷胱甘肽-Sepharose 4B亲和层析,纯化了重组融合蛋白GST-L11.Pull down 分析显示,八肋游仆虫的核糖体蛋白L11与第一类肽链释放因子eRF1a可以在体外相互作用.这一结果提示,与原核生物一样,低等真核生物的核糖体蛋白L11在肽链终止过程中可能起一定的作用.  相似文献   

16.
Transcytosis through the apical recycling system of polarized cells is regulated by Rab11a and a series of Rab11a-interacting proteins. We have identified a point mutant in Rab11 family interacting protein 2 (Rab11-FIP2) that alters the function of Rab11a-containing trafficking systems. Rab11-FIP2(S229A/R413G) or Rab11-FIP2(R413G) cause the formation of a tubular cisternal structure containing Rab11a and decrease the rate of polymeric IgA transcytosis. The R413G mutation does not alter Rab11-FIP interactions with any known binding partners. Overexpression of Rab11-FIP2(S229A/R413G) alters the localization of a subpopulation of the apical membrane protein GP135. In contrast, Rab11-FIP2(129-512) alters the localization of early endosome protein EEA1. The distributions of both Rab11-FIP2(S229A/R413G) and Rab11-FIP2(129-512) were not dependent on the integrity of the microtubule cytoskeleton. The results indicate that Rab11-FIP2 regulates trafficking at multiple points within the apical recycling system of polarized cells. Rab11a; immunoglobulin A; trafficking; apical recycling; GP135; early endosome; EEA1; Eps15 homology domain  相似文献   

17.
Wei J  Fain S  Harrison C  Feig LA  Baleja JD 《Biochemistry》2006,45(22):6826-6834
The Rab11-family interacting protein (Rab11-FIP) group of effector proteins contain a highly conserved region in their C-termini that bind the GTPase, Rab11. Rab11 belongs to the largest family of small GTPases and is believed to regulate vesicle docking with target membranes and vesicle fusion. The amino acid sequence of the Rab11-FIP proteins predicts coiled-coil formation in the conserved C-terminal domain. In this study on Rab11-FIP2, we found experimental evidence for the coiled-coil and then defined the minimal structured core using limited proteolysis. We also showed that the Rab11-FIP2 coiled-coil domain forms a parallel homodimer in solution using cross-linking and mutagenesis and sedimentation equilibrium experiments. Various constructs representing the C-terminal domain of Rab11-FIP2 were characterized by circular dichroism, and their affinity with Rab11 was measured using isothermal titration calorimetry. The longest construct was both well-structured and bound Rab11. A construct truncated at the N-terminus was poorly structured but retained the same affinity for binding to Rab11. Conformational changes were also demonstrated upon complex formation between Rab11 and Rab11-FIP2. A construct truncated at the C-terminus, which was the minimal coiled-coil domain defined by limited proteolysis, did not retain the ability to interact with Rab11, although it was as well-structured as the longer peptide. These data show that coiled-coil formation and Rab11 binding are separable functions of the C-terminal domain of Rab11-FIP2. The dissection of Rab11 binding from the formation of defined structure in a coiled-coil provides a potential mechanism for regulating Rab11-dependent endosomal trafficking.  相似文献   

18.
The Rab family belongs to the Ras‐like small GTPase superfamily and is implicated in membrane trafficking through interaction with specific effector molecules. Because of the large number of Rab isoforms in mammals, however, the effectors of most of the mammalian Rabs are yet to be identified. In this study, we systematically screened five different cell or tissue lysates for novel Rab effectors by a combination of glutathione S‐transferase (GST) pull‐down assay with 60 different mammalian Rabs and mass spectroscopic analysis. Three of the 21 Rab‐binding proteins we identified, mKIAA1055/TBC1D2B (Rab22‐binding protein), GAPCenA/TBC1D11 (Rab36‐binding protein) and centaurin β2/ACAP2 (Rab35‐binding protein), are GTPase‐activating proteins (GAPs) for Rab or Arf. Although it has recently been proposed that the Rab–GAP (Tre‐2 /Bub2/Cdc16) domain physically interacts with its substrate Rab, these three GAPs interacted with specific Rabs via a domain other than a GAP domain, e.g. centaurin β2 binds GTP‐Rab35 via the ankyrin repeat (ANKR) domain. Although centaurin β2 did not exhibit any Rab35–GAP activity in vitro, the Rab35‐binding ANKR domain of centaurin β2 was found to be required for its plasma membrane localization and regulation of Rab35‐dependent neurite outgrowth of PC12 cells through inactivation of Arf6. These findings suggest a novel mode of interaction between Rab and GAP.  相似文献   

19.
Nahm MY  Kim SW  Yun D  Lee SY  Cho MJ  Bahk JD 《Plant & cell physiology》2003,44(12):1341-1349
Rab7 is a small GTP-binding protein important in early to late endosome/lysosome vesicular transport in mammalian cells. We have isolated a Rab7 cDNA clone, OsRab7, from a cold-treated rice cDNA library by the subtraction screening method. The cDNA encodes a polypeptide of 206 amino acids with a calculated molecular mass of about 23 kDa. Its predicted amino acid sequence shows significantly high identity with the sequences of other Rab7 proteins. His-tagged OsRab7 bound to radiolabeled GTPgammaS in a specific and stoichiometric manner. Biochemical and structural properties of the Rab7 wild type (WT) protein were compared to those of Q67L and T22N mutants. The detergent 3-([3-cholamidopropyl]dimethylammonio)-1-propane sulfonate (CHAPS) increased the guanine nucleotide binding and hydrolysis activities of Rab7WT. The OsRab7Q67L mutant showed much lower GTPase activity compared to the WT protein untreated with CHAPS, and the T22N mutant showed no GTP binding activity at all. The OsRab7Q67L mutant was constitutively active for guanine nucleotide binding while the T22N mutant (dominant negative) showed no guanine nucleotide binding activity. When bound to GTP, the Rab7WT and the Q67L mutants were protected from tryptic proteolysis. The cleavage pattern of the Rab7T22N mutant, however, was not affected by GTP addition. Northern and Western blot analyses suggested that OsRab7 is distributed in various tissues of rice. Furthermore, expression of a rice Rab7 gene was differentially regulated by various environmental stimuli such as cold, NaCl, dehydration, and ABA. In addition, subcellular localization of OsRab7 was investigated in the Arabidopsis protoplasts by a double-labeling experiment using GFP-fused OsRab7 and FM4-64. GFP-OsRab7 is localized to the vacuolar membrane, suggesting that OsRab7 is implicated in a vesicular transport to the vacuole in plant cells.  相似文献   

20.
The regulatory functions of Rab proteins in membrane trafficking lie in their ability to perform as molecular switches that oscillate between a GTP- and a GDP-bound conformation. The role of tomato LeRab11a in secretion was analyzed in tobacco protoplasts. Green fluorescent protein (GFP)/red fluorescent protein (RFP)-tagged LeRab11a was localized at the trans-Golgi network (TGN) in vivo. Two serines in the GTP-binding site of the protein were mutagenized, giving rise to the three mutants Rab11S22N, Rab11S27N and Rab11S22/27N. The double mutation reduced secretion of a marker protein, secRGUS (secreted rat beta-glucuronidase), by half, whereas each of the single mutations alone had a much smaller effect, showing that both serines have to be mutated to obtain a dominant negative effect on LeRab11a function. The dominant negative mutant was used to determine whether Rab11 is involved in the pathway(s) regulated by the plasma membrane syntaxins SYP121 and SYP122. Co-expression of either of these GFP-tagged syntaxins with the dominant negative Rab11S22/27N mutant led to the appearance of endosomes, but co-expression of GFP-tagged SYP122 also labeled the endoplasmic reticulum and dotted structures. However, co-expression of Rab11S22/27N with SYP121 dominant negative mutants decreased secretion of secRGUS further compared with the expression of Rab11S22/27N alone, whereas co-expression of Rab11S22/27N with SYP122 had no synergistic effect. With the same essay, the difference between SYP121- and SYP122-dependent secretion was then evidenced. The results suggest that Rab11 regulates anterograde transport from the TGN to the plasma membrane and strongly implicate SYP122, rather than SYP121. The differential effect of LeRab11a supports the possibility that SYP121 and SYP122 drive independent secretory events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号