首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The negative shift in δ13C values of carbonate carbon at the Permian/Triassic boundary is one of the better documented geochemical signatures of a mass extinction event. The similar negative shift in δ13C values in organic carbon from Permian/Triassic boundary marine sediments in Austria and Canada is shown to occur also in marine and non‐marine sediments from Australian sedimentary basins. This negative shift in δ13C values is used to calibrate Australian sections lacking diagnostic faunal elements identifying the Permian/Triassic boundary. The minimum in the carbonate 87Sr/86Sr seawater curve from carbonates across the Guadalupian/Ochoan Stage boundary, mainly from North America, is shown to occur also in brachiopod calcite mainly from the Bowen Basin of eastern Australia, hence providing a second calibration point in the Australian sedimentary record. These two geochemical events support a model of a runaway greenhouse developing about the Permian/Triassic boundary; this is inferred to have contributed to the end‐Permian mass extinction.  相似文献   

2.
The Permian and Triassic were key time intervals in the history of life on Earth. Both periods are marked by a series of biotic crises including the most catastrophic of such events, the end‐Permian mass extinction, which eventually led to a major turnover from typical Palaeozoic faunas and floras to those that are emblematic for the Mesozoic and Cenozoic. Here we review patterns in Permian–Triassic bony fishes, a group whose evolutionary dynamics are understudied. Based on data from primary literature, we analyse changes in their taxonomic diversity and body size (as a proxy for trophic position) and explore their response to Permian–Triassic events. Diversity and body size are investigated separately for different groups of Osteichthyes (Dipnoi, Actinistia, ‘Palaeopterygii’, ‘Subholostei’, Holostei, Teleosteomorpha), within the marine and freshwater realms and on a global scale (total diversity) as well as across palaeolatitudinal belts. Diversity is also measured for different palaeogeographical provinces. Our results suggest a general trend from low osteichthyan diversity in the Permian to higher levels in the Triassic. Diversity dynamics in the Permian are marked by a decline in freshwater taxa during the Cisuralian. An extinction event during the end‐Guadalupian crisis is not evident from our data, but ‘palaeopterygians’ experienced a significant body size increase across the Guadalupian–Lopingian boundary and these fishes upheld their position as large, top predators from the Late Permian to the Late Triassic. Elevated turnover rates are documented at the Permian–Triassic boundary, and two distinct diversification events are noted in the wake of this biotic crisis, a first one during the Early Triassic (dipnoans, actinistians, ‘palaeopterygians’, ‘subholosteans’) and a second one during the Middle Triassic (‘subholosteans’, neopterygians). The origination of new, small taxa predominantly among these groups during the Middle Triassic event caused a significant reduction in osteichthyan body size. Neopterygii, the clade that encompasses the vast majority of extant fishes, underwent another diversification phase in the Late Triassic. The Triassic radiation of Osteichthyes, predominantly of Actinopterygii, which only occurred after severe extinctions among Chondrichthyes during the Middle–Late Permian, resulted in a profound change within global fish communities, from chondrichthyan‐rich faunas of the Permo‐Carboniferous to typical Mesozoic and Cenozoic associations dominated by actinopterygians. This turnover was not sudden but followed a stepwise pattern, with leaps during extinction events.  相似文献   

3.
A sample of marine invertebrates from the Late Triassic Cassian Formation (north Italy) yielded one of the most diverse Early Mesozoic fossil assemblages ever reported (c. 170 species). The assemblage was found in basin clays, but was transported from nearby carbonate platforms as indicated by fragmentation, microbial encrustation and the presence of coated grains and ooids. Most of the specimens are small (< 1 cm) reflecting both, small adult sizes and size sorting during transport. Rarefaction analysis suggests that diversity of surface collection and bulk sampling is the same. However, rank abundance, species richness and taxonomic composition differ strongly according to sampling method. Low‐grade lithification of the sediments is the main reason that high diversity can be recognized, because it facilitates disaggregation and finding of small molluscs. Sample standardization shows that the studied assemblage is much more diverse than known Early Triassic assemblages. However, its diversity is similar to that of Anisian assemblages. This suggests that recovery from the end‐Permian mass‐extinction was quite advanced in the Middle Triassic and alpha‐diversity remained high until the Late Triassic. According to current models, Early Triassic and Anisian faunas match the niche overlap phase of recovery during which diversity is built up by increasing alpha‐diversity, whereas beta‐diversity rises slowly. Subsequently, habitat width of species contracts because of increasing competition, making beta‐diversity the principal drive of overall diversity increase. The diversity pattern of various Late Triassic Cassian associations meets the predictions for the transition from the niche overlap to the habitat contraction phase.: Triassic, Cassian Formation, palaeoecology, diversity, mollusc dominance.  相似文献   

4.
A. Hallam 《Historical Biology》2013,25(2-4):257-262
Data from widespread dysaerobic facies, carbon/sulphur ratios and cerium anomalies suggest that the early Triassic was a time when anoxic conditions spread widely over epicontinental seas. These conditions, associated with marine transgression following the latest Permian regression, are likely to be a prime cause of the mass extinction of Palaeozoic marine faunas. The occurrence of many Lazarus taxa in the Middle and Upper Triassic indicates, however, that the extinctions at the end of the Permian were less severe than has been widely assumed, and that the turnover from Palaeozoic to Mesozoic faunas was considerably extended in time, being finally accomplished only after the end‐Triassic mass extinction event.  相似文献   

5.
A new Early Triassic marine fauna is described from an exotic block (olistolith) from the Ad Daffah conglomerate in eastern Oman (Batain), which provides new insights into the ecology and diversity during the early aftermath of the Permian–Triassic Boundary mass extinction. Based on conodont quantitative biochronology, we assign a middle Griesbachian age to the upper part of this boulder. It was derived from an offshore seamount and yielded both nektonic and benthic faunas, including conodonts, ammonoids, gastropods and crinoid ossicles in mass abundance. This demonstrates that despite the stratigraphically near extinction at the Permian–Triassic Boundary, Crinoidea produced enough biomass to form crinoidal limestone as early as middle Griesbachian time. Baudicrinus, previously placed in Dadocrinidae, is now placed in Holocrinidae; therefore, Dadocrinidae are absent in the Early Triassic, and Holocrinidae remains the most basal crown‐group articulates, originating during the middle Griesbachian in the Tethyan Realm. Abundant gastropods assigned to Naticopsis reached a shell size larger than 20 mm and provide another example against any generalized Lilliput effect during the Griesbachian. Whereas the benthic biomass was as high as to allow the resumption of small carbonate factories, the taxonomic diversity of the benthos remained low compared to post‐Early Triassic times. This slow benthic taxonomic recovery is here attributed to low competition within impoverished post‐extinction faunas.  相似文献   

6.
Abstract: Three family‐level cladistic analyses of temnospondyl amphibians are used to evaluate the impact of taxonomic rank, tree topology, and sample size on diversity profiles, origination and extinction rates, and faunal turnover. Temnospondyls are used as a case study for investigating replacement of families across the Permo‐Triassic boundary and modality of recovery in the aftermath of the end‐Permian mass extinction. Both observed and inferred (i.e. tree topology‐dependent) values of family diversity have a negligible effect on the shape of the diversity curve. However, inferred values produce both a flattening of the curve throughout the Cisuralian and a less pronounced increase in family diversity from Tatarian through to Induan than do observed values. Diversity curves based upon counts of genera and species display a clearer distinction between peaks and troughs. We use rarefaction techniques (specifically, rarefaction of the number of genera and species within families) to evaluate the effect of sampling size on the curve of estimated family‐level diversity during five time bins (Carboniferous; Cisuralian; Guadalupian–Lopingian; Early Triassic; Middle Triassic–Cretaceous). After applying rarefaction, we note that Cisuralian and Early Triassic diversity values are closer to one another than they are when the observed number of families is used; both values are also slightly higher than the Carboniferous estimated diversity. The Guadalupian–Lopingian value is lower than raw data indicate, reflecting in part the depauperate land vertebrate diversity from the late Cisuralian to the middle Guadalupian (Olson’s gap). The time‐calibrated origination and extinction rate trajectories plot out close to one another and show a peak in the Induan, regardless of the tree used to construct them. Origination and extinction trajectories are disjunct in at least some Palaeozoic intervals, and background extinctions exert a significant role in shaping temnospondyl diversity in the lowermost Triassic. Finally, species‐, genus‐, and family trajectories consistently reveal a rapid increase in temnospondyl diversity from latest Permian to earliest Triassic as well as a decline near the end of the Cisuralian. However, during the rest of the Cisuralian family diversity increases slightly and there is no evidence for a steady decline, contrary to previous reports.  相似文献   

7.
New sampling on critical intervals of the uppermost Permian and Triassic successions of the Northern Karakorum Terrain in the Karakorum Range (Pakistan) has refined the stratigraphy. Two types of successions may be distinguished in the Karakorum Range: a carbonate platform succession, spanning the whole interval from Upper Permian to Upper Triassic, possibly with several gaps; and a basinal succession, deposited from the Middle Permian to Early Carnian (Late Triassic), when the carbonate platform prograded into the basin. With the approaching and later docking of the Karakorum Block against the Asian margin closing the Paleo-Tethys, a portion of Karakorum emerged while another part subsided as a fore-deep, receiving clastics from the emerging Cimmerian Range. Molassic sediments filled the basin, whilst shallow-water carbonates transgressed over the emerged carbonate platform sometime between the latest Triassic and the Pliensbachian (Early Jurassic), with Cimmerian deformation occurring to the north. The age control is provided by conodonts, with assemblages of late Wuchiapingian, Changhsingian, Induan (Griesbachian and Dienerian), late Olenekian, early Anisian, late Ladinian, and early Carnian ages, respectively. Some information on the section around the P/T boundary is provided by palynology and isotopic C13 values. The dating of the Norian/Rhaetian platform is provided by foraminifers.  相似文献   

8.
Adaptive radiations are central to macroevolutionary theory. Whether triggered by acquisition of new traits or ecological opportunities arising from mass extinctions, it is debated whether adaptive radiations are marked by initial expansion of taxic diversity or of morphological disparity (the range of anatomical form). If a group rediversifies following a mass extinction, it is said to have passed through a macroevolutionary bottleneck, and the loss of taxic or phylogenetic diversity may limit the amount of morphological novelty that it can subsequently generate. Anomodont therapsids, a diverse clade of Permian and Triassic herbivorous tetrapods, passed through a bottleneck during the end-Permian mass extinction. Their taxic diversity increased during the Permian, declined significantly at the Permo–Triassic boundary and rebounded during the Middle Triassic before the clade''s final extinction at the end of the Triassic. By sharp contrast, disparity declined steadily during most of anomodont history. Our results highlight three main aspects of adaptive radiations: (i) diversity and disparity are generally decoupled; (ii) models of radiations following mass extinctions may differ from those triggered by other causes (e.g. trait acquisition); and (iii) the bottleneck caused by a mass extinction means that a clade can emerge lacking its original potential for generating morphological variety.  相似文献   

9.
Multistressor global change, the combined influence of ocean warming, acidification, and deoxygenation, poses a serious threat to marine organisms. Experimental studies imply that organisms with higher levels of activity should be more resilient, but testing this prediction and understanding organism vulnerability at a global scale, over evolutionary timescales, and in natural ecosystems remain challenging. The fossil record, which contains multiple extinctions triggered by multistressor global change, is ideally suited for testing hypotheses at broad geographic, taxonomic, and temporal scales. Here, I assess the importance of activity level for survival of well‐skeletonized benthic marine invertebrates over a 100‐million‐year‐long interval (Permian to Jurassic periods) containing four global change extinctions, including the end‐Permian and end‐Triassic mass extinctions. More active organisms, based on a semiquantitative score incorporating feeding and motility, were significantly more likely to survive during three of the four extinction events (Guadalupian, end‐Permian, and end‐Triassic). In contrast, activity was not an important control on survival during nonextinction intervals. Both the end‐Permian and end‐Triassic mass extinctions also triggered abrupt shifts to increased dominance by more active organisms. Although mean activity gradually returned toward pre‐extinction values, the net result was a permanent ratcheting of ecosystem‐wide activity to higher levels. Selectivity patterns during ancient global change extinctions confirm the hypothesis that higher activity, a proxy for respiratory physiology, is a fundamental control on survival, although the roles of specific physiological traits (such as extracellular pCO2 or aerobic scope) cannot be distinguished. Modern marine ecosystems are dominated by more active organisms, in part because of selectivity ratcheting during these ancient extinctions, so on average may be less vulnerable to global change stressors than ancient counterparts. However, ancient extinctions demonstrate that even active organisms can suffer major extinction when the intensity of environmental disruption is intense.  相似文献   

10.
Factor analysis of a data set representing the global distribution of vascular plant families through time shows the broad pattern of vegetation history can be explained in terms of five Evolutionary Floras. The Rhyniophytic (=Eotrachyophytic) Flora represents the very earliest (Silurian and earliest Devonian) vascular plants, notably the Rhyniophytopsida. The Eophytic Flora represents the early (Early–Middle Devonian) mainly homosporous land plants, notably the Zosterophyllopsida, Trimerophytopsida and early Lycopsida. The Palaeophytic Flora represents the Late Devonian and Carboniferous vegetation, which saw the introduction of heterospory among the spore producing plants and of early gymnosperms. The Mesophytic Flora first appeared in the Late Carboniferous and Permian macrofossil record, although there is palynological evidence of these plants having grown earlier in extra‐basinal habitats and was dominated by gymnosperms with more modern affinities. The Cenophytic Flora that first appeared during Cretaceous times was overwhelmingly dominated by angiosperms. The end‐Devonian, end‐Triassic and end‐Cretaceous mass‐extinction events recognized in the marine fossil record had little impact on the diversity dynamics of these Evolutionary Floras. Rather, the changes between floras mainly reflect key evolutionary innovations such as heterospory, ovules and angiospermy.  相似文献   

11.
Since diverse ostracod faunas in the immediate aftermath of the latest Permian mass extinction are mainly found within Permian–Triassic boundary microbialites (PTBMs), the idea of an ostracod ‘microbial‐related refuge’ has been proposed. Here, we report a diversified earliest Triassic ostracod fauna from the Yangou section in South China, where no PTBMs were deposited, providing evidence inconsistent with this ‘microbial‐related refuge’ hypothesis. In addition, a significant ostracod extinction is recorded, corresponding with the earliest Triassic mass extinction (ETME). This ETME of ostracods is associated with size increases and a length/height ratio (L/H) decrease, indicating varied evolutionary patterns of shape and size of ostracods through the Permian–Triassic (P‐Tr) extinction events. Although the nature of these biotic changes is somewhat unclear, the temporally varied ‘refuge zone’ scenario provides us with a window to reconstruct the environmental dynamics of ecosystem changes during the P‐Tr transition.  相似文献   

12.
Summary After the end-Permian crisis and a global ‘reef gap’ in the early Triassic, reefs appeared again during the early Middle Triassic. Records of Anisian reefs are rare in the Tethys as well as in non-Tethyan regions. Most Anisian reefs are known from the western part of the Tethys but there are only very few studies focused on biota, facies types and the paleogeographical situation of these reefs. From the eastern part of the Tethys, Anisian reefs, reefal buildups or potential reef-building organisms have been reported from different regions of southern China. Most of the Anisian reefs known from western and central Europe as well as from southern China seem to be of middle and late Pelsonian age. The study area is situated in the northern Dolomites (South Tyrol, Italy) southeast of Bruneck (Brunico). It comprises the area between Olang (Valdaora) and Prags (Braies). The study is based on detailed investigations of the regional geology, stratigraphy and lithofacies (R. Zühlke, T. Bechst?dt) as well as on a comprehensive inventory of Anisian reef organisms (B. Senowbari-Daryan, E. Flügel). These data are used in the discussion of the controls on the recovery of reefs during the early Middle Triassic. Most late Anisian reef carbonates studied are represented by allochthonous talus reef blocks of cubicmeter size. Small biostromal autochthonous mounds are extremely rare (Piz da Peres). The reef mounds as well as most of the reef blocks occur within the middle to late Pelsonian Recoaro Formation. They were formed on the middle reaches of carbonate ramps in subtidal depths, slightly above the storm wave base with only moderate water energy. Most lithotypes observed in the reef blocks correspond to sponge and/or algal bafflestones. Low-growing sessile organisms (Olangocoelia (sponge, alga?), sphinctozoan sponges, bryozoans, soleno-poracean algae, corals) and encrusting epibionts (sponges, porostromate algae, cyanophycean crusts, foraminifera, worms, microproblematica) created low cm-sized biogenic structures (bioconstructions) which baffled and bound sediment. Organic framework was only of minor importance; it is restricted to theOlangocoelia lithotype. Framework porosity was small in these reef mounds. Submarine carbonate cements, therefore, are only of minor importance s compared with Permian or Ladinian reefs. The relatively high number of lithotypes encountered in the reef blocks indicates a high biofacies diversity. Regarding the relative frequency, the diverse biota consist in descending order ofOlangocoelia, sponges (sphinctozoans, inozoans, siliceous sponges), bryozoans, porostromate algae and worm tubes. The sphinctozoans are characterized by small, mostly incrusting forms. The numerical diversity (species richness) is low compared with late Permian or Ladinian and late Triassic sphinctozoan faunas occurring within reefs. Following the sponges, monospecific bryozoans (Reptonoditrypa cautica Sch?fer & Fois) are the most common organisms in the reef limestones. Porostromate algae were restricted to areas within the bioconstructions not inhabited by sponges. The low-diverse corals had no importance in the construction of an organic framework. Surprisingly, microbial crusts are rare or even lacking in the investigated Anisian bioconstructions. This is in contrast to late Permian and Ladinian as well as Carnian reefs which are characterized by the abundance of specific organic crusts. The same comes true for‘Tubiphytes’ which is a common constituent in Permian, Ladinian and Carnian reef carbonates but is very rare in the Anisian of the Olang Dolomites. Instead of‘Tubiphytes’ different kinds of worm tubes (spirorbid tubes, Mg-calcitic tubes and agglutinated tubes) were of importance as epifaunal elements. Macrobial encrustations consisting of characteristic successions of sponges, bryozoans, algae, worm tubes and microproblematica seem to be of greater quantitative importance than in Ladinian reefs. Destruction of organic skeletons (predominantly of bryozoans) by macroborers (cirripedia?) is a common feature. The Anisian reef organisms are distinctly different from late Permian and from most Ladinian reef-builders. No Permian Lazarus taxa have been found. New taxa: Sphinctozoan sponges—Celyphia? minima n.sp.,Thaumastocoelia dolomitica n. sp.,Deningeria tenuireticulata n. sp.,Deningeria crassireticulata n. sp.,Anisothalamia minima n.g. n.sp., Inozoan sponges-Meandrostia triassica n.sp. Microproblematica-Anisocellula fecunda n.g. n.sp., Porostromate alga-Brandneria dolomitica n.g. n.sp. Most of our data are in agreement with the model described byFois & Gaetani (1984) for the recovery of reef-building communities during the Ansian but the biotic diversity seems to be considerably higher than previously assumed. Anisian deposition and the formation of the reef mounds within the Pelsonian Recoaro Formation of the Dolomites were controlled by the combined effects of synsedimentary tectonics and eustatic changes in sea-level. During several time intervals, especially the early Anisian (northern and western Dolomites: tectonic uplift), the early Pelsonian (eastern Dolomites: drowning) and the late Illyrian (wide parts of the Dolomites: uplift and drowning), the sedimentation was predominantly controlled by regionally different tectonic subsidence rates. The amount of terrigenous clastic input associated with synsedimentary tectonics (tectonic uplift of hinterlands) had a major influence on carbonate deposition and reef development. The re-appearance of reef environments in the Olang Dolomites was controlled by a combination of regional and global factors (paleogeographic situation: development of carbonate ramps; decreasing subsidence of horst blocks; reduced terrigenous input; moderate rise in sea-level).  相似文献   

13.
Summary Selected Late Paleozoic and Triassic limestone exposures were studied on northern Palawan Island, Philippines, with regard to microfacies, stratigraphy and facies interpretation. Although some of the outcrops were already reported in literature, we present the first detailed microfacies study. Late Paleozoic carbonates in the El Nido area are represented by widley distributed Permian and locally very restricted Carbonifenous limestones. Of particular interest is the first report of Carboniferous limestones in the Philippines dated by fossils. Fusulinids indicate a ‘Middle’ Carboniferous (Moscovian-Kasimovian) age of the Paglugaban Formation only known from Paglugaban Island. The Permian Minilog Formation consists mostly of fusulinid wackestones and dasycladacean wacke-/packstones. Fusulinid datings (neoschwagerinids and verbeekinids) provide a Guadalupian (Wordian-Capitanian) age. The depositional setting of the Middle Permian carbonates corresponds to a distally steepened ramp with biostromes built by alatoconchid bivalves locally associated with richthofeniid brachiopods. Late Triassic limestones occur in isolated exposures on and around Busuanga Island (Calamian Islands). The age of the investigated carbonates is Rhaetian based on the occurrence ofTriasina hantkent Maizon. Microfacies data indicate the existence of reefs (Malajon Island) and carbonate platforms (Kalampisanan Islands, Busuanga Island, Coron Island). Reef boundstones are characterized by abundant solenoporacean red algae, coralline sponges and corals. Platform carbonates yield a broad spectrum of microfacies types, predominantly wacke- and packstones with abundant involutinid foraminifera and some calcareous algae. These facies types correspond to platform carbonates known from other parts of Southeast Asia (Eastern Sulawesi and Banda Basin; Malay Peninsula and Malay Basin). The Philippine platform carbonates were deposited on and around seamounts surrounded by deeper water radiolarian cherts. The new data on facies and age of the Philippine Permian and Triassic carbonates contradict a close paleogeographical connection between the North Palawan Block and South China and arise problems for the currently proposed origin of the North Palawan Block at the paleomargin of South China. We hypothesize that North Palawan was part of the Indochina Block during the Carboniferous and Permian, separated from the Indochina Block during the Middle Permian and collided with the South China Block in the Late Cretaceous.  相似文献   

14.
Abstract: The Parareptilia are a small but ecologically and morphologically diverse clade of Permian and Triassic crown amniotes generally considered to be phylogenetically more proximal to eureptiles (diapsids and their kin) than to synapsids (mammals and their kin). A recent supertree provides impetus for an analysis of parareptile diversity through time and for examining the influence of the end‐Permian mass extinction on the clade’s origination and extinction rates. Phylogeny‐corrected measures of diversity have a significant impact on both rates and the distribution of origination and extinction intensities. Time calibration generally results in a closer correspondence between origination and extinction rate values than in the case of no time correction. Near the end‐Permian event, extinction levels are not significantly higher than origination levels, particularly when time calibration is introduced. Finally, regardless of time calibration and/or phylogenetic correction, the distribution of rates does not differ significantly from unimodal. The curves of rate values are discussed in the light of the numbers and distributions of both range extensions and ghost lineages. The disjoint time distributions of major parareptile clades (e.g. procolophonoids and nycteroleterids‐pareiasaurs) are mostly responsible for the occurrence of long‐range extensions throughout the Permian. Available data are not consistent with a model of sudden decline at the end‐Permian but rather suggest a rapid alternation of originations and extinctions in a number of parareptile groups, both before and after the Permian/Triassic boundary.  相似文献   

15.
The Permo‐Triassic mass extinction devastated life on land and in the sea, but it is not clear why some species survived and others went extinct. One explanation is that lineage loss during mass extinctions is a random process in which luck determines which species survive. Alternatively, a phylogenetic signal in extinction may indicate a selection process operating on phenotypic traits. Large body size has often emerged as an extinction risk factor in studies of modern extinction risk, but this is not so commonly the case for mass extinctions in deep time. Here, we explore the evolution of non‐teleostean Actinopterygii (bony fishes) from the Devonian to the present day, and we concentrate on the Permo‐Triassic mass extinction. We apply a variety of time‐scaling metrics to date the phylogeny, and show that diversity peaked in the latest Permian and declined severely during the Early Triassic. In line with previous evidence, we find the phylogenetic signal of extinction increases across the mass extinction boundary: extinction of species in the earliest Triassic is more clustered across phylogeny compared to the more randomly distributed extinction signal in the late Permian. However, body length plays no role in differential survival or extinction of taxa across the boundary. In the case of fishes, size did not determine which species survived and which went extinct, but phylogenetic signal indicates that the mass extinction was not a random field of bullets.  相似文献   

16.

The stratigraphical and geographical distribution of 851 brachiopod species from 216 genera and 65 families in the Permian of South China are analysed. It is revealed that the brachiopod diversity underwent two sharp falls during the Permian. The first occurred at the end of Maokouan, accompaning the widely recognised, extensive regression across the Maokouan‐Wujiapingian boundary. Fifty‐seven species of 29 genera survived this first major extinction event. The second sharp reduction of brachiopod diversity took place in the later Changhsingian, with only 17 Permian‐type brachiopod species of 12 genera straggling into the earliest Triassic. Detailed stratigraphic analysis shows that more than 90% of the Changhsingian brachiopod species disappeared at different levels in the Changhsingian before the widely perceived end‐Permian ‘mass extinction’ occurred. It is also notable that each of the step‐wise diversity reduction events was apparently heterochronous. In view of the evidence from lithologies, faunal components and geochemical analyses, the two sharp falls of Permian brachiopod diversity in South China are considered to be closely related to multiple interactions of an environmental deterioration caused by large‐scale regressions.  相似文献   

17.
The ecological competition between brachiopods and bivalves is analysed by means of a quantitative palaeoecologic method applied on four assemblages located within a short stratigraphic interval, approximately 2 m thick, in the lower Tesero Member of the Werfen Formation (in the Southern Alps). The assemblages originate from the Tesero, Bulla and Sass de Putia sections. The analysed stratigraphic interval, uppermost Changhsingian in age, is located between the early and heaviest phase of the end-Permian mass extinction, which occurred across the Bellerophon/Werfen formational boundary (Event Boundary), and the Permian/Triassic boundary (Chronological Boundary), when nearly all the Permian stenotopic holdovers disappeared.These assemblages are characterised by small sized skeletons (“Lilliput effect”), which represent an adaptive survival strategy in stressed and harsh habitats resulting from the climatic and palaeoceanographic changes connected with the mass extinction. The Tesero assemblages are dominated by rhynchonelliform brachiopod Orbicoelia (bed CNT10) or Streptorhynchus (bed CNT11A), which were mostly attached at the top of shallow microbialitic mounds. These assemblages are again dominated by Permian stenotopic taxa and show a Palaeozoic structure. The Tesero habitat, which again permitted the survival of brachiopods, represented one of the last refuges in the western Tethys. On the contrary, the Bulla (BU9-10) and Sass de Putia (wPK13A) assemblages are bivalve-dominated, and thus show an ecologic structure typical of Early Triassic post-extinction marine benthic communities or Palaeozoic stressed marine communities. The bivalve-dominated assemblages proliferated in prevailing muddy siliciclastic substrates, with brief episodes of microbial algal growth. The most important environmental limiting factors and leading causes of end-Permian mass extinction are discussed in terms of palaeoautecologic and palaeosynecologic analysis.The different taxonomic composition and ecologic structure of the assemblages is related to palaeogeography, including water depth and connections with the open sea. The brachiopod-dominated assemblage, exclusive of the Tesero section, proliferated in microbial carbonate habitats in near-shore environments. The bivalve-dominated assemblages, which were more widespread than the brachiopod assemblages in the Dolomites and also occurred in other western Tethys localities, occur in more open and deeper marine environments. In the western Tethys margins, the local distribution of mixed faunas suggests that the extinction of Permian stenotopic taxa was caused by the onset of poisonous water on the shelves originating from deep marine environments.This extinction pattern appears to be a regional phenomenon and does not seem be applicable on a global scale. The extinction events were controlled by a complex network of interactive factors and the survival of faunal elements was probably stochastic.  相似文献   

18.
Permian–Triassic boundary sections in the Julfa (NW Iran) and Abadeh (Central Iran) regions display a succession of three characteristic rock units, (1) the Paratirolites Limestone with the mass extinction horizon at its top, (2) the ‘Boundary Clay’, and (3) the earliest Triassic Elikah Formation with the conodont P–Tr boundary at its base. The carbonate microfacies reveals a facies change, in the sections near Julfa, within the Paratirolites Limestone with an increasing number of intraclasts, Fe–Mn crusts, and biogenic encrustation. A decline in carbonate accumulation occurs towards the top of the unit with a sponge packstone in the sections, and finally resulting in a complete demise of the carbonate factory. The succession of the ‘Boundary Clay’ differs in the two regions; thin horizons of sponge packstone are present in the Julfa region and ‘calcite fans’ of probably inorganic origin in the Abadeh Region. The skeletal carbonate factory of the Late Permian was restored with the deposition of microbial carbonates at the base of the Elikah Formation, where densely laminated bindstone, floatstone with sparry calcite spheres, and oncoid wackestone/floatstone predominate.  相似文献   

19.
The Triassic sediments of the External Zones of the Betic Cordillera were deposited on the Southern Iberian Continental Palaeomargin. Two coeval Ladinian formations, namely the Siles Formation and the Cehegín Formation, are described to illustrate the facies and lithostratigraphic variability in the Muschelkalk carbonates. There has been some dispute over the number of carbonate units present in the Siles Formation. Our studies assign a tectonic origin to these recurrent carbonate units. Both formations comprise only one carbonate unit, which is correlated to the Upper Muschelkalk of the Catalan and Germanic basins and some Iberian Range sections. To characterize the sedimentological features of these formations, 14 facies were defined. The most widespread sediment was originally lime mud, although bioclastic deposits are also common. In the facies succession, a main transgressive-regressive sequence could be identified. According to the facies model proposed here, a muddy coastal and shallow-water platform prograded over mid ramp deposits. There is no evidence for a seawards reefal or oolitic-bioclastic sandy barrier. The most significant feature of this sedimentary interpretation is that these carbonate facies show clear characteristics of an epicontinental platform.  相似文献   

20.
The end-Permian biotic crisis (∼252.5 Ma) represents the most severe extinction event in Earth''s history. This paper investigates diversity patterns in Anomodontia, an extinct group of therapsid synapsids (‘mammal-like reptiles’), through time and in particular across this event. As herbivores and the dominant terrestrial tetrapods of their time, anomodonts play a central role in assessing the impact of the end-Permian extinction on terrestrial ecosystems. Taxonomic diversity analysis reveals that anomodonts experienced three distinct phases of diversification interrupted by the same number of extinctions, i.e. an end-Guadalupian, an end-Permian, and a mid-Triassic extinction. A positive correlation between the number of taxa and the number of formations per time interval shows that anomodont diversity is biased by the Permian-Triassic terrestrial rock record. Normalized diversity curves indicate that anomodont richness continuously declines from the Middle Permian to the Late Triassic, but also reveals all three extinction events. Taxonomic rates (origination and extinction) indicate that the end-Guadalupian and end-Permian extinctions were driven by increased rates of extinction as well as low origination rates. However, this pattern is not evident at the final decline of anomodont diversity during the Middle Triassic. Therefore, it remains unclear whether the Middle Triassic extinction represents a gradual or abrupt event that is unique to anomodonts or more common among terrestrial tetrapods. The end-Permian extinction represents the most distinct event in terms of decline in anomodont richness and turnover rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号