首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infection of Escherichia coli B in inorganic salts-glycerol with a multiplicity of deoxyribonucleic acid-less T2 "ghosts" just sufficient to block all protein synthesis results in both viable and killed bacteria. We enriched for the viable cells by a combination of lysozyme treatment and filtration and measured the in vitro capacity of their extracts to synthesize polypeptides. Without added template ribonucleic acid (RNA), such "ghost extracts" incorporate amino acids (endogenous synthesis) at approximately one-half the rate as do extracts from uninfected bacteria. However, they are unable to use added synthetic or natural template RNAs for peptide synthesis. Some activity can be observed but only at high concentrations of Mg(2+). These results suggest that ghost infection may result in a blockage of ribosomes during translation. Mixing experiments show that the incapacity of ghost extracts to translate added template RNA is due to a defect in the ribosomes.  相似文献   

2.
Protein synthesis in bacteriophage ghost-infected cells.   总被引:1,自引:0,他引:1       下载免费PDF全文
Escherichia coli B infected with T4 phage ghosts at 10 mM Mg2+ regains its protein synthesizing activity upon addition of ATP, GTP, and their generator to approximately 2% of the intact exponentially growing cells. In contrast to amino acid incorporation by intact cells, this system is sensitive to EDTA or low Mg2+. On the other hand, this system, differing from the regular cell-free system, does not respond to addition of soluble protein and ribonuclease. The ghost-infected cells were able to synthesize beta-galactosidase upon addition of the inducer isopropyl thiogalactoside. The initial rate of the induction was 2.6% of intact cells. For this induction, the addition of cyclic AMP, amino acids, ATP, GTP, UTP, CTP, and their generator was necessary. The induction of beta-galactosidase in these ghost-infected cells was very sensitive to the addition of EDTA, CaCl2, sulfhydryl blocking reagent, rifampin and chloramphenicol but insensitive to DNA synthesis inhibitors such as nalidixic acid and DNase.  相似文献   

3.
Synthesis and assembly of ribosomal proteins into mature ribosomes persist late after infection of cells with herpes simplex virus type 1, while synthesis of β-actin is drastically shut off. Since mRNAs encoding ribosomal proteins and β-actin undergo concomitant degradation in infected HeLa cells, we have advanced the hypothesis that translation of the remaining mRNAs is differentially controlled after infection. The behaviour of mRNAs for three ribosomal proteins and for β-actin was investigated during the course of infection. In uninfected cells, β-actin mRNAs are associated with large polyribosomes, while only a part of ribosomal protein mRNAs are present in polyribosomes. In the course of infection, β-actin mRNAs are released from the ribosomes and are sequestered with 40S ribosomal subunits. Simultaneously, ribosomal protein mRNAs become associated with an increased number of ribosomes, even late in infection. In addition, virally induced phosphorylation of ribosomal protein S6 is more efficient in pre-existing ribosomes than in newly assembled ribosomes. These results indicate that in infected cells (i) translation of β-actin mRNA is selectively inhibited at a step necessary for binding the 60S ribosomal subunits; (ii) the rate of initiation of translation of ribosomal protein mRNAs increases after infection; and (iii) it is likely that translation of ribosomal protein mRNAs takes place preferentially on pre-existing ribosomes. Received: 5 February 1997 / Accepted: 28 May 1997  相似文献   

4.
After infection of mouse L cells with mengovirus, there is a rapid inhibition of protein synthesis, a concurrent disaggregation of polysomes, and an accumulation of 80S ribosomes. These 80S ribosomes could not be chased back into polysomes under an elongation block. The infected-cell 80S-ribosome fraction contained twice as much initiator methionyl-tRNA and mRNA as the analogous fraction from uninfected cells. Since the proportion of 80S ribosomes that were resistant to pronase digestion also increased after infection, these data suggest that the accumulated 80S ribosomes may be in the form of initiation complexes. The specific protein synthetic activity of polysomal ribosomes also decreased with time of infection. However, the transit times in mock-infected and infected cells remained the same. Cell-free translation systems from infected cells reflected the decreased protein synthetic activity of intact cells. The addition of reticulocyte initiation factors to such systems failed to relieve the inhibition. Fractionation of the infected-cell lysate revealed that the ribosomes were the predominant target affected. Washing the infected-cell ribosomes with 0.5 M KCI restored their translational activity. In turn, the salt wash from infected-cell ribosomes inhibited translation in lysates from mock-infected cells. The inhibitor in the ribosomal salt wash was temperature sensitive and micrococcal nuclease resistant. A model is proposed wherein virus infection activates (or induces the synthesis of) an inhibitor that binds to ribosomes and stops translation after the formation of the 80S-ribosome initiation complex but before elongation. The presence of such an inhibitor on ribosomes could prevent them from being remobilized into polysomes in the presence of an inhibitor of polypeptide elongation.  相似文献   

5.
The defective step which leads human adenovirus type 2 infection of African green monkey kidney cells (clone C14) to be abortive and its complementation in simian virus 40-transformed cells (clone T22) were studied by comparing the synthesis and function of macromolecules in these cell lines. Neither a quantitative nor a qualitative difference was detected in virus DNA replication and in virus mRNA synthesis in these cells, while a definite difference was observed in protein synthesis. The capsid proteins, such as hexon or penton, were synthesized in T22 cells but not in C14 cells. Inability of polyribosomes to synthesize the capsid proteins in C14 cells infected with adenovirus type 2 may not be due to a defect in elongation of nascent polypeptides or their release, since nascent polypeptides pulse-labelled with [3H]leucine were completely released from polyribosomes after the chase. The electrophoretic analysis of proteins synthesized in vitro with polyribosomes from either infected T22 or C14 cells using the pH 5 enzyme and S100 fraction from T22 cells revealed that hexon was synthesized with polyribosomes from T22 cells but not from C14 cells, thereby suggesting that the defect is not ascribed to a component in the pH 5 enzyme and S100 fraction, but resides in polyribosomes. The analysis of late adenovirus mRNA associated with polyribosomes in the infected T22 and C14 cells by hybridization competition or by sedimentation revealed that all the species of virus mRNA were present in the cytoplasm of these cells; however, certain species of virus mRNA larger than 20 S were absent in polyribosomes of the infected C14 cells. Sedimentation analysis of late adenovirus mRNA following separation on poly(U)-Sepharose or by membrane filtration gave the same results. These results suggest that the defect of C14 cells to support growth of adenoviruses is due to the inability of ribosomes to associate with certain species of late virus mRNA to form polyribosomes and suggest that a factor complementing this defect is induced by simian virus 40.  相似文献   

6.
Messenger RNA transport was studied in KB cells infected with the nuclear DNA virus adenovirus type 2. Addition of 0.04 µg/ml of actinomycin completes the inhibition of ribosome synthesis normally observed late after infection and apparently does not alter the pattern of viral RNA synthesis: Hybridization-inhibition experiments indicate that similar viral RNA sequences are transcribed in cells treated or untreated with actinomycin. The polysomal RNA synthesized during a 2 hr labeling period in the presence of actinomycin is at least 60% viral specific. Viral messenger RNA transport can occur in the absence of ribosome synthesis. When uridine-3H is added to a late-infected culture pretreated with actinomycin, viral RNA appears in the cytoplasm at 10 min, but the polysomes do not receive viral RNA-3H until 30 min have elapsed. Only 25% of the cytoplasmic viral RNA is in polyribosomes even when infected cells have been labeled for 150 min. The nonpolysomal viral RNA in cytoplasmic extracts sediments as a broad distribution from 10S to 80S and does not include a peak cosedimenting with 45S ribosome subunits. The newly formed messenger RNA that is ribosome associated is not equally distributed among the ribosomes; by comparison to polyribosomes, 74S ribosomes are deficient at least fivefold in receipt of new messenger RNA molecules.  相似文献   

7.
Concentrated extracts of Halobacterium cutirubrum were prepared at 0 C by gently disrupting cells with a nonionic detergent in a medium containing 3.0 m KCl, 0.5 m NH(4)Cl, and 0.04 m (or more) magnesium acetate and then treating the gelatinous mass with deoxyribonuclease. On KCl-sucrose gradients containing 0.5 m NH(4)Cl and 0.04 m magnesium acetate, these extracts showed 30S and 50S ribosomal subunits plus a flat profile of faster-sedimenting material up to high S values. Only after frozen storage or brief incubation of the extract were 70S ribosomes and distinct classes of small polyribosomes detected. Digestion with ribonuclease converted faster-sedimenting material to 70S particles. The presence of chloramphenicol during preparation of the extracts did not affect these results. The evidence suggests that ribosomal particles exist in these cells as subunits or as polyribosomes but not as 70S ribosomes. To investigate the function of Mg(++) and NH(4) (+) ions in ribosomal complexes from this halophile, concentrated cell extracts and extracts incubated with (14)C-leucine were examined on KCl-sucrose gradients containing different concentrations of these ions. Polyribosomes and the bulk of 70S ribosomes dissociated reversibly to subunits at about 0.01 m Mg(++), whereas a small fraction of the 70S particles, including those which in vitro incorporated (14)C-leucine into nascent protein, dissociated only below 1 mm Mg(++). Below this concentration of Mg(++), nascent protein remained attached to the 50S subunit even at 0.04 mm Mg(++) in the presence of 0.35 to 0.5 m NH(4)Cl. Nascent protein, presumably as peptidyl-transfer ribonucleic acid, dissociated reversibly from 50S subunits only at 0.04 mm Mg(++) and 0.1 m or less NH(4) (+). Thus, the stability of polyribosomes from H. cutirubrum depends specifically on both Mg(++) and NH(4) (+) ions.  相似文献   

8.
Ribosomes and polyribosomes from Clostridium pasteurianum were isolated and their activities were compared with those of ribosomes from Escherichia coli in protein synthesis in vitro. C. pasteurianum ribosomes exhibited a high level of activity due to endogenous messenger ribonucleic acid (RNA). For translation of polyuridylic acid [poly(U)], C. pasteurianum ribosomes required a higher concentration of Mg(2+) and a much higher level of poly(U) than did E. coli ribosomes. Phage f2 RNA added to the system with C. pasteurianum ribosomes gave no significant stimulation of protein synthesis in a homologous system or with E. coli initiation factors. The 30S and 50S subunits prepared from C. pasteurianum ribosomes reassociated less readily than subunits from E. coli. The ability of the C. pasteurianum subunits to reassociated was found to be dependent upon the presence of a reducing agent during preparation and during analysis of the reassociation products. In heterologous combinations, E. coli 30S subunits associated readily with C. pasteurianum 50S subunits to form 70S particles, but C. pasteurianum 30S subunits and E. coli 50S subunits did not associate. In poly(U) translation, E. coli 30S subunits were active in combination with 50S subunits from either E. coli or C. pasteurianum, but C. pasteurianum 30S subunits were not active in combination with either type of 50S subunits. Polyribosomes prepared from C. pasteurianum were very active in protein synthesis, and well-defined ribosomal aggregates as large as heptamers could be seen on sucrose gradients. An attempt was made to demonstrate synthesis in vitro of ferredoxin.  相似文献   

9.
Four hours after infection of BHK cells by vesicular stomatitis virus (VSV), the rate of total protein synthesis was about 65% that of uninfected cells and synthesis of the 12 to 15 predominant cellular polypeptides was reduced to a level about 25% that of control cells. As determined by in vitro translation of isolated RNA and both one- and two-dimensional gel analyses of the products, all predominant cellular mRNA's remained intact and translatable after infection. The total amount of translatable mRNA per cell increased about threefold after infection; this additional mRNA directed synthesis of the five VSV structural proteins. To determine the subcellular localization of cellular and viral mRNA before and after infection, RNA from various sizes of polysomes and nonpolysomal ribonucleoproteins (RNPs) was isolated from infected and noninfected cells and translated in vitro. Over 80% of most predominant species of cellular mRNA was bound to polysomes in control cells, and over 60% was bound in infected cells. Only 2 of the 12 predominant species of translatable cellular mRNA's were localized to the RNP fraction, both in infected and in uninfected cells. The average size of polysomes translating individual cellular mRNA's was reduced about two- to threefold after infection. For example, in uninfected cells, actin (molecular weight 42,000) mRNA was found predominantly on polysomes with 12 ribosomes; after infection it was found on polysomes with five ribosomes, the same size of polysomes that were translating VSV N (molecular weight 52,000) and M (molecular weight 35,000) mRNA. We conclude that the inhibition of cellular protein synthesis after VSV infection is due, in large measure, to competition for ribosomes by a large excess of viral mRNA. The efficiency of initiation of translation on cellular and viral mRNA's is about the same in infected cells; cellular ribosomes are simply distributed among more mRNA's than are present in growing cells. About 20 to 30% of each of the predominant cellular and viral mRNA's were present in RNP particles in infected cells and were presumably inactive in protein synthesis. There was no preferential sequestration of cellular or viral mRNA's in RNPs after infection.  相似文献   

10.
Mesosomes were isolated and purified from Micrococcus luteus under hypertonic conditions throughout preparation processes. The purified mesosomal preparation was composed of closed tubules and vesicles. Electron-dense ribosome-like particles were observed within the isolated mesosomal vesicles by electron microscopy. The ribosome-like particles were isolated from the purified mesosomes by a procedure involving solubilization of the membranes with detergents followed by centrifugation on a linear density gradient of sucrose. The isolated particles have a sedimentation coefficient of 70S in the presence of 10 mM Mg2+, when Mg2+ concentration was lowered to 0.1 mM, the particles were dissociated into two sub-particles of 30S and 50S. The 70S particles had the same appearance as cytoplasmic 70S ribosome particles upon observations of negatively stained preparations. These findings indicate that mesosomal tubules contain ribosomes. The isolated mesosomal ribosomes had the ability for protein synthesis when polyuridylic acid-directed polyphenylalanine synthesis was assayed. The sensitivity of mesosomal ribosomes to inhibitors, chloramphenicol and streptomycin, for protein synthesis was significantly lower than that of both cytoplasmic and cytoplasmic membrane-bound ribosomes. In addition, three penicillin-binding proteins were detected in the mesosomal membranes. One of these was localized predominantly in the mesosomal membranes and the other two were distributed almost equally in both mesosomal and cytoplasmic membranes.  相似文献   

11.
The addition of T1 to cells growing at 37 degrees C in a minimal medium at 0.4 mM Mg2+ rapidly induced an irreversible loss of K+ and Mg2+ and uptake of Na+ by the cells. Both the ATP pool of the cells and the transmembrane proton motive force were reduced. These cells did not lyse from within, since viral DNA replication and the maturation of the 36,000-molecular-weight phage head protein were inhibited. By contrast, cells lysed when infected at 5.4 mM Mg2+. In these cells, T1 initially induced K+ efflux and Na+ influx and lowered the cytoplasmic ATP concentration. After a few minutes, the cation gradients and ATP pool were restored to levels close to that of control cells. At 5.4 mM Mg2+, the shutoff of host protein synthesis was delayed and coincided with the restoration of the ATP pool. In an ATP synthase-negative mutant, infection with T1 did not affect the cytoplasmic ATP concentration but inhibited host protein synthesis with the same rate as it did in wild-type cells.  相似文献   

12.
Shut-off of actin biosynthesis in adenovirus serotype-2-infected cells   总被引:8,自引:0,他引:8  
Adenovirus produces a dramatic shut-off of host protein synthesis after infection of HeLa cells. The level of actin messenger RNAs remained relatively unchanged after viral infection, when assayed by in vitro translation and two-dimensional gel electrophoresis analysis of the proteins or hybridization of the total cytoplasmic RNAs to the human actin gene. The distribution of actin mRNA in the polyribosomes is altered after adenovirus infection, with small polyribosomes and monoribosomes of the infected cells occupied by actin messages untranslatable in a rabbit reticulocyte lysate. The large polyribosomes still retain enough functional mRNAs to provide significant levels of actin protein in a rabbit reticulocyte in vitro translation system. In contrast, in homologous infected cell lysates, the translation of exogenous actin mRNA is greatly reduced when compared to uninfected HeLa cell lysates. In nuclease-treated uninfected or infected HeLa cell-free extracts, translation of viral mRNA is equally efficient and higher than that of actin mRNA. Thus, translational regulatory mechanisms which include inactivation of a part of the actin mRNA population accompanied by displacement to small polysomes and/or virus-induced modification of the cellular translational machinery to discriminate against cellular actin mRNA seem to account for the sharp reduction in actin protein synthesis of adenovirus-infected cells.  相似文献   

13.
Free polyribosomes, isolated from liver, spleen and pancreas of the rat, were suspended in a medium at 0.5 mM Mg2+ and analyzed in the analytical ultracentrifuge. The percentage of run-off ribosomes, distinguised by a sedimentation coefficient below 77S was calculated from centrifugal experiments. The amount of run-off ribosomes differed in the various tissues of the rat but was not influenced by fasting overnight.  相似文献   

14.
Synthetic abilities of Euglena chloroplasts in darkness   总被引:1,自引:0,他引:1  
Protein synthesis, normally a light-dependent process in isolated mature chloroplasts of Euglena gracilis var. bacillaris will take place in darkness if ATP and Mg2+ (ATP/Mg) are supplied. Either 5 or 10 mM ATP plus 15 mM MgCl2 are optimal and rates equal to those in the light can be obtained. Since ATP and Mg2+ are not stoichiometrically related, and since the optimal Mg2+ concentration is similar to that which stabilizes chloroplast ribosomes in vitro, it is suggested that the chloroplast is freely permeable to Mg2+ under these conditions. Protein synthesis under these conditions is not inhibited appreciably by DCMU, FCCP, cycloheximide, or by the addition of ribonuclease, but is highly sensitive to chloramphenicol. Carbon dioxide fixation is also a light-dependent process in isolated mature chloroplasts from Euglena, but addition of ATP (5 mM) and fructose bisphosphate (5 mM) plus aldolase (1.0 unit/ml) (fructose-1,6-bisphosphate/aldolase) yields CO2 fixation rates in darkness that are 43% of those normally obtained in the light. Mg2+ higher than 1.0 mM (e.g., 16 mM) is somewhat inhibitory. Chlorophyll synthesis from 5-aminolevulinate in 36 h developing chloroplasts from Euglena is also light-dependent, but addition of ATP/Mg and fructose-1,6-bis-phosphate/aldolase in darkness brings about the accumulation of a compound having the same RF on chromatography as protochlorophyllide from Barley; a subsequent brief illumination of the chloroplasts converts this compound to a compound with the RF of chlorophyll. Thus Euglena chloroplasts supplied with appropriate additions can carry out protein synthesis, carbon dioxide fixation and most of chlorophyll synthesis in darkness. This versatility is appropriate in photosynthetic organelles isolated from photo-organotrophic cells.  相似文献   

15.
A method is described for the preparation of active "run-off" 80S ribosomes and 40S and 60S subunits of mouse liver. A polysome preparation was incubated at 37 degrees C for 10 min under the condition for protein synthesis (4 mM Mg2+, 100 mM KCL). Puromycin (10 mM)and 2 M KCL were added to a final concentration of 0.1 mM and 500 mM, respectively, and the reaction mixture was further incubated at 37 degrees C for 10 min. This latter treatment destabilized small polysomes and "stuck" 80S particles, which were remaining after the first incubation, leading to complete release of 40S and 60S particles. Thus, the present method minimized variations in yield of subunits due to polysome preparations and preincubation conditions. The subunits were separated by sucrose density-gradient centrifugation or recovered by precipitation following reassociation into 80S particles (run-off 80S). The reformation of 80S particles from the subunits occurred spontaneously at 5 mM Mg2+ and 100mM KCL. The isolated 40S and 60S subunits, separately, showed low phenylalanine-incorporating activity in the presence of poly(U), but when recombined, polymerized up to 10 phenylalanine residues per couple.  相似文献   

16.
HEp-2 cells were pulse-labeled at different times after infection with herpes simplex virus, and nuclear ribonucleic acid (RNA) and cytoplasmic RNA were examined. The data showed the following: (i) Analysis by acrylamide gel electrophoresis of cytoplasmic RNA of cells infected at high multiplicities [80 to 200 plaque-forming units (PFU)/cell] revealed that ribosomal RNA (rRNA) synthesis falls to less than 10% of control (uninfected cell) values by 5 hr after infection. The synthesis of 4S RNA also declined but not as rapidly, and at its lowest level it was still 20% of control values. At lower multiplicities (20 PFU), the rate of inhibition was slower than at high multiplicities. However, at all multiplicities the rates of inhibition of 18S and 28S rRNA remained identical and higher than that of 4S RNA. (ii) Analysis of nuclear RNA of cells infected at high multiplicities by sucrose density gradient centrifugation showed that the synthesis and methylation of 45S rRNA precursor continued at a reduced but significant rate (ca. 30% of control values) at times after infection when no radioactive uridine was incorporated or could be chased into 28S and 18S rRNA. This indicates that the inhibition of rRNA synthesis after herpesvirus infection is a result of two processes: a decrease in the rate of synthesis of 45S RNA and a decrease in the rate of processing of that 45S RNA that is synthesized. (iii) Hybridization of nuclear and cytoplasmic RNA of infected cells with herpesvirus DNA revealed that a significant proportion of the total viral RNA in the nucleus has a sedimentation coefficient of 50S or greater. The sedimentation coefficient of virus-specific RNA associated with cytoplasmic polyribosomes is smaller with a maximum at 16S to 20S, but there is some rapidly sedimenting RNA (> 28S) here too. (iv) Finally, there was leakage of low-molecular weight (4S) RNA from infected cells, the leakage being approximately three-fold that of uninfected cells by approximately 5 hr after infection.  相似文献   

17.
When NIH/3T3 mouse fibroblasts were infected with the Moloney strain of murine leukemia virus, part of the viral genome RNA molecules were detected in polyribosomes of the infected cells early in the infectious cycle. The binding appears to be specific, since we could demonstrate the release of viral RNA from polyribosomes with EDTA. Moreover, when infection occurred in the presence of cycloheximide, most viral RNA molecules were detected in the free cytoplasm. Size analysis on polyribosomal viral RNA molecules indicated that two size class molecules, 38S and 23S, are present in polyribosomes at 3 h after infection. Analysis of the polyriboadenylate [poly(rA)] content of viral RNA extracted from infected polyribosomes demonstrated that such molecules bind with greatest abundance at 3 h after infection, as has been detected with total viral RNA. No molecules lacking poly(rA) stretches could be detected in polyribosomes. Furthermore, when a similar analysis was performed on unbound molecules present in the free cytoplasm, identical results were obtained. We conclude that no selection towards poly(rA)-containing viral molecules is evident on binding to polyribosomes. These findings suggest that the incoming viral genome of the Moloney strain of murine leukemia virus may serve as a messenger for the synthesis of one or more virus-specific proteins early after infection of mouse fibroblasts.  相似文献   

18.
We have determined the equilibrium constants for the binding of AEDANS-labelled S1 to S1-depleted 30S and 70S ribosomes. For "tight" ribosomes, the association of S1 increases with the sixth power of Mg2+ concentration, but for 30S subunits and "loose" ribosomes, there is virtually no dependence of the association on Mg2+ over the same concentration range, 2-10 mM in Mg2+. The binding of S1 to 70S ribosomes at 10 mM Mg2+ is stabilized by 2 kcal/mol compared to the binding to 30S subunits. When intact S1 binds to tight ribosomes, the fluorescence anisotrophy is that for virtually complete rotational immobilization. The anisotropies vary considerably with the preparation and treatment of both S1 and ribosomes and these variations are detailed here. The results suggest the linkage of Mg2+-dependent conformational changes in the intact ribosomes, perhaps including rRNA, and the binding of S1.  相似文献   

19.
[35S]--70S ribosomes (150 Ci/mmol) were isolated from E. coli MRE-600 cells grown on glucose-mineral media in the presence of [35S] ammonium sulfate. The labeled 30S and 50S subunits were obtained from [35S] ribosomes by centrifugation in a sucrose density gradient of 10--30% under dissociating conditions (0.5 mM Mg2+). The activity of [35S]--70S ribosomes obtained by reassociation of the labeled subunits during poly(U)-dependent diphenylalanine synthesis was not less than 70%. The activity of [35S]--70S ribosomes during poly(U)-directed polyphenylalanine synthesis was nearly the same as that of the standard preparation of unlabeled ribosomes. The 23S, 16S and 5S RNAs isolated from labeled ribosomes as total rRNA contained no detectable amounts of their fragments as revealed by polyacrylamide gel electrophoresis. The [35S] ribosomal proteins isolated from labeled ribosomes were analyzed by two-dimensional gel electrophoresis. The [35S] label was found in all proteins, with the exception of L20, L24 and L33 which did not contain methionine or cysteine residues.  相似文献   

20.
Fractionated polyuridylic acid with an average chain length of 55 nucleotides forms binary complexes with 30S subunits with a stoichiometry of I:I. These complexes are heterogeneous in stability. The more stable one is characterized by an association constant K2 - 5.5xI09 M-I, and the less stable-by KI = I06xM-I, at 20 mM Mg2+, 200 mM NH4(+) and 0 degrees C. The main reason for this heterogeneity is the presence or absence of the ribosomal protein SI in the presence or absence of the ribosomal protein SI in the subunits. Decrease of Mg2+ concentration down to 5 mM hardly changes the K2 values but reduction of the NH4(+) concentration to 50 mM results in a 25-fold increase of K2. Association constants K2 for the stable complex, i.e. in the presence of SI protein, were measured at different temperatures (0 - 30 degrees C) and the thermodynamic parameters of binding (delta H degrees, delta S degrees, delta G degrees) were determined. Analogous experiments were made with 70S ribosomes. K2 values as well as delta H degrees, delta S degrees, delta G degrees appeared the same both for 30S and 70S ribosomes in all conditions examined. This is strong evidence that the 50S subunits do not contribute to the interaction of poly(U) with the complete 70S ribosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号