首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The elastic moduli of human subchondral, trabecular, and cortical bone tissue from a proximal tibia were experimentally determined using three-point bending tests on a microstructural level. The mean modulus of subchondral specimens was 1.15 GPa, and those of trabecular and cortical specimens was 4.59 GPa and 5.44 GPa respectively. Significant differences were found in the modulus values between bone tissues, which may have mainly resulted from the differences in the microstructures of each bone tissue rather than in the mineral density. Furthermore, the size-dependency of the modulus was examined using eight different sizes of cortical specimens (heights h = 100-1000 microns). While the modulus values for relatively large specimens (h greater than 500 microns) remained fairly constant (approximately 15 GPa), the values decreased as the specimens became smaller. A significant correlation was found between the modulus and specimen size. The surface area to volume ratio proved to be a key variable to explain the size-dependency.  相似文献   

2.
Migration is the primary strategy that temperate birds use to avoid overwintering under harsh conditions. As a consequence, migratory birds have evolved specific morphological features in their wings and skeleton. However, in addition to varying in overall shape and size, bone can also change at the microstructural level by, for example, increasing its thickness. Such changes are critical to preventing fracture and damage under repeated loading (fatigue), yet it is not known whether migratory behaviour influences bone microstructure. To address this gap in the literature, we performed micro-computed tomography on skeletons of resident and migrant subspecies of the Dark-eyed Junco Junco hyemalis. We investigated the differences in the major wing bone, the humerus, and the major leg bone, the femur. In each bone, we studied the microarchitecture of the two types of bone tissue: cortical bone, the thick outer layer of bone; and trabecular bone, which is the porous network of bone tissue at the ends of long bones. We used linear models to quantify morphological features with respect to body mass and migratory behaviour. Humeri from migratory birds were thinner, wider and had higher overall geometric stiffness, i.e. a higher polar moment of inertia, relative to humeri from resident birds. These features may help keep their bones stiff to maintain their increased body mass during migration. In contrast, migrant femora were shorter, thinner and had lower geometric stiffness than femora of residents, potentially to reduce total body mass. Tissue mineral density was lower in both the humerus and the femur of migratory birds. In addition, migratory subspecies had less trabecular bone (lower bone volume fraction) due primarily to a loss of trabecular thickness. Migratory behaviour may thus select for improved stiffness and fatigue resistance in the wing bones and reduced mass of leg bones. Our work demonstrates how important insights into morphological adaptation can be obtained by investigating bone microstructure.  相似文献   

3.
Uniformity of tissue mineralisation is a strongly debated issue, due to its relation with bone mechanical behaviour. Bone mineral density (BMD) is measured in the clinical practice and is applied in computational application to derive material proprieties of bone tissue. However, BMD cannot identify if the variation in bone density is related to a modification of tissue mineral density (TMD), a change in bone volume or a combination of the two. This study was aimed to investigate whether TMD can be assumed as a constant in adult human bone (trabecular and cortical).A total number of 115 cylindrical bone specimens were collected. An inter-site analysis (96 specimens, 2 donors) was performed on cortical and trabecular specimens extracted from different anatomical sites. An intra-site study (19 specimens, 19 donors) was performed on specimens extracted from femoral heads. Bone volume fraction (BV/TV) was computed by means of a micro-computed tomography. Furthermore, ash density (ρash) was measured. TMD was computed as the ratio between ρash and BV/TV.It was found that the TMD of trabecular (1.24±0.16 g/cm3) and cortical (1.19±0.06 g/cm3) bone were not statistically different (p=0.31). Furthermore, the linear regression between ρash and BV/TV was statistically significant (r2=0.99, p<0.001). Intra- and inter-site analyses demonstrated that the mineral distribution was independent of the extraction site.The present study suggests that TMD can be assumed reasonably constant in non-pathological adult bone tissue. Consequently, it is suggested that TMD can be managed as a constant in computational models, varying only BV in relation to clinical densitometric analysis.  相似文献   

4.
The ability to determine trabecular bone tissue elastic and failure properties has biological and clinical importance. To date, trabecular tissue yield strains remain unknown due to experimental difficulties, and elastic moduli studies have reported controversial results. We hypothesized that the elastic and tensile and compressive yield properties of trabecular tissue are similar to those of cortical tissue. Effective tissue modulus and yield strains were calibrated for cadaveric human femoral neck specimens taken from 11 donors, using a combination of apparent-level mechanical testing and specimen-specific, high-resolution, nonlinear finite element modeling. The trabecular tissue properties were then compared to measured elastic modulus and tensile yield strain of human femoral diaphyseal cortical bone specimens obtained from a similar cohort of 34 donors. Cortical tissue properties were obtained by statistically eliminating the effects of vascular porosity. Results indicated that mean elastic modulus was 10% lower (p<0.05) for the trabecular tissue (18.0+/-2.8 GPa) than for the cortical tissue (19.9+/-1.8 GPa), and the 0.2% offset tensile yield strain was 15% lower for the trabecular tissue (0.62+/-0.04% vs. 0.73+/-0.05%, p<0.001). The tensile-compressive yield strength asymmetry for the trabecular tissue, 0.62 on average, was similar to values reported in the literature for cortical bone. We conclude that while the elastic modulus and yield strains for trabecular tissue are just slightly lower than those of cortical tissue, because of the cumulative effect of these differences, tissue strength is about 25% greater for cortical bone.  相似文献   

5.
An experimental-numerical study was performed to investigate the relationships between computed tomography (CT)-density and ash density, and between ash density and apparent density for bone tissue, to evaluate their influence on the accuracy of subject-specific FE models of human bones. Sixty cylindrical bone specimens were examined. CT-densities were computed from CT images while apparent and ash densities were measured experimentally. The CT/ash-density and ash/apparent-density relationships were calculated. Finite element models of eight human femurs were generated considering these relationships to assess their effect on strain prediction accuracy. CT and ash density were linearly correlated (R(2)=0.997) over the whole density range but not equivalent (intercep t <0, slope >1). A constant ash/apparent-density ratio (0.598+/-0.004) was found for cortical bone. A lower ratio, with a larger dispersion, was found for trabecular bone (0.459+/-0.100), but it became less dispersed, and equal to that of cortical tissue, when testing smaller trabecular specimens (0.598+/-0.036). This suggests that an experimental error occurred in apparent-density measurements for large trabecular specimens and a constant ratio can be assumed valid for the whole density range. Introducing the obtained relationships in the FE modelling procedure improved strain prediction accuracy (R(2)=0.95, RMSE=7%). The results suggest that: (i) a correction of the densitometric calibration should be used when evaluating bone ash-density from clinical CT scans, to avoid ash-density underestimation and overestimation for low- and high-density bone tissue, respectively; (ii) the ash/apparent-density ratio can be assumed constant in human femurs and (iii) the correction improves significantly the model accuracy and should be considered in subject-specific bone modelling.  相似文献   

6.
The studies of entheses in bioarchaeology attempted to reconstruct the habitual physical activities of past populations. However, the studies of microarchitecture of the underlying bone are still lacking despite well‐known potential of bone internal microarchitecture to reflect mechanical loading. It is unknown whether different morphological expressions of entheseal changes (ECs) correlate with the microstructural characteristics of the underlining bone. This study analyzed bone microstructural characteristics at the entheses. Our focus was on examining the possible successive nature of the three‐stage scale of entheseal macroscopic changes by comparing EC scores with the microarchitectural features at the attachment sites. The study was based on the hypothesis that mechanical loading influences the microarchitecture of the bone at the attachment site. The bone samples were taken from 24 adult male skeletons from medieval cemeteries in Serbia, with different macroscopic expression score of EC. We evaluated the macroscopic and microscopic appearance of four entheses of the lower limbs (origin of the soleus muscle and the insertions of the adductor magnus, gluteus maximus, and iliopsoas muscles). The specimens were scanned using microcomputed tomography (Scanco µCT 40). Our data showed a lack of consistent correlation between stages of the macroscopic scoring systems with microarchitecture at the entheses, only cortical thickness was significantly different between EC stages. Analyzing relationship between trabecular and cortical bone microstructure we found correlations between cortical and trabecular variables only in Stage C. Results of our study suggest that macroscopic EC might not represent distinct successive phases in bone adaptation to mechanical loading. Am J Phys Anthropol 157:81–93, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
In both cortical and trabecular bone loaded in fatigue, the stress-strain loops translate along the strain axis. Previous studies have suggested that this translation is the result of creep associated with the mean stress applied in the fatigue test. In this study, we measured the residual strrain (corresponding to the translation of the stress-strain loops) in fatigue tests on bovine trabecular bone and compared it to an upper bound estimate of the creep strain in each test. Our results indicate that the contribution of creep to the translation of the stress-strain loops is negligible in bovine trabecular bone. These results, combined with models for fatigue in lower density bone, suggest that that creep does not contribute to the fatigue of normal human bone. Creep may make a significant contribution to fatigue in low-density osteoporotic bone in which trabeculae have resorbed, reducing the connectivity of the trabecular structure.  相似文献   

8.
Objective:Characterise the spatiotemporal trabecular and cortical bone responses to complete spinal cord injury (SCI) in young rats.Methods:8-week-old male Wistar rats received T9-transection SCI and were euthanised 2-, 6-, 10- or 16-weeks post-surgery. Outcome measures were assessed using micro-computed tomography, mechanical testing, serum markers and Fourier-transform infrared spectroscopy.Results:The trabecular and cortical bone responses to SCI are site-specific. Metaphyseal trabecular BV/TV was 59% lower, characterised by fewer and thinner trabeculae at 2-weeks post-SCI, while epiphyseal BV/TV was 23% lower with maintained connectivity. At later-time points, metaphyseal BV/TV remained unchanged, while epiphyseal BV/TV increased. The total area of metaphyseal and mid-diaphyseal cortical bone were lower from 2-weeks and between 6- and 10-weeks post-SCI, respectively. This suggested that SCI-induced bone changes observed in the rat model were not solely attributable to bone loss, but also to suppressed bone growth. No tissue mineral density differences were observed at any time-point, suggesting that decreased whole-bone mechanical properties were primarily the result of changes to the spatial distribution of bone.Conclusion:Young SCI rat trabecular bone changes resemble those observed clinically in adult and paediatric SCI, while cortical bone changes resemble paediatric SCI only.  相似文献   

9.
It is generally accepted that the strength and stiffness of trabecular bone is strongly affected by trabecular microstructure. It has also been hypothesized that stress induced adaptation of trabecular bone is affected by trabecular tissue level stress and/or strain. At this time, however, there is no generally accepted (or easily accomplished) technique for predicting the effect of microstructure on trabecular bone apparent stiffness and strength or estimating tissue level stress or strain. In this paper, a recently developed mechanics theory specifically designed to analyze microstructured materials, called the homogenization theory, is presented and applied to analyze trabecular bone mechanics. Using the homogenization theory it is possible to perform microstructural and continuum analyses separately and then combine them in a systematic manner. Stiffness predictions from two different microstructural models of trabecular bone show reasonable agreement with experimental results, depending on metaphyseal region, (R2 greater than 0.5 for proximal humerus specimens, R2 less than 0.5 for distal femur and proximal tibia specimens). Estimates of both microstructural strain energy density (SED) and apparent SED show that there are large differences (up to 30 times) between apparent SED (as calculated by standard continuum finite element analyses) and the maximum microstructural or tissue SED. Furthermore, a strut and spherical void microstructure gave very different estimates of maximum tissue SED for the same bone volume fraction (BV/TV). The estimates from the spherical void microstructure are between 2 and 20 times greater than the strut microstructure at 10-20% BV/TV.  相似文献   

10.
Distal canine femurs were sectioned into 8 mm cubic specimens. Orthogonal compression tests were performed to preyield in two or three directions and to failure in a third. Apparent density and ash weight density were measured for a subset of specimens. The results were compared to the human distal femur results of Ciarelli et al. (Transactions of the 32nd Annual Meeting of the Orthopaedic Research Society, Vol. 11, p. 42, 1986). Quantitative similarities existed in the fraction of components comprising the trabecular tissue of the two species. Qualitative similarities were seen in the positional and anisotropic variation of the mechanical properties, and also in the form and strength of the relationships between the mean modulus and bone density, ultimate stress and density, and ultimate stress and modulus. However, significantly different regression equations resulted for the mean modulus-density, and ultimate stress modulus relationships, indicating that for the same density, canine trabecular bone displays a lower modulus than human, and may achieve greater compressive strains before failure.  相似文献   

11.
Assessment of the mechanical properties of trabecular bone is of major biological and clinical importance for the investigation of bone diseases, fractures and their treatments. Finite element (FE) methods are getting increasingly popular for quantifying the elastic and failure properties of trabecular bone. In particular, voxel-based FE methods have been previously used to calculate the effective elastic properties of trabecular microstructures. However, in most studies, bone tissue moduli were assumed or back-calculated to match the apparent elastic moduli from experiments, which often lead to surprisingly low values when compared to nanoindentation results. In this study, voxel-based FE analysis of trabecular bone is combined with physical measures of volume fraction, micro-CT (microCT) reconstructions, uniaxial mechanical tests and specimen-specific nanoindentation tests for proper validation of the method. Cylindrical specimens of cancellous bone were extracted from human femurs and their volume fraction determined with Archimede's method. Uniaxial apparent modulus of the specimens was measured with an improved tension-compression testing protocol that minimizes boundary artefacts. Their microCT reconstructions were segmented to match the measured bone volume fraction and used to create full-size voxel models with 30-45 microm element size. For each specimen, linear isotropic elastic material properties were defined based on specific nanoindentation measurements of its embedded bone tissue. Linear FE analyses were finally performed to simulate the uniaxial mechanical tests. Additional parametric analyses were performed to evaluate the potential errors on the predicted apparent modulus arising from variations in segmentation threshold, tissue modulus, and the use of 125-mm(3) cubic sub-regions. The results demonstrate an excellent correspondence between experimental measures and FE predictions of uniaxial apparent modulus. In conclusion, the adopted voxel-based FE approach is found to be a robust method to predict the linear elastic properties of human cancellous bone, provided segmentation of the microCT reconstructions is carefully calibrated, tissue modulus is known a priori and the entire region of interest is included in the analysis.  相似文献   

12.
A study on the bone system state in healthy volunteers has been performed before and after 105-day experiment in hermetically isolated environment (the Mars-105 experiment) using dual energy X-ray absorptiometry (DXA) and peripheral quantitative computed tomography (pQCT). The values of bone mineral density (BMD), volumetric bone mineral density (VBMD), and bone structural characteristics of distal segments in radius and tibia have been evaluated. No significant DXA changes have been revealed in segments of skeleton critically important in terms of biomechanics. Microarchitectural deterioration (a decrease in the trabecula number and increase in the bone tissue heterogeneity) has been found using the pQCT technique in the radius of the majority of subjects. A VBMD decrease has been revealed for both cortical and trabecular bones in tibia, along with an unexpected trabecular bone improvement in the form of an increase in the trabecula quantity and decrease in bone tissue heterogeneity. Comprehensive studies, including estimation of projective and volumetric bone mineral densities (the bone mineral content) and bone structural characteristics (bone quality) are required to have a clear view on the changes in the bone system under the conditions of a simulation experiment.  相似文献   

13.
Acoustic microscopy (30-60 microm resolution) and nanoindentation (1-5 microm resolution) are techniques that can be used to evaluate the elastic properties of human bone at a microstructural level. The goals of the current study were (1) to measure and compare the Young's moduli of trabecular and cortical bone tissues from a common human donor, and (2) to compare the Young's moduli of bone tissue measured using acoustic microscopy to those measured using nanoindentation. The Young's modulus of cortical bone in the longitudinal direction was about 40% greater than (p<0.01) the Young's modulus in the transverse direction. The Young's modulus of trabecular bone tissue was slightly higher than the transverse Young's modulus of cortical bone, but substantially lower than the longitudinal Young's modulus of cortical bone. These findings were consistent for both measurement methods and suggest that elasticity of trabecular tissue is within the range of that of cortical bone tissue. The calculation of Young's modulus using nanoindentation assumes that the material is elastically isotropic. The current results, i.e., the average anisotropy ratio (E(L)/E(T)) for cortical bone determined by nanoindentation was similar to that determined by the acoustic microscope, suggest that this assumption does not limit nanoindentation as a technique for measurement of Young's modulus in anisotropic bone.  相似文献   

14.
With the prevalent use of DXA-measured BMD to assess pathologic hip fractures and its recently reported lack of reliability to predict fracture or account for efficacy of anti-resorptive therapy, it is reasonable to assess whether variations in the primary and secondary tensile and compressive trabecular microstructure can account for variations in proximal femur strength in comparison to DXA-measured BMD. To that end, microstructural and densitometric measures of trabecular bone specimens, from discrete sites within the proximal femur, were correlated with their mechanical properties. We hypothesize that accounting for regional variations in trabecular microstructure will improve predictions of proximal femur strength and stiffness compared to bone density measured by DXA. Forty-seven samples (seven donors) from seven distinct sites of human proximal femur underwent DXA and muCT imaging and mechanical testing. The results revealed significant variations in BMC, morphometric indices and mechanical properties within the proximal femur. This work has demonstrated that the mechanical performance of each sub-region is highly dependent on the corresponding trabecular microstructure. BMD measured by DXA at standard regions of interest cannot resolve the variations in trabecular density and microstructure that govern the mechanical behavior of the proximal femur. This work suggests that a quantitative Singh index that uses high resolution QCT to monitor the trabecular microstructure at specific sub-regions of the proximal femur may allow better predictions of hip fracture risk in individual patients and an improved assessment of changing bone structure in response to pharmacological interventions.  相似文献   

15.
Bone quantity and bone quality are important factors in determining the properties and the mechanical functions of bone. This study examined the effects of disrupting bone morphogenetic protein (BMP) signaling through BMP receptors on bone quantity and bone quality. More specifically, we disrupted two BMP receptors, Acvr1 and Bmpr1a, respectively, in Osterix-expressing osteogenic progenitor cells in mice. We examined the structural changes to the femora from 3-month old male and female conditional knockout (cKO) mice using micro-computed tomography (micro-CT) and histology, as well as compositional changes to both cortical and trabecular compartments of bone using Raman spectroscopy. We found that the deletion of Acvr1 and Bmpr1a, respectively, in an osteoblast-specific manner resulted in higher bone mass in the trabecular compartment. Disruption of Bmpr1a resulted in a more significantly increased bone mass in the trabecular compartment. We also found that these cKO mice showed lower mineral-to-matrix ratio, while tissue mineral density was lower in the cortical compartment. Collagen crosslink ratio was higher in both cortical and trabecular compartments of male cKO mice. Our study suggested that BMP signaling in osteoblast mediated by BMP receptors, namely ACVR1 and BMPR1A, is critical in regulating bone quantity and bone quality.  相似文献   

16.
Individual trabecula segmentation (ITS) technique can decompose the trabecular bone network into individual trabecular plates and rods and is capable of quantifying the plate/rod-related microstructural characteristics of trabecular bone. This novel technique has been shown to be able to provide in-depth insights into micromechanics and failure mechanisms of human trabecular bone, as well as to distinguish the fracture status independent of area bone mineral density in clinical applications. However, the plate/rod microstructural parameters from ITS have never been correlated to experimentally determined mechanical properties of human trabecular bone. In this study, on-axis cylindrical trabecular bone samples from human proximal tibia (n=22), vertebral body (n=10), and proximal femur (n=21) were harvested, prepared, scanned using micro computed-tomography (µCT), analyzed with ITS and mechanically tested. Regression analyses showed that the plate bone volume fraction (pBV/TV) and axial bone volume fraction (aBV/TV) calculated by ITS analysis correlated the best with elastic modulus (R2=0.96–0.97) and yield strength (R2=0.95–0.96). Trabecular plate-related microstructural parameters correlated highly with elastic modulus and yield strength, while most rod-related parameters were found inversely and only moderately correlated with the mechanical properties. In addition, ITS analysis also identified that trabecular bone at human femoral neck had the highest trabecular plate-related parameters while the other sites were similar with each other in terms of plate–rod microstructure.  相似文献   

17.
Strain-controlled uniaxial fatigue and monotonic tensile tests were conducted on turned femoral cortical bone specimens obtained from baboons at various ages of maturity. Fatigue loading produced a progressive loss in stiffness and an increase in hysteresis prior to failure, indicating that immature primate cortical bone responds to repeated loading in a fashion similar to that previously observed for adult human cortical bone. Bone fatigue resistance under this strain controlled testing decreased during maturation. Maturation was also associated with an increase in bone dry density, ash fraction and elastic modulus. The higher elastic modulus of more mature bone meant that these specimens were subjected to higher stress levels during testing than more immature bone specimens. Anatomical regions along the femoral shaft exhibited differences in strength and fatigue resistance.  相似文献   

18.
Objective:This study aimed to explore optimal conditions of whole-body vibration (WBV) for improving bone properties in aged rats.Methods:Eighty-week-old rats were divided into baseline control (BC), age-matched control (CON) and experimental groups, which underwent WBV (0.5 g) at various frequencies (15, 30, 45, 60 or 90 Hz) or WBV (45 Hz) with various magnitudes (0.3, 0.5, 0.7 or 1.0 g) for 7 weeks. After interventions, femur bone size, bone mechanical strength and circulating bone formation/resorption markers were measured, and trabecular bone microstructure (TBMS) and cortical bone geometry (CBG) of femurs were analyzed by micro-CT.Results:Several TBMS parameters and trabecular bone mineral content were significantly lower in the 15 Hz WBV (0.5 g) group than in the CON group, suggesting damage to trabecular bone. On the other hand, although frequency/magnitude of WBV did not influence any CBG parameters, the 0.7 g and 1.0 g WBV (45 Hz) group showed an increase in tissue mineral density of cortical bone compared with the BC and CON groups, suggesting the possibility of improving cortical bone properties.Conclusion:Based on these findings, it should be noted that WBV conditions are carefully considered when applied to elderly people.  相似文献   

19.
Trabecular bone is composed of organized mineralized collagen fibrils, which results in heterogeneous and anisotropic mechanical properties at the tissue level. Recently, biomechanical models computing stresses and strains in trabecular bone have indicated a significant effect of tissue heterogeneity on predicted stresses and strains. However, the effect of the tissue-level mechanical anisotropy on the trabecular bone biomechanical response is unknown. Here, a computational method was established to automatically impose physiologically relevant orientation inherent in trabecular bone tissue on a trabecular bone microscale finite element model. Spatially varying tissue-level anisotropic elastic properties were then applied according to the bone mineral density and the local tissue orientation. The model was used to test the hypothesis that anisotropy in both homogeneous and heterogeneous models alters the predicted distribution of stress invariants. Linear elastic finite element computations were performed on a 3 mm cube model isolated from a microcomputed tomography scan of human trabecular bone from the distal femur. Hydrostatic stress and von Mises equivalent stress were recorded at every element, and the distributions of these values were analyzed. Anisotropy reduced the range of hydrostatic stress in both tension and compression more strongly than the associated increase in von Mises equivalent stress. The effect of anisotropy was independent of the spatial redistribution high compressive stresses due to tissue elastic heterogeneity. Tissue anisotropy and heterogeneity are likely important mechanisms to protect bone from failure and should be included for stress analyses in trabecular bone.  相似文献   

20.
The mechanical characteristics of cancellous bone at the upper femoral region   总被引:10,自引:0,他引:10  
Mechanical behaviour of trabecular bone at the upper femoral region of human bones has been studied by compression tests on trabecular bone specimens removed from normal femora obtained at autopsy. Compression tests were performed along three different axes of loading on wet specimens and high loading rates. Femoral head specimens proved to be the strongest for any axis of loading.

Large variation in compressive strength and modulus of elasticity is seen within and between femoral bone samples. Anisotropy and differences in anisotropy for the different regions have been observed. A significant correlation between mechanical properties (σ max − E) and bone mineral content of the specimen was found.

Tests on whole bone structures demonstrate that removal of the central part of the trabecular bone at the proximal femur reduces the strength for impact loading considerably (± 50%).  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号