首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Multistressor global change, the combined influence of ocean warming, acidification, and deoxygenation, poses a serious threat to marine organisms. Experimental studies imply that organisms with higher levels of activity should be more resilient, but testing this prediction and understanding organism vulnerability at a global scale, over evolutionary timescales, and in natural ecosystems remain challenging. The fossil record, which contains multiple extinctions triggered by multistressor global change, is ideally suited for testing hypotheses at broad geographic, taxonomic, and temporal scales. Here, I assess the importance of activity level for survival of well‐skeletonized benthic marine invertebrates over a 100‐million‐year‐long interval (Permian to Jurassic periods) containing four global change extinctions, including the end‐Permian and end‐Triassic mass extinctions. More active organisms, based on a semiquantitative score incorporating feeding and motility, were significantly more likely to survive during three of the four extinction events (Guadalupian, end‐Permian, and end‐Triassic). In contrast, activity was not an important control on survival during nonextinction intervals. Both the end‐Permian and end‐Triassic mass extinctions also triggered abrupt shifts to increased dominance by more active organisms. Although mean activity gradually returned toward pre‐extinction values, the net result was a permanent ratcheting of ecosystem‐wide activity to higher levels. Selectivity patterns during ancient global change extinctions confirm the hypothesis that higher activity, a proxy for respiratory physiology, is a fundamental control on survival, although the roles of specific physiological traits (such as extracellular pCO2 or aerobic scope) cannot be distinguished. Modern marine ecosystems are dominated by more active organisms, in part because of selectivity ratcheting during these ancient extinctions, so on average may be less vulnerable to global change stressors than ancient counterparts. However, ancient extinctions demonstrate that even active organisms can suffer major extinction when the intensity of environmental disruption is intense.  相似文献   

2.
    
Actinopterygians (ray‐finned fishes) successfully passed through four of the big five mass extinction events of the Phanerozoic, but the effects of these crises on the group are poorly understood. Many researchers have assumed that the Permo‐Triassic mass extinction (PTME) and end‐Triassic extinction (ETE) had little impact on actinopterygians, despite devastating many other groups. Here, two morphometric techniques, geometric (body shape) and functional (jaw morphology), are used to assess the effects of these two extinction events on the group. The PTME elicits no significant shifts in functional disparity while body shape disparity increases. An expansion of body shape and functional disparity coincides with the neopterygian radiation and evolution of novel feeding adaptations in the Middle‐Late Triassic. Through the ETE, small decreases are seen in shape and functional disparity, but are unlikely to represent major changes brought about by the extinction event. In the Early Jurassic, further expansions into novel areas of ecospace indicative of durophagy occur, potentially linked to losses in the ETE. As no evidence is found for major perturbations in actinopterygian evolution through either extinction event, the group appears to have been immune to two major environmental crises that were disastrous to most other organisms.  相似文献   

3.
Recovery from the most profound mass extinction of all time   总被引:4,自引:0,他引:4  
The end-Permian mass extinction, 251 million years (Myr) ago, was the most devastating ecological event of all time, and it was exacerbated by two earlier events at the beginning and end of the Guadalupian, 270 and 260 Myr ago. Ecosystems were destroyed worldwide, communities were restructured and organisms were left struggling to recover. Disaster taxa, such as Lystrosaurus, insinuated themselves into almost every corner of the sparsely populated landscape in the earliest Triassic, and a quick taxonomic recovery apparently occurred on a global scale. However, close study of ecosystem evolution shows that true ecological recovery was slower. After the end-Guadalupian event, faunas began rebuilding complex trophic structures and refilling guilds, but were hit again by the end-Permian event. Taxonomic diversity at the alpha (community) level did not recover to pre-extinction levels; it reached only a low plateau after each pulse and continued low into the Late Triassic. Our data showed that though there was an initial rise in cosmopolitanism after the extinction pulses, large drops subsequently occurred and, counter-intuitively, a surprisingly low level of cosmopolitanism was sustained through the Early and Middle Triassic.  相似文献   

4.
The negative shift in δ13C values of carbonate carbon at the Permian/Triassic boundary is one of the better documented geochemical signatures of a mass extinction event. The similar negative shift in δ13C values in organic carbon from Permian/Triassic boundary marine sediments in Austria and Canada is shown to occur also in marine and non‐marine sediments from Australian sedimentary basins. This negative shift in δ13C values is used to calibrate Australian sections lacking diagnostic faunal elements identifying the Permian/Triassic boundary. The minimum in the carbonate 87Sr/86Sr seawater curve from carbonates across the Guadalupian/Ochoan Stage boundary, mainly from North America, is shown to occur also in brachiopod calcite mainly from the Bowen Basin of eastern Australia, hence providing a second calibration point in the Australian sedimentary record. These two geochemical events support a model of a runaway greenhouse developing about the Permian/Triassic boundary; this is inferred to have contributed to the end‐Permian mass extinction.  相似文献   

5.
前乐平统海洋动物灾变事件   总被引:10,自引:0,他引:10  
张进  尚庆华 《古生物学报》1995,34(4):410-427
作为古生代最后阶段的乐平统可划分为2个阶和4个亚阶,暂以逼近自然界线的Clarkina postbitteri带之底为下界;在二叠纪形成了栖霞期之前和吴家坪期之前两个超序界面,乐平世海侵居于二叠一三叠纪超序的低水位体系,乐平世末的海泛淹没了古特提斯区的残留陆棚;二叠纪末的生物大绝灭形成规模和性质不同的两幕;茅口期末全球性海退使栖居地丧失而导致地方性类群和远洋浮游生物灭亡的前乐平统海泮动物灾变事件,  相似文献   

6.
The ascent of dinosaurs in the Triassic is an exemplary evolutionary radiation, but the earliest phase of dinosaur history remains poorly understood. Body fossils of close dinosaur relatives are rare, but indicate that the dinosaur stem lineage (Dinosauromorpha) originated by the latest Anisian (ca 242-244 Ma). Here, we report footprints from the Early-Middle Triassic of Poland, stratigraphically well constrained and identified using a conservative synapomorphy-based approach, which shifts the origin of the dinosaur stem lineage back to the Early Olenekian (ca 249-251 Ma), approximately 5-9 Myr earlier than indicated by body fossils, earlier than demonstrated by previous footprint records, and just a few million years after the Permian/Triassic mass extinction (252.3 Ma). Dinosauromorph tracks are rare in all Polish assemblages, suggesting that these animals were minor faunal components. The oldest tracks are quadrupedal, a morphology uncommon among the earliest dinosauromorph body fossils, but bipedality and moderately large body size had arisen by the Early Anisian (ca 246 Ma). Integrating trace fossils and body fossils demonstrates that the rise of dinosaurs was a drawn-out affair, perhaps initiated during recovery from the Permo-Triassic extinction.  相似文献   

7.
    
Branched, sinusoidal burrows assigned to Sinusichnus cf. seilacheri Knaust et al. 2016; occur in Upper Ordovician (Hirnantian) carbonates on Anticosti Island. These are abundant and monospecific at the base of the Oncolite Bed of the uppermost Ellis Bay Formation, marking a regional discontinuity surface during the multiphase Ordovician mass-extinction event. In contrast to Mesozoic and Cenozoic records of Sinusichnus, commonly attributed to the activity of decapod and isopod crustaceans, the burrow systems from Anticosti Island were probably produced by other arthropods of unknown affinity. A combined dwelling, locomotion and feeding behaviour of their trace maker is assumed. This is the oldest record of the ichnogenus Sinusichnus, previously only known since the Triassic, and its first evidence from North America.  相似文献   

8.
    
Environmental fluctuations in redox may reinforce rather than hinder evolutionary transitions, such that variability in near‐surface oceanic oxygenation can promote morphological evolution and novelty. Modern, low‐oxygen regions are heterogeneous and dynamic habitats that support low diversity and are inhabited by opportunistic and non‐skeletal metazoans. We note that several major radiation episodes follow protracted or repeating intervals (>1 million years) of persistent and dynamic shallow marine redox (oceanic anoxic events). These are also often associated with short‐lived mass‐extinction events (<0.5 million years) where skeletal benthic incumbents are removed, and surviving or newly evolved benthos initially inhabit transient oxic habitats. We argue that such intervals create critical opportunities for the generation of evolutionary novelty, followed by innovation and diversification. We develop a general model for redox controls on the distribution and structure of the shallow marine benthos in a dominantly anoxic world, and compile data from the terminal Ediacaran–mid‐Cambrian (∼560–509 Ma), late Cambrian–Ordovician (∼500–445 Ma), and Permo‐Triassic (∼255–205 Ma) to test these predictions. Assembly of phylogenetic data shows that prolonged and widespread anoxic intervals indeed promoted morphological novelty in soft‐bodied benthos, providing the ancestral stock for subsequently skeletonized lineages to appear as innovations once oxic conditions became widespread and stable, in turn promoting major evolutionary diversification. As a result, we propose that so‐called ‘recovery’ intervals after mass extinctions might be better considered as ‘innovation’ intervals.  相似文献   

9.
The effects of species declines and extinction on biotic interactions remain poorly understood. The loss of a species is expected to result in the loss of other species that depend on it (coextinction), leading to cascading effects across trophic levels. Such effects are likely to be most severe in mutualistic and parasitic interactions. Indeed, models suggest that coextinction may be the most common form of biodiversity loss. Paradoxically, few historical or contemporary coextinction events have actually been recorded. We review the current knowledge of coextinction by: (i) considering plausible explanations for the discrepancy between predicted and observed coextinction rates; (ii) exploring the potential consequences of coextinctions; (iii) discussing the interactions and synergies between coextinction and other drivers of species loss, particularly climate change; and (iv) suggesting the way forward for understanding the phenomenon of coextinction, which may well be the most insidious threat to global biodiversity.  相似文献   

10.
对茅口期类动物群灭绝过程的分析揭示 ,若将类物种按壳体大小分为两类 ,从动物群物种分异度、物种净增速率的变化来看 ,大个体 (壳长 >6mm)物种与小个体 (壳长≤ 6mm)物种的灭绝过程并无明显的区别。根据壳壁等特征 ,茅口期类可分为南京类、希瓦格类、费伯克类和新希瓦格类 4个主要类群 ,各主要类群及其壳体大小不同的物种灭绝过程有明显的差异。在灭绝事件早期 ,各类群及其壳体大小不同的两类物种所受的影响有所不同。在早期的灭绝中 ,南京类、新希瓦格类、希瓦格类中壳长 >6mm和费伯克类中壳长≤ 6mm的物种显著减少 ,而希瓦格类中壳长≤ 6mm以及费伯克类中壳长 >6mm的物种则未受明显的影响。在茅口期晚期 ,由于灭绝压力的增大 ,除南京类外 ,所有类群及其物种无论个体大小均受到重创 ,导致类动物群物种分异度陡然下降研究结果证明 ,在灭绝强度较小时 ,类动物的生物学特征 ,如壳体大小、壳壁特征对物种的存活率有一定影响 ,而在集群灭绝的高峰期间 ,这些特征则不能发挥有效的作用  相似文献   

11.
    
Non‐avian dinosaurs went extinct 66 million years ago, geologically coincident with the impact of a large bolide (comet or asteroid) during an interval of massive volcanic eruptions and changes in temperature and sea level. There has long been fervent debate about how these events affected dinosaurs. We review a wealth of new data accumulated over the past two decades, provide updated and novel analyses of long‐term dinosaur diversity trends during the latest Cretaceous, and discuss an emerging consensus on the extinction's tempo and causes. Little support exists for a global, long‐term decline across non‐avian dinosaur diversity prior to their extinction at the end of the Cretaceous. However, restructuring of latest Cretaceous dinosaur faunas in North America led to reduced diversity of large‐bodied herbivores, perhaps making communities more susceptible to cascading extinctions. The abruptness of the dinosaur extinction suggests a key role for the bolide impact, although the coarseness of the fossil record makes testing the effects of Deccan volcanism difficult.  相似文献   

12.
    
《Current biology : CB》2023,33(11):2283-2290.e3
  相似文献   

13.
Results of a detailed bathymetric survey of Crater Lake conducted in 2000, combined with previous results of submersible and dredge sampling, form the basis for a geologic map of the lake floor and a model for the filling of Crater Lake with water. The most prominent landforms beneath the surface of Crater Lake are andesite volcanoes that were active as the lake was filling with water, following caldera collapse during the climactic eruption of Mount Mazama 7700 cal. yr B.P. The Wizard Island volcano is the largest and probably was active longest, ceasing eruptions when the lake was 80 m lower than present. East of Wizard Island is the central platform volcano and related lava flow fields on the caldera floor. Merriam Cone is a symmetrical andesitic volcano that apparently was constructed subaqueously during the same period as the Wizard Island and central platform volcanoes. The youngest postcaldera volcanic feature is a small rhyodacite dome on the east flank of the Wizard Island edifice that dates from 4800 cal. yr B.P. The bathymetry also yields information on bedrock outcrops and talus/debris slopes of the caldera walls. Gravity flows transport sediment from wall sources to the deep basins of the lake. Several debris-avalanche deposits, containing blocks up to 280 m long, are present on the caldera floor and occur below major embayments in the caldera walls. Geothermal phenomena on the lake floor are bacterial mats, pools of solute-rich warm water, and fossil subaqueous hot spring deposits. Lake level is maintained by a balance between precipitation and inflow versus evaporation and leakage. High-resolution bathymetry reveals a series of up to nine drowned beaches in the upper 30 m of the lake that we propose reflect stillstands subsequent to filling of Crater Lake. A prominent wave-cut platform between 4 m depth and present lake level that commonly is up to 40 m wide suggests that the surface of Crater Lake has been at this elevation for a very long time. Lake level apparently is limited by leakage through a permeable layer in the northeast caldera wall. The deepest drowned beach approximately corresponds to the base of the permeable layer. Among a group of lake filling models, our preferred one is constrained by the drowned beaches, the permeable layer in the caldera wall, and paleoclimatic data. We used a precipitation rate 70% of modern as a limiting case. Satisfactory models require leakage to be proportional to elevation and the best fit model has a linear combination of 45% leakage proportional to elevation and 55% of leakage proportional to elevation above the base of the permeable layer. At modern precipitation rates, the lake would have taken 420 yr to fill, or a maximum of 740 yr if precipitation was 70% of the modern value. The filling model provides a chronology for prehistoric passage zones on postcaldera volcanoes that ceased erupting before the lake was filled.  相似文献   

14.
    
Reduction in body size of organisms following mass extinctions is well‐known and often ascribed to the Lilliput effect. This phenomenon is expressed as a temporary body size reduction within surviving species. Despite its wide usage the term is often loosely applied to any small post‐extinction taxa. Here we assess the size of bivalves of the family Limidae (Rafineque) prior to, and in the aftermath of, the end‐Triassic mass extinction event. Of the species studied only one occurs prior to the extinction event, though is too scarce to test for the Lilliput effect. Instead, newly evolved species originate at small body sizes and undergo a within‐species size increase, most dramatically demonstrated by Plagiostoma giganteum (Sowerby) which, over two million years, increases in size by 179%. This trend is seen in both field and museum collections. We term this within‐species size increase of newly originated species in the aftermath of mass extinction, the Brobdingnag effect, after the giants that were contemporary with the Lilliputians in Swift's Gulliver's Travels. The size increase results from greater longevity and faster growth rates. The cause of the effect is unclear, although it probably relates to improved environmental conditions. Oxygen‐poor conditions in the Early Jurassic are associated with populations of smaller body size caused by elevated juvenile mortality but these are local/regional effects that do not alter the long‐term, size increase. Although temperature‐size relationships exist for many organisms (Temperature‐Size Rule and Bergmann's Rule), the importance of this is unclear here because of a poorly known Early Jurassic temperature record.  相似文献   

15.
    
Species loss is a global issue. With up to a million species at risk and insufficient protected area to maintain the world's biodiversity, humanity will increasingly need to rely on species re‐introductions to locally restore diversity and function. However, such restoration attempts are bound to fail when ecological communities get locked in a closed state that is resistant to recovery. It is presently unknown how to repair these closed systems. We use mathematical models to identify ways out of this problem. We first show how ecological communities may enter a closed state, to then explain how to open them up again for restoration of their original diversity. We find that restoration is often still possible shortly after initial species loss, as (1) the secondary extinctions that produce closure have not happened yet and (2) mild population fluctuations still allow successful repair during a transient postdisturbance phase. However, after this typically short window of opportunity for restoration, the system enters a new equilibrium, which may be a closed state. Our analysis shows how to take ecological communities out of the closed state: Appropriate management of carrying capacities produces a regime of mild population fluctuations that opens a window for successful species re‐introductions. These windows can be perpetually recurring or permanently open. Such opportunities for repair can be absent under regimes of wild cycles or perfect stability. We conclude that mild cycles may open windows of opportunity for the repair of communities that have become resistant to recovery.  相似文献   

16.
    
The ichnology of the Middle Ordovician Winnipeg Formation has been analysed based on the study of cores from five wells drilled in southeast Saskatchewan (Canada). Six sedimentary facies, ranging from upper shoreface to lower offshore settings in a shallow‐marine environment, have been characterized. Ichnological attributes are consistent with those in currently proposed models for shallow‐marine wave‐dominated settings, but ichnodiversity is lower than in post‐Palaeozoic settings. Low ichnodiversity in the Winnipeg Formation most likely reflects evolutionary factors rather than environmental controls. Interestingly, low‐energy, distal deposits of the Winnipeg Formation display intense degree of bioturbation, reflecting a well‐developed mixed layer and underscoring the importance of the Great Ordovician Biodiversification Event in terms of sediment mixing.  相似文献   

17.
    
The bioeroding foraminifer Troglotella incrustans Wernli and Fookes (Bolletino della Societa Paleontologica Italiana 31, 1992, 95), is widely reported from Bajocian?, and Oxfordian to Lower Cenomanian (with a Late Jurassic acme) shallow‐water limestones of the Tethyan realm. A single specimen of a boring foraminifer, assigned to T. incrustans, has now been observed from the Lower Permian (Sakmarian) Community Pit Formation of the Doña Ana Mountains, New Mexico, USA. Surviving the end‐Permian mass extinction, T. incrustans might be a Lazarus taxon that persisted in refuges. This finding represents the oldest record of a foraminifer exhibiting an euendolithic way of life. Boring foraminifera have not been previously recorded from strata older than the Jurassic. Boring traces of potentially foraminiferan origin, however, have been already reported from the Lower Carboniferous (?Ordovician).  相似文献   

18.
    
Taxonomic and ecological recovery from the Cretaceous–Palaeogene (K–Pg) mass extinction 66 million years ago shaped the composition and structure of modern ecosystems. The timing and nature of recovery has been linked to many factors including palaeolatitude, geographical range, the ecology of survivors, incumbency and palaeoenvironmental setting. Using a temporally constrained fossil dataset from one of the most expanded K–Pg successions in the world, integrated with palaeoenvironmental information, we provide the most detailed examination of the patterns and timing of recovery from the K–Pg mass extinction event in the high southern latitudes of Antarctica. The timing of biotic recovery was influenced by global stabilization of the wider Earth system following severe environmental perturbations, apparently regardless of latitude or local environment. Extinction intensity and ecological change were decoupled, with community scale ecological change less distinct compared to other locations, even if the taxonomic severity of the extinction was the same as at lower latitudes. This is consistent with a degree of geographical heterogeneity in the recovery from the K–Pg mass extinction. Recovery in Antarctica was influenced by local factors (such as water depth changes, local volcanism, and possibly incumbency and pre‐adaptation to seasonality of the local benthic molluscan population), and also showed global signals, for example the radiation of the Neogastropoda within the first million years of the Danian, and a shift in dominance between bivalves and gastropods.  相似文献   

19.
For many European species, the mountains of the Alps and the Pyrenees have acted as significant barriers to northwards colonization from southern glacial refugia. To the east, the Caucasus Mountains would seem to have been a similar barrier to the white‐breasted hedgehog (Erinaceus concolor). A deep divergence among hedgehog mitochondrial sequences to the north and south of the Caucasus Mountains suggests two colonization routes, originating from separate refugial regions and divided by this mountain barrier. From a Balkan refugium, hedgehogs have colonized northwards into Russia and to the northern foothills of the Caucasus Mountains. The origins of hedgehogs colonizing the southern parts of the Caucasus are not entirely clear, although fossil and climatic data suggest a glacial refugium on the southern shores of the Black Sea. Divergence within the southern group indicates a long‐standing fragmentation within such a refugium or the presence of further cryptic refugia in Turkey and the Near East. The Caucasus barrier would seem to have been an important factor in structuring the late Pleistocene distribution of species.  相似文献   

20.
The body size of marine ectotherms is often negatively correlated with ambient water temperature, as seen in many clades during the hyperthermal crisis of the end-Permian mass extinction (c. 252 Ma). However, in the case of ostracods, size changes during ancient hyperthermal events are rarely quantified. In this study, we evaluate the body size changes of ostracods in the Aras Valley section (northwest Iran) in response to the drastic warming during the end-Permian mass extinction at three taxonomic levels: class, order, species. At the assemblage level, the warming triggers a complete species turnover in the Aras Valley section, with larger, newly emerging species dominating the immediate post-extinction assemblage for a short time. Individual ostracod species and instars do not show dwarfing or a change in body size as an adaptation to the temperature stress during the end-Permian crisis. This may indicate that the ostracods in the Aras Valley section might have been exceptions to the temperature–size rule (TSR), using an adaptation mechanism that does not involve a decrease in body size. This adaptation might be similar to the accelerated development despite constant instar body sizes that can be observed in some recent experimental studies of ostracod responses to thermal stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号