共查询到20条相似文献,搜索用时 0 毫秒
1.
Low phosphate nutrition results in increased chlorophyll fluorescence, reduced photosynthetic rate, accumulation of starch and sucrose in leaves, and low crop yields. This study investigated physiological responses of soybean ( Glycine max [L.] Merr.) leaves to low inorganic phosphate (Pi) conditions. Responses of photosynthesis to light and CO 2 were examined for leaves of soybean grown at high (0.50 millimolar) or low (0.05 millimolar) Pi. Leaves of low Pi plants exhibited paraheliotropic orientation on bright sunny days rather than the normal diaheliotropic orientation exhibited by leaves of high Pi soybeans. Leaves of plants grown at high Pi had significantly higher light saturation points (1000 versus 630 micromole photons [400-700 nanometers] per square meter per second) and higher apparent quantum efficiency (0.062 versus 0.044 mole CO 2 per mole photons) at ambient (34 pascals) CO 2 than did low Pi leaves, yet stomatal conductances were similar. High Pi leaves also had significantly higher carboxylation efficiency (2.90 versus 0.49 micromole CO 2 per square meter per second per pascal), a lower CO 2 compensation point (6.9 versus 11.9 pascals), and a higher photosynthetic rate at 34 pascals CO 2 (19.5 versus 6.7 micromoles CO 2 per square meter per second) than did low Pi leaves. Soluble protein (0.94 versus 0.73 milligram per square centimeter), ribulose-1,5-bisphosphate carboxylase/oxygenase content (0.33 versus 0.25 milligram per square centimeter), and ribulose-1,5-bisphosphate carboxylase/oxygenase specific activity (25.0 versus 16.7 micromoles per square meter per second) were significantly greater in leaves of plants in the high Pi treatment. The data indicate that Pi stress alters the plant's CO 2 reduction characteristics, which may in turn affect the plant's capacity to accommodate normal radiation loads. 相似文献
3.
Exogenous application of cytokinin to raceme tissues of soybean( Glycine max(L.) Merr.) has been shown to stimulate flower productionand to prevent flower abortion. The effects of these hormoneapplications have been ascertained for treated tissues, butthe effects of cytokinins on total seed yields in treated plantshave not been evaluated. Our objectives were to examine theeffects of systemic cytokinin applications on soybean yieldsusing an experimental line of soybeans, SD-87001, that has beenshown to be highly sensitive to exogenous cytokinin application.Soybeans were grown hydroponically or in pots in the greenhouse,and 6-benzylaminopurine (BA) was introduced into the xylem streamthrough a cotton wick for 2 weeks during anthesis. After theplants had matured, the number of pods, seeds per pod, and thetotal seed weight per plant were measured. In the greenhouse,application of 3.4 x 10 -7 moles of BA resulted in a 79% increasein seed yield compared with controls. Results of field trialsshowed much greater variability within treatments, with consistent,but non-significant increases in seed number and total yieldsof about 3%. Data suggest that cytokinin levels play a significantrole in determining total yield in soybeans, and that increasingcytokinin concentrations in certain environments may resultin increased total seed production. Copyright 2001 Annals ofBotany Company Glycine max, soybean, flower abortion, cytokinin, 6-benzylaminopurine, hydroponic, seed yield, wicking 相似文献
4.
Water deficits during flowering decrease the number of seed-bearingpods in soybean ( Glycine max L. Merr.). Failure to set podsmay indicate an inherent sensitivity to low tissue water potential( 相似文献
5.
Nitrate reductase activity of soybeans ( Glycine max L. Merr.) was evaluated in soil plots and outdoor hydroponic gravel culture systems throughout the growing season. Nitrate reductase profiles within the plant canopy were also established. Mean activity per gram fresh weight per hour of the entire plant canopy was highest in the seedling stage while total activity (activity per gram fresh weight per hour times the total leaf weight) reached a maximum when plants were in the full bloom to midpod fill stage. Nitrate reductase activity per gram fresh weight per hour was highest in the uppermost leaf just prior to full expansion and declined with leaf position lower in the canopy. Total nitrate reductase activity per leaf was also highest in the upper-most fully expanded leaf during early growth stages. Maximum total activity shifted to leaf positions lower in the plant canopy with later growth stages. 相似文献
6.
Soybeans ( Glycine max L.) are being introduced as a cash crop to small scale farmers in Zambia for rotation in their farming systems. The objectives of this study were to compare and select the most approriate non-fixing reference crop for estimating N 2 fixation by soybeans and assess yields and N 2 fixation of soybeans in Zambia. Nitrogen isotope dilution techniques using 15N-labelled organic or inorganic materials were utilized. Two nonnodulating soybean cultivars, Clark RJ1 and N77 or in their absence Pearl millet ( Panicum glaucum L.) were judged to be appropriate reference crops. A local soybean fixing cultivar ( Glycine max L. cv. Magoye) rated highest among three cultivars tested for its ability to support symbiotic N 2 fixation by B. japonicum under the experimental conditions. Values of percent N derived from atomosphere for this cultivar were in the order of 65 to 70%.deceased.Contribution no R531 of the Saskatchewan Institute of Pedology. Present address (REK): Esso Chemical Canada, P.O. Box 3010, Lethbridge, Alberta Canada T1J 4A9. 相似文献
7.
Growth chamber studies with soybeans ( Glycine max [L.] Merr.) were designed to determine the relative limitations of NO 3−, NADH, and nitrate reductase (NR) per se on nitrate metabolism as affected by light and temperature. Three NR enzyme assays (+NO 3−in vivo, −NO 3−in vivo, and in vitro) were compared. NR activity decreased with all assays when plants were exposed to dark. Addition of NO 3− to the in vivo NR assay medium increased activity (over that of the −NO 3−in vivo assay) at all sampling periods of a normal day-night sequence (14 hr-30 C day; 10 hr-20 C night), indicating that NO 3− was rate-limiting. The stimulation of in vivo NR activity by NO 3− was not seen in plants exposed to extended dark periods at elevated temperatures (16 hr-30 C), indicating that under those conditions, NO 3− was not the limiting factor. Under the latter condition, in vitro NR activity was appreciable (19 μmol NO 2− [g fresh weight, hr] −1) suggesting that enzyme level per se was not the limiting factor and that reductant energy might be limiting. 相似文献
8.
Reproductive growth of intracellular bacteria from isolated protoplasts in nodules of clover and soybean was directly investigated using a microchamber with visual and video recording. Differentiated bacteriods from clover nodules uniformly failed to reproduce. Such growth as occurred came from undifferentiated rhizobia from within the protoplast or extracellularly in the nodule. Plating investigation gave results in agreement with this conclusion. Osmoprotective media failed to secure the reproduction of differentiated clover bacteroids. Reproductive growth of bacteroids from protoplasts and crushed nodules of soybean was regularly observed in the microchamber and determined as proportionate colony-forming ability (CFA) on laboratory media. The CFA markedly increased with age of nodule and with the addition of nodule or root extract. The promoting effect of such extracts was reduced after heating for 60 min at 100°C, and lost completely after 20 min at 121°C. High osmolarity in the suspending and culture media was detrimental to bacteroid recovery.Abbreviations BMM
Bergersen's modified medium
- B +m
BMM with additional mannitol
- CDB
Chlamydomonas dilution buffer
- PDB
protoplast dilution buffer
- PDB
PDB without mannitol or sorbitol
- RMM
Rhizobium minimal medium
- R +m
RMM with mannitol instead of sucrose
- YMA, YMB
yeast mannitol agar and broth, respectively. For details, see Materials and methods 相似文献
9.
Soybean plants (Merr) were grown in the field in three plots. Sixteen days after sowing, two plots were covered with blue and red polyvinylchloride filters (0.45 millimeter thick) and one remained uncovered as control. Leaves of all plots were analyzed for total, free, esterified, and glycosidic sterols at two successive stages of plant growth (flowering and podripening). 相似文献
10.
Experiments were conducted with soybean ( Glycine max [L.] Merr. cv `Ransom') plants to determine if diurnal rhythms in net carbon dioxide exchange rate (CER), stomatal resistance, and sucrose-phosphate synthase (SPS) activity persisted in constant environmental conditions (constant light, LL; constant dark DD) and to assess the importance of these rhythms to the production of nonstructural carbohydrates (starch, sucrose, and hexose). Rhythms in CER, stomatal resistance, and SPS activity were observed in constant environmental conditions but the rhythms differed in period length, amplitude, and phase. The results indicated that these photosynthetic parameters are not controlled in a coordinated manner. The activity of UDPG pyrophosphorylase, another enzyme involved in sucrose formation, did not fluctuate rhythmically in constant conditions but increased with time in plants in LL. In LL, the rhythm in CER was correlated positively with fluctuations in total chlorophyll ( r = 0.810) and chlorophyll a ( r = 0.791) concentrations which suggested that changes in pigment concentration were associated with, but not necessarily the underlying mechanism of, the rhythm in photosynthetic rate. Assimilate export rate, net starch accumulation rate, and leaf sucrose concentration also fluctuated in constant light. No single photosynthetic parameter was closely correlated with fluctuations in assimilate export during LL; thus, assimilate export may have been controlled by interactions among the endogenous rhythms in CER, SPS activity, or other metabolic factors which were not measured in the present study. 相似文献
11.
用高效液相色谱法测定大豆和苜蓿种子内葫芦巴碱的含量的结果表明:以氨基键合柱为固定相,乙腈和水为流动相,可快速而比较准确的测定种子中葫芦巴碱含量。大豆和苜蓿种子中葫芦巴碱的含量高于葫芦巴植物的,可作为提取葫芦巴碱的原料。 相似文献
12.
Photosynthetic rate, ribulose 1,5-bisphosphate carboxylase activity, specific leaf weight, and leaf concentrations of carbohydrates, proteins, chlorophyll, and inorganic phosphate were determined periodically from midbloom until maturity in leaves of soybean plants ( Glycine max L., var. Hodgson) from which reproductive and vegetative sinks had been removed 32 hours before measurement, or continuously since midbloom. Leaf photosynthesis, measured in the top of the canopy, was partially inhibited by both sink removal treatments. This inhibition was of constant magnitude from midbloom until maturity. Leaf photosynthesis in the top of the canopy declined from midbloom until maturity in the control as well as in the desinked plants. The decline in photosynthesis was gradual at first, but later became more abrupt. The photosynthetic decline was equally evident in the yellowing leaves of control plants and in the dark green leaves of the continuously desinked plants. Neither the inhibition of photosynthesis by sink removal nor the decline in photosynthetic rate with time was clearly related to any of the measured traits. 相似文献
13.
The optimum in vivo nitrate reductase (NR) assay medium for soybean (Glycine max [L.] Merr.) leaves was 50 mm KNO(3), 1% (v/v) 1- propanol, and 100 mm potassium phosphate buffer (pH 7.5).Loss of in vivo NR activity from leaves of soybeans exposed to dark was fastest at 40 C and slowest at 20 C. However, by the end of a 16-hr dark period, even those plants exposed to the lowest (20 C) temperature had lost 95% of the initial activity. Upon re-exposure to light, following a 16 hr-30 C dark period, in vivo NR activity increased rapidly to maximum levels after 4 hr light. The rate of increase was proportional to light intensity (6, 16, and 45 klux) and independent of temperature (20, 30, and 40 C).Studies with field-grown soybeans indicated that mighttime temperature (16-27 C) had no effect on the subsequent in vivo NR activity in sunlight at ambient temperature. There was a marked decrease in in vivo NR activity in late afternoon with the field-grown plants. This decrease continued throughout the night with elevated temperature (27 C) while NR activity increased when a cooler (16 C) night temperature was imposed.The changes in in vivo NR activity in response to light and dark treatments were quite rapid and thought to be related to energy limitations as well as enzyme level. 相似文献
14.
Cells of Bradyrhizobium japonicum were grown in media containing either 1.0 mM or 0.5 μM phosphorus. In growth pouch experiments, infection of the primary root of soybean ( Glycine max (L.) Merr.) by B. japonicum USDA 31, 110, and 142 was significantly delayed when P-limited cells were applied to the root. In a greenhouse experiment, B. japonicum USDA 31, 110, 122, and 142 grown with sufficient and limiting P were used to inoculate soybeans which were grown with either 5 μM or 1 mM P nutrient solution. P-limited cells of USDA 31 and 110 formed significantly fewer nodules than did P-sufficient cells, but P-limited cells of USDA 122 and 142 formed more nodules than P-sufficient cells. The increase in nodule number by P-limited cells of USDA 142 resulted in significant increases in both nodule mass and shoot total N. In plants grown with 1 mM P, inoculation with P-limited cells of USDA 110 resulted in lower total and specific nitrogenase activities than did inoculation with P-sufficient cells. Nodule numbers, shoot dry weights, and total N and P were all higher in plants grown with 1 mM P, and plants inoculated with USDA 31 grew poorly relative to plants receiving strains USDA 110, 122, and 142. Although the effects of soybean P nutrition were more obvious than those of B. japonicum P nutrition, we feel that it is important to develop an awareness of the behavior of the bacterial symbiont under conditions of nutrient limitation similar to those found in many soils. 相似文献
15.
Protoplasts were isolated enzymatically from immature cotyledons of soybean. The protoplasts divided to form calli in the K8P liquid medium. The calli further grew to 2–3 mm on the solid K8 medium and were transferred onto the MSB medium (MS minerals+B5 organic components+0.5–1.0 mg/l 2,4-D+0.2–0.5 mg/l BA) to obtain compact and nodular calli. Shoot formation was initiated on M1 medium (MSB medium with 0.15 mg/1 NAA, and BA, KT and ZT, 0.5 mg/l of each, 500 mg/1 CH). Differentiation frequency was 13.6–24.2%. Plants have been regenerated from protoplasts of immature cotyledons in 2 cultivars, and normal pods were obtained from them. 相似文献
17.
The relationship between cadmium-induced oxidative stress and nodule senescence in soybean was investigated at two different concentrations of cadmium ions (50 and 200 μM), in solution culture. High cadmium concentration (200 μM) resulted in oxidative stress, which was indicated by an increase in thiobarbituric acid reactive substances content and a decrease in leghemoglobin levels. Consequently, nitrogenase activity was decreased, and increases in iron and ferritin levels were obtained. Senescent parameters such as ethylene production, increased levels of ammonium and an increase in protease activity were simultaneously observed. Glutamate dehydrogenase activity was also increased. Peroxidase activity decreased at the higher cadmium concentration while the lower cadmium treatment produced changes in peroxidase isoforms, compared to control nodules. Ultrastructural investigation of the nodules showed alterations with a reduction of both bacteroids number per symbiosome and the effective area for N 2-fixation. These results strongly suggest that, at least at the higher concentration, cadmium induces nodule senescence in soybean plants. 相似文献
18.
Protoplasts were isolated from immature cotyledons of six cultivars of Glycine max L. and cultured in the KP8 liquid medium supplemented with 0.2 mg/L 2,4-D, 1 mg/L NAA and 0.5 mg/L ZT. The protoplasts started to divide after 3–5 days of culture. Sustained divisions resulted in mass production of cell colonies and small calli in 6 weeks. The calli further grew to 2–3 mm on the gelritesolidified K8 medium and were transferred onto the MSB medium with 1 mg/L 2,4-D and 0.25 mg/L BA, to obtain compact and nodular calli. Shoot formation was initiated on MSB medium with 0.15 mg/L NAA, and BA, KT and ZT, 0.5 mg/L of each, with or without 500 mg/L CH. It was followed by plant regeneration. So far, 87 plants have been regenerated from 4 cultivars, and normal seeds were obtained from them after transplanting into pots.Abbreviation IAA
indol-3-acetic acid
- NAA
naphthalene acetic acid
- 2,4-D
2,4-dichlorophenoxy acetic acid
- KT
kinetin
- BA
6-benzyladenine
- ZT
zeatin
- CH
casein hydrolysate 相似文献
19.
Reproductive as well as vegetative parameters of mature soybean ( Glycine max [L.] Merr. cv. Wye) plants grown in chambers in which the aerial portion was exposed to altered pO 2 during all or part of the growth cycle were measured. Oxygen concentration was found to be a key factor controlling all phases of reproductive development. Exposure to 5% O 2 from early seedling stage to senescence increased leaf, stem, and root dry weights and reduced seed yields when compared to 21% O 2; exposure to low O 2 during the vegetative growth stage from early seedling to mid-flowering arrested pod but not seed development; exposure from mid-flowering to mid-pod filling almost completely arrested seed but not pod development; exposure from mid-pod filling to senescence arrested seed development at the mid-filling stage. 相似文献
20.
Genes controlling nitrogen-fixing symbioses of legumes with specialized bacteria known as rhizobia are presumably the products of many millions of years of evolution. Different adaptative solutions evolved in response to the challenge of survival in highly divergent complexes of symbionts. Whereas efficiency of nitrogen fixation appears to be controlled by quantitative inheritance, genes controlling nodulation are qualitatively inherited. Genes controlling nodulation include those for non-nodulation, those that restrict certain microsymbionts, and those conditioning hypernodulation, or supernodulation. Some genes are naturally occurring polymorphisms, while others were induced or were the result of spontaneous mutations. The geographic patterns of particular alleles indicate the role of coevolution in determining symbiont specificites and compatibilities. For example, the Rj4 allele occurs with higher frequency (over 50%) among the soybean ( G. max) from Southeast Asia. DNA homology studies of strains of Bradyrhizobium that nodulate soybean indicated two groups so distinct as to warrant classification as two species. Strains producing rhizobitoxine-induced chlorosis occur only in Group II, now classified as B. elkanii. Unlike B. japonicum, B. elkanii strains are characterized by (1) the ability to nodulate the rj1 genotype, (2) the formation of nodule-like structures on peanut, (3) a relatively high degree of ex planta nitrogenase activity, (4) distinct extracellular polysaccharide composition, (5) distinct fatty acid composition, (6) distinct antibiotic resistance profiles, and (7) low DNA homology with B. japonicum. Analysis with soybean lines near isogenic for the Rj4 versus rj4 alleles indicated that the Rj4 allele excludes a high proportion of B. elkanii strains and certain strains of B. japonicum such as strain USDA62 and three serogroup 123 strains. These groups, relatively inefficient in nitrogen fixation with soybean, tend to predominate in soybean nodules from many US soils. The Rj4 allele, the most common allelic form in the wild species, has a positive value for the host plants in protecting them from nodulation by rhizobia poorly adapted for symbiosis. 相似文献
|