首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Regulation of Transpiration to Improve Crop Water Use   总被引:1,自引:0,他引:1  
Decreasing fresh water supplies and increasing agricultural drought threaten sustainable worldwide crop production. Consequently, there is a global priority to develop crops with higher water use efficiency (WUE): biomass production or yield per unit of water used. Water use efficiency varies substantially among species and genotypes within a species, and a major effort is now underway to identify the genetic determinants of WUE. Today, it is known that genotypes in primary gene pools exhibit allelic variation for WUE through mechanisms that regulate transpiration, which is the conductance of water through stomata, the cuticle, and the boundary layer. Because of the differential diffusion properties of water and carbon dioxide (CO2) through these pathways, it is feasible that WUE could be improved by decreasing transpiration without a concomitant reduction in CO2 uptake. Since CO2 uptake and transpirational water loss occur predominantly through stomatal pores, it is not surprising that genes involved in stomatal development and stomatal opening/closing impact WUE. Furthermore, loss- and gain-of-function genetic screens have identified genes that regulate transpiration and WUE by yet undetermined mechanisms. This review will discuss the genetic determinants that regulate transpiration and WUE in the context of the modern agricultural goal of improving WUE while sustaining biomass and yield.  相似文献   

3.
Bio-water saving can be defined as the reduction of crop water consumption employing biological measures. This is the focus of efforts to save water in agriculture. Different levels of water-use efficiency (WUE) have been developed. The genetic diversity of WUE has been confirmed in several crops. WUE is the basis of bio-watering and physiological WUE is the key. The degree to develop physiological WUE potential decides the performance of bio-watering in the field. During this process, fine management is important. Thus bio-watering is closely related to WUE. Crop WUE has improved and evolved as a result of breeding programs. Many WUE genes have been located in different genomic and aneuploid materials and have been mapped by various molecular markers in a number of crops. Two genes, (Erecta and alx8), which control water use efficiency; have been cloned in Arabidopsis thaliana. Eleven WUE genes have been identified by microarray analysis. Six genes associated with drought resistance and photosynthesis have been transfered into crops which have resulted in improving WUE and drought resistance. WUE is important on the basis of functional identification of more drought resistant gene resources. The popularity on the industrial-scale of transgenic plants is still in its infancy and one of the reasons for this is the lack of knowledge regarding molecular mechanisms and it is a very immature technology. Enhanced agricultural practices and the theoretical aspects of improving crop WUE have been developed and are discussed in this review paper. Rapid progress will be made in bio-water savings and that crop WUE can be substantially improved under both favorable and unfavorable water-limited environments. This will be achieved by a combination of traditional breeding techniques and the introduction of modern biotechnology.  相似文献   

4.
Genomics-based approaches to improve drought tolerance of crops   总被引:13,自引:0,他引:13  
The genetic bases of the molecular, cellular and developmental responses to drought involve many gene functions regulated by water availability. Genomics-based approaches provide access to agronomically desirable alleles present at quantitative trait loci (QTLs) that affect such responses, thus enabling us to improve the drought tolerance and yield of crops under water-limited conditions more effectively. Marker-assisted selection is already helping breeders improve drought-related traits. Analysis of sequence data and gene products should facilitate the identification and cloning of genes at target QTLs. Based on such premises, we envision a quick broadening of our understanding of the genetic and functional basis of drought tolerance. Novel opportunities will be generated for tailoring new genotypes "by design". Harnessing the full potential of genomics-assisted breeding will require a multidisciplinary approach and an integrated knowledge of the molecular and physiological processes influencing tolerance to drought.  相似文献   

5.
在全球性能源紧缺和我国能源植物大规模种植困难等大背景下,优质、充足的原料供应已成为制约生物质能源产业发展的主要限制因素。在确保能源植物高效生产和克服"与粮争地、与人争粮"现实的同时,挖掘我国边际土壤高产高效生产能源植物的土地优势和增产潜力。通过筛选评价适宜西北干旱地区高抗逆的新型能源植物种类,开发应用能源植物与粮经作物间套作栽培技术,实现新型能源植物对逆境资源的高效利用和可持续规模化种植,提高能源植物的生产力和优化能源物种的区域配置,增加土地产值和农民收入,缓解能源紧缺,达到经济、生态和社会效益多赢,为我国能源和粮食安全提供技术支撑。  相似文献   

6.
Challenges in breeding for yield increase for drought   总被引:2,自引:0,他引:2  
Crop genetic improvement for environmental stress at the molecular and physiological level is very complex and challenging. Unlike the example of the current major commercial transgenic crops for which biotic stress tolerance is based on chemicals alien to plants, the complex, redundant and homeostatic molecular and physiological systems existing in plants must be altered for drought tolerance improvement. Sophisticated tools must be developed to monitor phenotype expression at the crop level to characterize variation among genotypes across a range of environments. Once stress-tolerant cultivars are developed, regional probability distributions describing yield response across years will be necessary. This information can then aid in identifying environmental conditions for positive and negative responses to genetic modification to guide farmer selection of stress-tolerant cultivars.  相似文献   

7.
Potentials toward genetic engineering of drought-tolerant soybean   总被引:1,自引:0,他引:1  
Soybean (Glycine max) is one of the most important crops in legume family. Soybean and soybean-based products are also considered as popular food for human and animal husbandry. With its high oil content, soybean has become a potential resource for the production of renewable fuel. However, soybean is considered one of the most drought-sensitive crops, with approximately 40% reduction of the yield in the worst years. Recent research progresses in elucidation of biochemical, morphological and physiological responses as well as molecular mechanisms of plant adaptation to drought stress in model plants have provided a solid foundation for translational genomics of soybean toward drought tolerance. In this review, we will summarize the recent advances in development of drought-tolerant soybean cultivars by gene transfer.  相似文献   

8.
We examined the relationships among productivity, water use efficiency (WUE) and drought tolerance in 29 genotypes of Populus x euramericana (Populus deltoides x Populus nigra), and investigated whether some leaf traits could be used as predictors for productivity, WUE and drought tolerance. At Orléans, France, drought was induced on one field plot by withholding water, while a second plot remained irrigated and was used as a control. Recorded variables included stem traits (e.g. biomass) and leaf structural (e.g. leaf area) and functional traits [e.g. intrinsic water use efficiency (Wi) and carbon isotope discrimination (Delta)]. Productivity and Delta displayed large genotypic variability and were not correlated. Delta scaled negatively with Wi and positively with stomatal conductance under moderate drought, suggesting that the diversity for Delta was mainly driven by stomatal conductance. Most of the productive genotypes displayed a low level of drought tolerance (i.e. a large reduction of biomass), while the less productive genotypes presented a large range of drought tolerance. The ability to increase WUE in response to water deficit was necessary but not sufficient to explain the genotypic diversity of drought tolerance.  相似文献   

9.
The use of next‐generation sequencers and advanced genotyping technologies has propelled the field of plant genomics in model crops and plants and enhanced the discovery of hidden bridges between genotypes and phenotypes. The newly generated reference sequences of unstudied minor plants can be annotated by the knowledge of model plants via translational genomics approaches. Here, we reviewed the strategies of translational genomics and suggested perspectives on the current databases of genomic resources and the database structures of translated information on the new genome. As a draft picture of phenotypic annotation, translational genomics on newly sequenced plants will provide valuable assistance for breeders and researchers who are interested in genetic studies.  相似文献   

10.
Agriculture productivity is severely hampered by soil salinity, drought and other environmental stresses. Studies on stress-resistant plants (halophytes, xerophytes, accumulating plants for specific toxic ions) have illuminated some mechanisms of stress tolerance in plants at metabolic or molecular levels, which gave some clues on how to genetically engineer stress-tolerant crops. With the isolation of more stress-responsive genes, genetic engineering with modified expression of stress responsive genes may be an effective way to produce stress-tolerant crops. In the present report, two genes (PEAMT and BADH) encoding the corresponding key enzymes for choline and glycine betaine (an important osmoprotectant) biosynthesis in plants were isolated in oilseed rape, an important oil crop in the world. Effects of salt stress on their expression were studied with quantitative PCR and their potential use in the genetic engineering of oilseed rape was discussed.  相似文献   

11.
12.
13.
Drought continues to be a major constraint on cereal production in many areas, and the frequency of drought is likely to increase in most arid and semi-arid regions under future climate change scenarios. Considerable research and breeding efforts have been devoted to investigating crop responses to drought at various levels and producing drought-resistant genotypes. Plant physiology has provided new insights to yield improvement in drought-prone environments. Crop performance could be improved through increases in water use, water-use efficiency (WUE) and harvest index. Greater WUE can be achieved by coordination between photosynthesis and transpiration. Carbon isotope discrimination (Δ(13) C) has been demonstrated to be a simple but reliable measure of WUE, and negative correlation between them has been used to indirectly estimate WUE under selected environments. New tools, such as quantitative trait loci (QTL) mapping and gene expression profiling, are playing vital roles in dissecting drought resistance-related traits. The combination of gene expression and association mapping could help identify candidate genes underlying the QTL of interest and complement map-based cloning and marker-assisted selection. Eventually, improved cultivars can be produced through genetic engineering. Future efficient and effective breeding progress in cereals under targeted drought environments will come from the integrated knowledge of physiology and genomics.  相似文献   

14.
15.
Chickpea (Cicer arietinum L.) is an important food legume crop, particularly for the arid regions including Indian subcontinent. Considering the detrimental effect of drought, temperature and salt stress on crop yield, efforts have been initiated in the direction of developing improved varieties and designing alternate strategies to sustain chickpea production in adverse environmental conditions. Identification of genes that confer abiotic stress tolerance in plants remains a challenge in contemporary plant breeding. The present study focused on the identification of abiotic stress responsive genes in chickpea based on sequence similarity approach exploiting known abiotic stress responsive genes from model crops or other plant species. Ten abiotic stress responsive genes identified in other plants were partially amplified from eight chickpea genotypes and their presence in chickpea was confirmed after sequencing the PCR products. These genes have been functionally validated and reported to play significant role in stress response in model plants like Arabidopsis, rice and other legume crops. Chickpea EST sequences available at NCBI EST database were used for the identification of abiotic stress responsive genes. A total of 8,536 unique coding long sequences were used for identification of chickpea homologues of these abiotic stress responsive genes by sequence similarity search (BLASTN and BLASTX). These genes can be further explored towards achieving the goal of developing superior chickpea varieties providing improved yields under stress conditions using modern molecular breeding approaches.  相似文献   

16.
17.
Because of its wide geographical adaptation and importance in human nutrition, wheat is one of the most important crops in the world. However, wheat yield has reduced due to drought stress posing threat to sustainability and world food security in agricultural production. The first stage of drought tolerant variety breeding occurs on the molecular and biochemical characterization and classification of wheat genotypes. The aim of the present study is characterization of widely grown bread wheat cultivars and breeding lines for drought tolerance so as to be adapted to different regions in Turkey. The genotypes were screened with molecular markers for the presence of QTLs mapped to different chromosomes. Results of the molecular studies identified and detected 15 polymorphic SSR markers which gave the clearest PCR bands among the control genotypes. At the end of the research, bread wheat genotypes which were classified for tolerance or sensitivity to drought and the genetic similarity within control varieties were determined by molecular markers. According to SSR based dendrogram, two main groups were obtained for drought tolerance. At end of the molecular screening with SSR primers, genetic similarity coefficients were obtained that ranged from 0.14 to 0.71. The ones numbered 8 and 11 were the closest genotypes to drought tolerant cultivar Gerek 79 and the furthest genotypes from this cultivar were number 16 and to drought sensitive cultivar Sultan 95. The genotypes as drought tolerance due to their SSR markers scores are expected to provide useful information for drought related molecular breeding studies.  相似文献   

18.
Second-generation, dedicated lignocellulosic crops for bioenergy are being hailed as the sustainable alternative to food crops for the generation of liquid transport fuels, contributing to climate change mitigation and increased energy security. Across temperate regions they include tree species grown as short rotation coppice and intensive forestry (e.g. Populus and Salix species) and C4 grasses such as miscanthus and switchgrass. For bioenergy crops it is paramount that high energy yields are maintained in order to drive the industry to an economic threshold where it has competitive advantage over conventional fossil fuel alternatives. Therefore, in the face of increased planting of these species, globally, there is a pressing need for insight into their responses to predicted changes in climate to ensure these crops are 'climate proofed' in breeding and improvement programmes. In this review, we investigate the physiological responses of bioenergy crops to rising atmospheric CO2 ([Ca]) and drought, with particular emphasis on the C3 Salicaceae trees and C4 grasses. We show that while crop yield is predicted to rise by up to 40% in elevated [Ca], this is tempered by the effects of water deficit. In response to elevated [Ca] stomatal conductance and evapotranspiration decline and higher leaf–water potentials are observed. However, whole-plant responses to [Ca] are often of lower magnitude and may even be positive (increased water use in elevated [Ca]). We conclude that rising [Ca] is likely to improve drought tolerance of bioenergy crop species due to improved plant water use, consequently yields in temperate environments may remain high in future climate scenarios.  相似文献   

19.
20.
Crops grown for bioenergy production are a mandated component of the United States energy portfolio. Giant miscanthus (Miscanthus × giganteus) is a leading bioenergy crop similar in habit to the invasive plant giant reed (Arundo donax). To characterize the environmental tolerance of giant miscanthus, we compared the soil moisture stress tolerance of giant miscanthus and giant reed under glasshouse conditions. We subjected both species to soil moisture conditions of severe drought (?4.2 MPa), mild drought (?0.5 MPa), field‐capacity (control), and flooded soils. These conditions were applied to two cohorts: one in which soil moisture conditions were imposed on newly planted rhizome fragments, and one in which conditions were imposed on established plants after 8 weeks of growth in field‐capacity soil. After 16 weeks, we harvested all plants, measured above‐ and belowground biomass, and evaluated the reproductive viability of rhizome fragments. The total biomass of each species under flooded conditions was not different from the field‐capacity control groups regardless of cohort. However, drought did affect the two cohorts differently. In the cohort treated after 8 weeks of growth, mild and severe drought conditions resulted in 56% and 66% reductions in biomass, averaged over both species, compared with the controls. In the cohort treated for the entire 16 weeks, mild and severe drought conditions resulted in 92% and 94% reductions in biomass. Rhizome fragments from both species and both cohorts showed 100% viability following flooded and control treatments; drought treatments reduced rhizome viability in both species, with a greater impact on giant miscanthus. Although giant miscanthus does not appear to have the potential to escape and establish in relatively dry upland ecosystems, it does show tolerance to flooded conditions similar to giant reed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号