首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The appearance of unsubstituted glucopyranose residues in nitrocellulose (NC) induced by Desulfovibrio desulfuricans was established by (13)C-NMR spectroscopy. After contact with bacterial cells, the degree of substitution by nitro groups in NC decreased from 2.59 to 2.40. The bacteria possess intra- and extracellular nitroesterase activities, which are responsible for denitration of the polymer. The presence of NC in the growth medium influences the extracellular nitroesterase activity. It is shown that inhibition of enzymatic activity in the presence of NC is caused by appearance of nitrates in the culture medium. Nitrate and nitrite reductases of dissimilatory type reduce nitrates. The data suggest consideration of bacteria belonging to the Desulfovibrio genus as the initial agent in utilization of an unnatural polymer--nitrocellulose--in a microbial consortium.  相似文献   

3.
Reduction of uranium by Desulfovibrio desulfuricans.   总被引:7,自引:0,他引:7  
The possibility that sulfate-reducing microorganisms contribute to U(VI) reduction in sedimentary environments was investigated. U(VI) was reduced to U(IV) when washed cells of sulfate-grown Desulfovibrio desulfuricans were suspended in a bicarbonate buffer with lactate or H2 as the electron donor. There was no U(VI) reduction in the absence of an electron donor or when the cells were killed by heat prior to the incubation. The rates of U(VI) reduction were comparable to those in respiratory Fe(III)-reducing microorganisms. Azide or prior exposure of the cells to air did not affect the ability of D. desulfuricans to reduce U(VI). Attempts to grow D. desulfuricans with U(VI) as the electron acceptor were unsuccessful. U(VI) reduction resulted in the extracellular precipitation of the U(IV) mineral uraninite. The presence of sulfate had no effect on the rate of U(VI) reduction. Sulfate and U(VI) were reduced simultaneously. Enzymatic reduction of U(VI) by D. desulfuricans was much faster than nonenzymatic reduction of U(VI) by sulfide, even when cells of D. desulfuricans were added to provide a potential catalytic surface for the nonenzymatic reaction. The results indicate that enzymatic U(VI) reduction by sulfate-reducing microorganisms may be responsible for the accumulation of U(IV) in sulfidogenic environments. Furthermore, since the reduction of U(VI) to U(IV) precipitates uranium from solution, D. desulfuricans might be a useful organism for recovering uranium from contaminated waters and waste streams.  相似文献   

4.
Reduction of uranium by Desulfovibrio desulfuricans.   总被引:2,自引:0,他引:2       下载免费PDF全文
The possibility that sulfate-reducing microorganisms contribute to U(VI) reduction in sedimentary environments was investigated. U(VI) was reduced to U(IV) when washed cells of sulfate-grown Desulfovibrio desulfuricans were suspended in a bicarbonate buffer with lactate or H2 as the electron donor. There was no U(VI) reduction in the absence of an electron donor or when the cells were killed by heat prior to the incubation. The rates of U(VI) reduction were comparable to those in respiratory Fe(III)-reducing microorganisms. Azide or prior exposure of the cells to air did not affect the ability of D. desulfuricans to reduce U(VI). Attempts to grow D. desulfuricans with U(VI) as the electron acceptor were unsuccessful. U(VI) reduction resulted in the extracellular precipitation of the U(IV) mineral uraninite. The presence of sulfate had no effect on the rate of U(VI) reduction. Sulfate and U(VI) were reduced simultaneously. Enzymatic reduction of U(VI) by D. desulfuricans was much faster than nonenzymatic reduction of U(VI) by sulfide, even when cells of D. desulfuricans were added to provide a potential catalytic surface for the nonenzymatic reaction. The results indicate that enzymatic U(VI) reduction by sulfate-reducing microorganisms may be responsible for the accumulation of U(IV) in sulfidogenic environments. Furthermore, since the reduction of U(VI) to U(IV) precipitates uranium from solution, D. desulfuricans might be a useful organism for recovering uranium from contaminated waters and waste streams.  相似文献   

5.
Sulfide Production from Cysteine by Desulfovibrio desulfuricans   总被引:1,自引:0,他引:1       下载免费PDF全文
Two rumen nitrate-reducing isolates of Desulfovibrio desulfuricans were found to hydrolyze cysteine with the production of sulfide and pyruvate. When cultured on agar medium containing yeast extract with nitrate as the primary electron acceptor and ferrous chloride as the indicator, blackening of colonies occurred. The blackening of colonies appeared sooner and was more intense when either cysteine or sulfate was added to the culture medium with nitrate present.  相似文献   

6.
Conjugational transfer of several IncQ plasmids from Escherichia coli to the strictly anaerobic, sulfate-reducing bacterium Desulfovibrio desulfuricans strain G100A was demonstrated. Plasmid DNA from exconjugants was visualized on agarose gels and was used to transform E. coli to the appropriate antibiotic resistances. Neither transfer of IncW and IncP plasmids to strain G100A, nor transfer of any plasmid to D. desulfuricans strain ATCC 27774 was observed. Conjugation of suicide plasmids containing either Tn5 or Tn9 into D. desulfuricans did not result in detectable transposition. Optimal conditions for conjugational transfer and antibiotic resistance levels of strain G100A were examined.  相似文献   

7.
The prominence of sulfate reducers in mercury biomethylation prompted the examination of the methyl carrier and mercury methylation activity of Desulfovibrio desulfuricans LS. There was a low degree of mercury tolerance and a high degree of methylation during fermentative growth; the opposite was true during sulfate reduction. During 2 days of fermentative growth, up to 37% of HgCl2 was methylated at 0.1 micrograms/ml, but only 1.5% was methylated at 10.0 micrograms/ml. Less than 1% of the added HgCl2 was methylated under sulfate-reducing conditions. D. desulfuricans LS radioimmunoassay results were positive for cobalamin. The addition of CoCl2 and benzimidazole to fermentative cultures increased methylation activity. From D. desulfuricans LS grown in the presence of (57)CoCl2, a corrinoid was extracted and purified. High-performance liquid chromatography analysis of the purified extract yielded a single peak with the retention time of cobalamin, and 97% of the (57)Co radioactivity was associated with this peak. Fast atom bombardment and UV and visible spectra of the isolated corrinoid matched those of cobalamin. When methylated with (14)CH3I, the isolated corrinoid methylated Hg(2+) with a 93.9% preservation of (14)C specific activity. We conclude that D. desulfuricans LS methylates mercury via cobalamin (vitamin B12). Under physiological conditions, the enzymatic catalysis of this reaction is likely.  相似文献   

8.
Radiocarbon incorporation from pyruvate and serine into monomethylmercury by Desulfovibrio desulfuricans was consistent with the proposal that the methyl group originates from C-3 of serine. Immunodiagnostic assays measured 4 to 35 μg of tetrahydrofolate and 58 to 161 ng of cobalamin or a closely related cobalt porphyrin per g of cell protein in D. desulfuricans. The light-reversible inhibition of mercury methylation by propyl iodide in D. desulfuricans indicates methyl transfer by a cobalt porphyrin.  相似文献   

9.
10.
ATP generation by electron transport in Desulfovibrio desulfuricans   总被引:2,自引:0,他引:2  
  相似文献   

11.
The toxicity of Al to Desulfovibrio desulfuricans G20 was assessed over a period of 8 weeks in a modified lactate C medium buffered at four initial pHs (5.0, 6.5, 7.2, and 8.3) and treated with five levels of added Al (0, 0.01, 0.1, 1.0, and 10 mM). At pH 5, cell population densities decreased significantly and any effect of Al was negligible compared to that of the pH. At pHs 6.5 and 7.2, the cell population densities increased by 30-fold during the first few days and then remained stable for soluble-Al concentrations of <5 x 10(-5) M. In treatments having total-Al concentrations of > or =1 mM, soluble-Al concentrations exceeded 5 x 10(-5) M and limited cell population growth substantially and proportionally. At pH 8.3, soluble-Al concentrations were below the 5 x 10(-5) M toxicity threshold and cell population density increases of 20- to 40-fold were observed. An apparent cell population response to added Al at pH 8.3 was attributed to the presence of large, spirilloidal bacteria (accounting for as much as 80% of the cells at the 10 mM added Al level). Calculations of soluble-Al speciation for the pH 6.5 and 7.2 treatments that showed Al toxicity suggested the possible presence of the Al(13)O(4)(OH)(24)(H(2)O)(12)(7+) "tridecamer" cation and an inverse correlation of the tridecamer concentration and the cell population density. Analysis by (27)Al nuclear magnetic resonance spectroscopy, however, yielded no evidence of this species in freshly prepared samples or those taken 800 days after inoculation. Exclusion of the tridecamer species from the aqueous speciation calculations at pHs 6.5 and 7.2 yielded inverse correlations of the neutral Al(OH)(3) and anionic Al(OH)(4)(-) monomeric species with cell population density, suggesting that one or both of these ions bear primary responsibility for the toxicity observed.  相似文献   

12.
13.
Toxicity of Al to Desulfovibrio desulfuricans   总被引:1,自引:0,他引:1       下载免费PDF全文
The toxicity of Al to Desulfovibrio desulfuricans G20 was assessed over a period of 8 weeks in a modified lactate C medium buffered at four initial pHs (5.0, 6.5, 7.2, and 8.3) and treated with five levels of added Al (0, 0.01, 0.1, 1.0, and 10 mM). At pH 5, cell population densities decreased significantly and any effect of Al was negligible compared to that of the pH. At pHs 6.5 and 7.2, the cell population densities increased by 30-fold during the first few days and then remained stable for soluble-Al concentrations of <5 × 10−5 M. In treatments having total-Al concentrations of ≥1 mM, soluble-Al concentrations exceeded 5 × 10−5 M and limited cell population growth substantially and proportionally. At pH 8.3, soluble-Al concentrations were below the 5 × 10−5 M toxicity threshold and cell population density increases of 20- to 40-fold were observed. An apparent cell population response to added Al at pH 8.3 was attributed to the presence of large, spirilloidal bacteria (accounting for as much as 80% of the cells at the 10 mM added Al level). Calculations of soluble-Al speciation for the pH 6.5 and 7.2 treatments that showed Al toxicity suggested the possible presence of the Al13O4(OH)24(H2O)127+ “tridecamer” cation and an inverse correlation of the tridecamer concentration and the cell population density. Analysis by 27Al nuclear magnetic resonance spectroscopy, however, yielded no evidence of this species in freshly prepared samples or those taken 800 days after inoculation. Exclusion of the tridecamer species from the aqueous speciation calculations at pHs 6.5 and 7.2 yielded inverse correlations of the neutral Al(OH)3 and anionic Al(OH)4 monomeric species with cell population density, suggesting that one or both of these ions bear primary responsibility for the toxicity observed.  相似文献   

14.
15.
16.
Nitrocellulose is one of the most commonly used compounds in ammunition and paint industries and its recalcitrance to degradation has a negative impact on human health and the environment. In this study the capability of Desulfovibrio desulfuricans ATCC 13541 to degrade nitrocellulose as binder in paint was assayed for the first time. Nitrocellulose-based paint degradation was followed by monitoring the variation in nitrate, nitrite and ammonium content in the culture medium using Ultraviolet-Visible spectroscopy. At the same time cell counts and ATP assay were performed to estimate bacterial density and activity in all samples. Infrared spectroscopy and colorimetric measurements of paint samples were performed to assess chemical and colour changes due to the microbial action. Microscope observations of nitrocellulose-based paint samples demonstrated the capability of the bacterium to adhere to the paint surface and change the paint adhesive characteristics. Finally, preliminary studies of nitrocellulose degradation pathway were conducted by assaying nitrate- and nitrite reductases activity in D.?desulfuricans grown in presence or in absence of paint. We found that D.?desulfuricans ATCC 13541 is able to transform nitrocellulose as paint binder and we hypothesised ammonification as degradation pathway. The results suggest that D.?desulfuricans ATCC 13541 is a good candidate as a nitrocellulose-degrading bacterium.  相似文献   

17.
Microbial precipitation of gold was achieved using Escherichia coli and Desulfovibrio desulfuricans provided with H2 as the electron donor. No precipitation was observed using H2 alone or with heat-killed cells. Reduction of aqueous AuIII ions by both strains was demonstrated at pH 7 using 2 mM HAuCl4 solution and the concept was successfully applied to recover 100% of the gold from acidic leachate (115 ppm of AuIII) obtained from jewelry waste. Bioreductive recovery of gold from aqueous solution was achieved within 2 h, giving crystalline Au0 particles (20-50 nm), in the periplasmic space and on the cell surface, and small intracellular nanoparticles. The nanoparticle size was smaller (red suspension) at acidic pH (2.0) as compared to that obtained at pH 6.0 and 7.0 (purple) and 9.0 (dark blue). Comparable nanoparticles were obtained from AuIII test solutions and jewelry leachate.  相似文献   

18.
19.
20.
Fifteen (soil and intestinal) strains of Desulfovibrio desulfuricans species were typed by PCR method with the use of primers specific for repetitive extragenic palindromic (REP) and enterobacterial repetitive intergenic consensus (ERIC) sequences. As a result, characteristic DNA fingerprints for the strains were obtained. Moreover, the genetic profiles were found to be useful for typing and distinguishing the strains of D. desulfuricans. According to cluster analysis, PCR with primers complementary to the sequences REP appeared to be slightly more discriminatory than PCR with ERIC primers for the investigated strains. Distinct fingerprint patterns of two isolates derived from the same patient pointed to the different origin of both strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号