共查询到20条相似文献,搜索用时 15 毫秒
1.
Balzs A. Lukcs Anna E‐Vojtk Tibor Ers Attila Molnr V. Sndor Szab Lars Gtzenberger 《植被学杂志》2019,30(3):471-484
2.
3.
Understanding the imprint of environmental filtering on community assembly along environmental gradients is a key objective of trait‐gradient analyses. Depending on local constraints, this filtering generally entails that species departing from an optimum trait value have lower abundances in the community. The community‐weighted mean (CWM) and variance (CWV) of trait values are then expected to depict the optimum and intensity of filtering, respectively. However, the trait distribution within the regional species pool and its limits can also affect local CWM and CWV values apart from the effect of environmental filtering. The regional trait range limits are more likely to be reached in communities at the extremes of environmental gradients. Analogous to the mid‐domain effect in biogeography, decreasing CWV values in extreme environments can then represent the influence of regional trait range limits rather than stronger filtering in the local environment. We name this effect the ‘trait‐gradient boundary effect’ (TGBE). First, we use a community assembly framework to build simulated communities along a gradient from a species pool and environmental filtering with either constant or varying intensity while accounting for immigration processes. We demonstrate the significant influence of TGBE, in parallel to environmental filtering, on CWM and CWV at the extremes of the environmental gradient. We provide a statistical tool based on Approximate Bayesian Computation to decipher the respective influence of local environmental filtering and regional trait range limits. Second, as a case study, we reanalyze the functional composition of alpine plant communities distributed along a gradient of snow cover duration. We show that leaf trait convergence found in communities at the extremes of the gradient reflect an influence of trait range limits rather than stronger environmental filtering. These findings challenge correlative trait–environment relationships and call for more explicitly identifying the mechanisms responsible of trait convergence/divergence along environmental gradients. 相似文献
4.
Nelson Valdivia Viviana Segovia‐Rivera Eliseo Fica César C. Bonta Moisés A. Aguilera Bernardo R. Broitman 《Ecology and evolution》2017,7(6):1882-1891
Functional diversity is intimately linked with community assembly processes, but its large‐scale patterns of variation are often not well understood. Here, we investigated the spatiotemporal changes in multiple trait dimensions (“trait space”) along vertical intertidal environmental stress gradients and across a landscape scale. We predicted that the range of the trait space covered by local assemblages (i.e., functional richness) and the dispersion in trait abundances (i.e., functional dispersion) should increase from high‐ to low‐intertidal elevations, due to the decreasing influence of environmental filtering. The abundance of macrobenthic algae and invertebrates was estimated at four rocky shores spanning ca. 200 km of the coast over a 36‐month period. Functional richness and dispersion were contrasted against matrix‐swap models to remove any confounding effect of species richness on functional diversity. Random‐slope models showed that functional richness and dispersion significantly increased from high‐ to low‐intertidal heights, demonstrating that under harsh environmental conditions, the assemblages comprised similar abundances of functionally similar species (i.e., trait convergence), while that under milder conditions, the assemblages encompassed differing abundances of functionally dissimilar species (i.e., trait divergence). According to the Akaike information criteria, the relationship between local environmental stress and functional richness was persistent across sites and sampling times, while functional dispersion varied significantly. Environmental filtering therefore has persistent effects on the range of trait space covered by these assemblages, but context‐dependent effects on the abundances of trait combinations within such range. Our results further suggest that natural and/or anthropogenic factors might have significant effects on the relative abundance of functional traits, despite that no trait addition or extinction is detected. 相似文献
5.
森林群落的构建过程及其内在机制是生态学研究的热点问题。植物功能性状是指能够代表植物的生活史策略,反映植物对环境变化响应的一系列植物属性。通过植物功能性状的分布格局及其对环境因素的响应有助于推测群落的构建过程及其内在作用机制。以吉林蛟河21.12hm2温带针阔混交林样地为研究对象,采集并测量了样地内34种木本植物的6种不同的功能性状。以20m×20m的样方为研究单元,通过计算平均成对性状距离指数(mean pairwise trait distance;PW)和平均最近邻体性状距离指数(mean nearest neighbor trait distance;NN)来探讨群落中单个性状和综合性状的分布格局。同时结合地形因子采用回归分析探讨功能性状的分布格局对局域生境变化的响应。基于PW的结果显示:单个性状中除叶面积外,其余性状的分布格局均为聚集分布多于离散分布;基于NN的结果显示:除叶面积和最大树高外,其余性状的分布格局为聚集分布多于离散分布。此外,由6种单个性状组成的综合性状的分布格局同样为聚集分布多于离散分布。基于回归分析的结果显示:森林群落中功能性状的分布格局受到海拔、坡度和坡向等因素的显著影响,而凹凸度的影响则不显著。研究结果表明包括环境过滤和生物相互作用的非随机过程能够影响温带针阔混交林的群落构建过程,中性过程对该区域群落构建过程的影响不显著。 相似文献
6.
Bo Zhang Xiaozhen Lu Jiang Jiang Donald L. DeAngelis Zhiyuan Fu Jinchi Zhang 《Ecology and evolution》2017,7(12):4086-4098
The distribution of species and communities in relation to environmental heterogeneity is a central focus in ecology. Co‐occurrence of species with similar functional traits is an indication that communities are determined in part by environmental filters. However, few studies have been designed to test how functional traits are selectively filtered by environmental conditions at local scales. Exploring the relationship between soil characteristics and plant traits is a step toward understanding the filtering hypothesis in determining plant distribution at local scale. Toward this end, we mapped all individual trees (diameter >1 cm) in a one‐ha subtropical forest of China in 2007 and 2015. We measured topographic and detailed soil properties within the field site, as well as plant leaf functional traits and demographic rates of the seven most common tree species. A second one‐ha study plot was established in 2015, to test and validate the general patterns that were drawn from first plot. We found that variation in species distribution at local scale can be explained by soil heterogeneity and plant functional traits. (From first plot). (1) Species dominant in habitats with high soil ammonium nitrogen and total phosphorus tended to have high specific leaf area (SLA) and relative growth rate (RGR). (2) Species dominant in low‐fertility habitats tended to have high leaf dry matter content (LDMC), ratio of chlorophyll a and b (ratioab), and leaf thickness (LT). The hypothesis that functional traits are selected in part by environmental filters and determine plant distribution at local scale was confirmed by the data of the first plot and a second regional site showed similar species distribution patterns. 相似文献
7.
Facundo Xavier Palacio 《Ibis》2020,162(1):42-49
Urbanization is currently one of the most pervasive threats to biodiversity worldwide, yet traits permitting birds to exploit urban environments are not fully understood. I used bird traits related to diet (dietary item and foraging stratum), accounting for latitude, body size, development mode and phylogeny, to compare diet breadths of urban exploiters and urban avoiders, using a global dataset (463 bird species). Urban exploiters (urban species) were larger, consumed more vertebrates and carrion, and fed more frequently on the ground or aerially, and also had broader diets than urban avoiders (non-urban species). In contrast, urban species had narrower foraging strata ranges than non-urban species. These results not only support the hypothesis that urban species share dietary traits allowing them to cope with urban environments but also highlight the importance of considering multiple dietary traits to properly quantify species niches when assessing a species’ response to environmental change. 相似文献
8.
Markus A. K. Sydenham Stein R. Moe Mari Steinert Katrine Eldegard 《Ecology and evolution》2019,9(3):1473-1488
Identifying the influence of stochastic processes and of deterministic processes, such as dispersal of individuals of different species and trait‐based environmental filtering, has long been a challenge in studies of community assembly. Here, we present the Univariate Community Assembly Analysis (UniCAA) and test its ability to address three hypotheses: species occurrences within communities are (a) limited by spatially restricted dispersal; (b) environmentally filtered; or (c) the outcome of stochasticity—so that as community size decreases—species that are common outside a local community have a disproportionately higher probability of occurrence than rare species. The comparison with a null model allows assessing if the influence of each of the three processes differs from what one would expect under a purely stochastic distribution of species. We tested the framework by simulating “empirical” metacommunities under 15 scenarios that differed with respect to the strengths of spatially restricted dispersal (restricted vs. not restricted); habitat isolation (low, intermediate, and high immigration rates); and environmental filtering (strong, intermediate, and no filtering). Through these tests, we found that UniCAA rarely produced false positives for the influence of the three processes, yielding a type‐I error rate ≤5%. The type‐II error rate, that is, production of false negatives, was also acceptable and within the typical cutoff (20%). We demonstrate that the UniCAA provides a flexible framework for retrieving the processes behind community assembly and propose avenues for future developments of the framework. 相似文献
9.
Aims For plants to establish in a local community from a pool of possible colonizers from the region, it must pass through a series of filters. Which of the filters is most important in this process has been much debated. In this study, we explored how species are filtered from the regional species pool into local communities. The aim was to determine if differences in species abundance and functional traits could explain which species from the regional species pool establish at the local scale and if the filtering differed between grassland communities.Methods This study took place in a cultivated landscape in southeastern Sweden. We estimated plant species abundance in 12 ex-arable field sites and 8 adjacent seminatural grassland sites and in a 100-m radius around the center of each site. We used Monte Carlo simulations to examine if species abundance and functional traits (height, seed mass, clonal abilities, specific leaf area and dispersal method) controlled the filtering of species from the regional pool into local communities.Important findings On average, only 28% of species found in the regional pool established in the ex-arable field sites and 45% in the seminatural grassland sites, indicating that the size of the regional species pool was not limiting local richness. For both grassland types, species abundance in the regional pool was positively correlated with species occurrence at the local scale. We found evidence for both species interaction filtering and dispersal limitation influencing the local assembly. Both local and regional processes were thus influencing the filtering of species from the regional species pool into local communities. In addition, the age of the communities influenced species filtering, indicating that community assembly and the importance of different filters in that process change over succession. 相似文献
10.
Dylan Craven Jefferson S. Hall Graeme P. Berlyn Mark S. Ashton Michiel van Breugel 《植被学杂志》2018,29(3):511-520
11.
Verónica Crespo-Pérez Olivier Dangles Cristina Ibarra Rodrigo Espinosa Patricio Andino Dean Jacobsen Sophie Cauvy-Fraunié 《Freshwater Biology》2020,65(8):1348-1362
- In many mountainous areas, glaciers feed streams characterised by harsh environmental conditions, such as low water temperature, high turbidity, low channel stability, and high temporal variability in flow. Additionally, in many glacierised catchments, the mixture of streams arising from different water sources (glacier melt, groundwater, rainfall) generates high levels of environmental heterogeneity, which enhance species turnover rates and increase regional diversity.
- Studies from mainly temperate regions have revealed some consistent patterns: a predominance of traits adaptive to harsh environmental conditions and reduced functional diversity with increased glaciality, both strongly related to environmental filtering. Here, we investigated variation in functional structure and diversity between macroinvertebrate communities from 15 stream sites, with different water sources (five glacier-fed, five groundwater-fed, and five mixed source) and level of glacier influence, in a glacierised catchment in the Ecuadorian Andes.
- Our results revealed functional differences between communities inhabiting the different stream types. As found in temperate regions, high levels of glaciality were associated with an increase of small-sized taxa that do not swim but are temporarily attached to or burrow in the substrate, have a flying-adult stage, and feed by collecting–gathering. Similarly, we found a general decrease in functional diversity at sites with higher glacier influence. A null modelling approach suggested that in some of our glacier-fed sites, environmental filtering may be the main driver of community assembly, whereas other mechanisms, mainly regional (such as dispersal), but also local (such as intraspecific competition), may gain importance as glacier influence decreases.
- Assemblage composition in streams in tropical glacierised catchments may be driven by both local and regional processes that generate a gradient of decreasing functional diversity with stronger glacier influence. However, lack of knowledge of relevant traits for taxa in tropical glacierised streams currently poses a substantial obstacle to predicting changes likely to arise from global warming and glacier melt in this region.
12.
Otso Ovaskainen Gleb Tikhonov Anna Norberg F. Guillaume Blanchet Leo Duan David Dunson Tomas Roslin Nerea Abrego 《Ecology letters》2017,20(5):561-576
Community ecology aims to understand what factors determine the assembly and dynamics of species assemblages at different spatiotemporal scales. To facilitate the integration between conceptual and statistical approaches in community ecology, we propose Hierarchical Modelling of Species Communities (HMSC) as a general, flexible framework for modern analysis of community data. While non‐manipulative data allow for only correlative and not causal inference, this framework facilitates the formulation of data‐driven hypotheses regarding the processes that structure communities. We model environmental filtering by variation and covariation in the responses of individual species to the characteristics of their environment, with potential contingencies on species traits and phylogenetic relationships. We capture biotic assembly rules by species‐to‐species association matrices, which may be estimated at multiple spatial or temporal scales. We operationalise the HMSC framework as a hierarchical Bayesian joint species distribution model, and implement it as R‐ and Matlab‐packages which enable computationally efficient analyses of large data sets. Armed with this tool, community ecologists can make sense of many types of data, including spatially explicit data and time‐series data. We illustrate the use of this framework through a series of diverse ecological examples. 相似文献
13.
Maya Rocha‐Ortega Xavier Arnan José Domingos Ribeiro‐Neto Inara R. Leal Mario E. Favila Miguel Martínez‐Ramos 《Biotropica》2018,50(2):290-301
The taxonomic diversity (TD) of tropical flora and fauna tends to increase during secondary succession. This increase may be accompanied by changes in functional diversity (FD), although the relationship between TD and FD is not well understood. To explore this relationship, we examined the correlations between the TD and FD of ants and forest age in secondary forests at the α‐ and β‐diversity levels using single‐ and multi‐trait‐based approaches. Our objectives were to understand ant diversity patterns and to evaluate the role of secondary forests in the conservation of biodiversity and in the resilience of tropical forests. Ant assemblages were sampled across a chronosequence in the Lacandon region, Mexico. All species were characterized according to 12 functional ecomorphological traits relevant to their feeding behavior. We found that TD and FD were related to forest age at the alpha level, but not at the beta level. α‐functional richness and divergence increased linearly with species richness and diversity, respectively. Also, the relationship between taxonomic and functional turnover was linear and positive. Our results indicated that functional traits were complementary across the chronosequence. The increase in FD was mainly driven by the addition of rare species with relevant traits. The older secondary forests did not recover all of the functions of old growth forest but did show a tendency to recovery. Because older successional stages support more TD and FD, we suggest developing agriculture and forestry management practices that facilitate rapid post‐agricultural succession and thereby better preserve the functionality of tropical forests. 相似文献
14.
1. Characterisation of biodiversity is typically based on taxonomic approaches, while much less is known about other related aspects. Functional trait diversity is one such component of biodiversity that has not been addressed rigorously in ecological research until recently. We tested the congruence between taxonomic‐ and trait‐based approaches, and examined how spatial configuration, local abiotic environmental factors and biotic effects interact to influence taxonomic‐ and trait‐based characterisation of freshwater fish assemblages. 2. Fish assemblage data were compiled for 124 lakes in southern Finland. Variance partitioning in both linear regression analyses and redundancy analysis was used to quantify the relative contribution of spatial and environmental variables to taxonomic and functional trait diversity and structure. Additionally, a null model analysis was used to test for the potential effects of interspecific segregation and biotic interactions on the co‐occurrence of species. 3. The species pool was relatively poor. However, trait‐based classification of species indicated that most species belonged to unique functional entities, which suggested low redundancy in species composition. Correlation analysis indicated a very strong relationship between species richness (SR) and the number of unique trait combinations (UTC). Ecoregion‐level heterogeneity in SR and UTC were well represented in a relatively small group of randomly selected lakes (c. 30 lakes). Multiple regressions indicated moderate roles for abiotic environmental variables (i.e. lake surface area, depth, total phosphorous, colour and pH) in determining SR, UTC and the distribution of single trait categories, whereas geographical location was not generally influential. 4. Redundancy analysis revealed similar patterns to those of diversity analyses for taxonomic and associated trait‐based structure, emphasising the effect of abiotic environmental variables and the negligible effect of geographical position. 5. Co‐occurrence analysis indicated significant checkerboard distribution at the whole assemblage level, but interspecific segregation proved to be of relatively minor importance in the constrained analyses, where species pair combinations within trait category groups were evaluated. 6. Our results suggest that taxonomic‐ and trait‐based patterns of boreal lake fish assemblages are strongly interrelated. Environmental filtering through the effects of local abiotic variables seems to have the most prominent role in determining trait‐based assemblage patterns among lakes, which may also be secondarily shaped by biotic interactions. 7. From the applied perspective, it may not necessarily matter whether traditional taxonomic or more novel trait‐based approaches are used in characterising spatial patterns in boreal fish assemblages. However, trait‐based approaches may provide complementary information which cannot be directly revealed by taxonomic data. 相似文献
15.
16.
Jinshi Xu Yu Chen Lixia Zhang Yongfu Chai Mao Wang Yaoxin Guo Ting Li Ming Yue 《Ecology and evolution》2017,7(14):5056-5069
Community assembly processes is the primary focus of community ecology. Using phylogenetic‐based and functional trait‐based methods jointly to explore these processes along environmental gradients are useful ways to explain the change of assembly mechanisms under changing world. Our study combined these methods to test assembly processes in wide range gradients of elevation and other habitat environmental factors. We collected our data at 40 plots in Taibai Mountain, China, with more than 2,300 m altitude difference in study area and then measured traits and environmental factors. Variance partitioning was used to distinguish the main environment factors leading to phylogeny and traits change among 40 plots. Principal component analysis (PCA) was applied to colligate other environment factors. Community assembly patterns along environmental gradients based on phylogenetic and functional methods were studied for exploring assembly mechanisms. Phylogenetic signal was calculated for each community along environmental gradients in order to detect the variation of trait performance on phylogeny. Elevation showed a better explanatory power than other environment factors for phylogenetic and most traits’ variance. Phylogenetic and several functional structure clustered at high elevation while some conserved traits overdispersed. Convergent tendency which might be caused by filtering or competition along elevation was detected based on functional traits. Leaf dry matter content (LDMC) and leaf nitrogen content along PCA 1 axis showed conflicting patterns comparing to patterns showed on elevation. LDMC exhibited the strongest phylogenetic signal. Only the phylogenetic signal of maximum plant height showed explicable change along environmental gradients. Synthesis. Elevation is the best environment factors for predicting phylogeny and traits change. Plant's phylogenetic and some functional structures show environmental filtering in alpine region while it shows different assembly processes in middle‐ and low‐altitude region by different trait/phylogeny. The results highlight deterministic processes dominate community assembly in large‐scale environmental gradients. Performance of phylogeny and traits along gradients may be independent with each other. The novel method for calculating functional structure which we used in this study and the focus of phylogenetic signal change along gradients may provide more useful ways to detect community assembly mechanisms. 相似文献
17.
群落构建是生态学研究中的论题之一,对湿地植物进行群落构建研究将会对湿地植物的修复与重建工作具有重要意义。为探究城市沿江湿地植物群落构建主要驱动力,以闽江福州段湿地为例,选取四个典型城市沿江湿地公园,基于系统发育结合功能性状的方法,测定其样地植物地上、地下功能性状与土壤因子,并且构建系统发育树、检测系统发育信号、并计算系统发育指数。结果表明:(1)土壤因子与植物功能性状在四个湿地间都具有显著差异,土壤电导率与比根长的变异性最大。土壤含水量与是影响植物性状变异的主要因素。(2)除叶全氮含量外,其余7个功能性状未检测出明显的系统发育信号,植物功能性状表现为趋同。(3)甘蔗湿地与乌龙江湿地的系统发育结构趋于发散,群落构建的主要驱动力为环境过滤。塔礁洲湿地与闽江河口湿地的系统发育结构表现为聚集,限制相似性为主要驱动因素。总体而言闽江福州段湿地植物群落构建过程由生态位理论主导,环境过滤和相似性限制为主要驱动因素,土壤含水量作为主要的环境筛选影响着闽江福州段湿地植物群落构建过程。不同生境下生态位分化的驱动因素不同,植物功能性状的种间种内变异反映了植物对环境异质性的响应机制。 相似文献
18.
- Understanding the drivers of trait selection is critical for resolving community assembly processes. Here, we test the importance of environmental filtering and trait covariance for structuring the functional traits of understory herbaceous communities distributed along a natural environmental resource gradient that varied in soil moisture, temperature, and nitrogen availability, produced by different topographic positions in the southern Appalachian Mountains.
- To uncover potential differences in community‐level trait responses to the resource gradient, we quantified the averages and variances of both abundance‐weighted and unweighted values for six functional traits (vegetative height, leaf area, specific leaf area, leaf dry matter content, leaf nitrogen, and leaf δ13C) using 15 individuals of each of the 108 species of understory herbs found at two sites in the southern Appalachians of western North Carolina, USA.
- Environmental variables were better predictors of weighted than unweighted community‐level average trait values for all but height and leaf N, indicating strong environmental filtering of plant abundance. Community‐level variance patterns also showed increased convergence of abundance‐weighted traits as resource limitation became more severe.
- Functional trait covariance patterns based on weighted averages were uniform across the gradient, whereas coordination based on unweighted averages was inconsistent and varied with environmental context. In line with these results, structural equation modeling revealed that unweighted community‐average traits responded directly to local environmental variation, whereas weighted community‐average traits responded indirectly to local environmental variation through trait coordination.
- Our finding that trait coordination is more important for explaining the distribution of weighted than unweighted average trait values along the gradient indicates that environmental filtering acts on multiple traits simultaneously, with abundant species possessing more favorable combinations of traits for maximizing fitness in a given environment.
19.
- Recent studies have shown that species, functional and phylogenetic diversity are related to different environmental drivers, suggesting that different aspects of alpha diversity may be complementary and may provide different information about community assembly. Such multi‐facet community assembly studies are, however, rare in the freshwater realm.
- We examined the responses of species richness, functional alpha diversity and phylogenetic alpha diversity of littoral macroinvertebrates to environmental gradients in near‐pristine boreal lakes. We also examined community assembly mechanisms using null models of functional or phylogenetic clustering, overdispersion and randomness as indications of different assembly mechanisms.
- We found that the alpha diversity indices examined responded differently to the underlying environmental gradients. Also, phylogenetic and functional alpha diversity indices showed different levels of overdispersion, clustering and randomness, which also varied slightly between the analyses based on abundance and presence–absence data. These results suggested that different alpha diversity indices may provide different information about overdispersion (e.g. caused by biotic interactions) and clustering (e.g. caused by environmental filtering), and emphasised the fact that most individual lakes were inhabited by species that were merely random draws from the functional or phylogenetic species pools available in the study region.
- Our findings suggested that some individual lakes are assembled by deterministic mechanisms, including environmental filtering and biotic interactions, whereas most individual lake macroinvertebrate communities constitute random draws from the regional species pool or are affected by the antagonistic effects of different assembly processes. Our results may stem from site‐specific context dependency in the assembly mechanisms, which might also be a reason why statistical models in aquatic community studies typically explain only a small part of variation in community composition and local diversity.
20.
Understanding of community assembly has been improved by phylogenetic and trait‐based approaches, yet there is little consensus regarding the relative importance of alternative mechanisms and few studies have been done at large geographic and phylogenetic scales. Here, we use phylogenetic and trait dispersion approaches to determine the relative contribution of limiting similarity and environmental filtering to community assembly of stream fishes at an intercontinental scale. We sampled stream fishes from five zoogeographic regions. Analysis of traits associated with habitat use, feeding, or both resulted in more occurrences of trait underdispersion than overdispersion regardless of spatial scale or species pool. Our results suggest that environmental filtering and, to a lesser extent, species interactions were important mechanisms of community assembly for fishes inhabiting small, low‐gradient streams in all five regions. However, a large proportion of the trait dispersion values were no different from random. This suggests that stochastic factors or opposing assembly mechanisms also influenced stream fish assemblages and their trait dispersion patterns. Local assemblages tended to have lower functional diversity in microhabitats with high water velocity, shallow water depth, and homogeneous substrates lacking structural complexity, lending support for the stress‐dominance hypothesis. A high prevalence of functional underdispersion coupled with phylogenetic underdispersion could reflect phylogenetic niche conservatism and/or stabilizing selection. These findings imply that environmental filtering of stream fish assemblages is not only deterministic, but also influences assemblage structure in a fairly consistent manner worldwide. 相似文献