首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mixtures of yeasts were tested for theirability to control Penicillium expansum andBotrytis cinerea on Red Delicious apple fruits. The occurrence of synergistic or antagonisticinteractions between yeast strains in differentmixtures was also evaluated. Two strains ofRhodotorula (R. glutinis SL 1 and R. glutinisSL 30) and two strains of Cryptococcus (C. albidus SL 43 and C. laurentii SL 62) were selected fordeveloping yeasts mixtures.The R. glutinis SL 1–R. glutinis SL 30 mixtureexhibited a lower effectiveness than eachstrain alone, against both moulds. Othermixtures (R. glutinis SL 1–C. albidus SL 43 and R. glutinis SL 30–C. albidus SL 43) showedsynergism against P. expansum but not against B. cinerea. The R. glutinis SL 1–C. laurentii SL62 mixture was the only mixture which showedsynergism against gray mould. There was not anymixture, which showed high effectivenessagainst both moulds at the same time. Differentresults could be explained by the dynamics ofthe population of the yeasts.By using yeast mixtures, it was possible toimprove biocontrol without increasing theamount of antagonists applied. The synergismobserved could be useful in enhancingbiological control.  相似文献   

2.
Zhao  Lina  Wang  Yuanjian  Dhanasekaran  Solairaj  Guo  Zhipeng  Chen  Shangjian  Zhang  Xiaoyun  Zhang  Hongyin 《BioControl》2021,66(4):547-558

Blue mold decay is the one of most important postharvest disease of apples caused by the fungus, Penicillium expansum. This study aimed to investigate the biocontrol efficacy of the yeast, Wickerhamomyces anomalus, on postharvest blue mold decay of apples and the relative defense mechanisms. The results indicated that W. anomalus could significantly reduce the blue mold decay of apples, and the maximum inhibition was obtained when the concentration of W. anomalus was 1?×?108 cells ml?1. Furthermore, W. anomalus significantly reduced the fruit decay under ambient conditions, without generating any change in fruit quality. In vitro experiments showed that W. anomalus greatly inhibited the spore germination and germ tube elongation of P. expansum. Besides, its ease of adaptation, stable growth and potential colonization of in apple wounds or surfaces indicated that W. anomalus could compete with P. expansum for nutrients and space, leading to considerable inhibition blue mold decay. W. anomalus significantly induced the activities of polyphenol oxidase (PPO), peroxidase (POD), catalase (CAT), phenylalanine ammonia-lyase (PAL), and ascorbate peroxidase (APX) in apples. Moreover, W. anomalus increased the contents of flavonoid and total phenols. All these results suggested that W. anomalus has potential biocontrol efficacy to control the postharvest blue mold decay of apples

  相似文献   

3.
从苹果果实上分离获得的50余种酵母菌中筛选出了能够有效地抑制苹果青霉病(Penicilium expansum Link)的丝孢酵母(Trichosporon pullulans (Lindner.) Diddens and Lodder)、罗伦隐球酵母(Cryptococcus laurentii (Kuffer.) Skinner)和粘红酵母(Rhodotorula glutinis (Fresen.) F. C. Harrison).其中,抑病效果最好的T. pullulans 是一种用于采后果实生物防治的新型拮抗菌.研究了这三种拮抗菌不同浓度处理和外加营养物质以及与钙配合使用对苹果青霉病的抑病效果.实验结果表明:酵母菌浓度越高,抑病作用越强;外源营养物质的加入削弱了酵母菌的拮抗效果;在C. laurentii的细胞悬浮液中加入0.18 mol/L 的CaCl2能显著提高其抑病能力,但增加CaCl2 对T. pullulans 和R. glutinis 的抑病效果却没有明显作用.  相似文献   

4.
三种拮抗酵母菌对苹果采后青霉病的抑制效果   总被引:3,自引:0,他引:3  
从苹果果实上分离获得的50余种酵母菌中筛选出了能够有效地抑制苹果青霉病(Peniclium expansum Link)的丝孢酵母(Trichosporon pullulans(Lindner.)Diddens and Lodder)。罗伦隐球酵母(Cryptococcus laurentii(Kuffer.)skin-ner)和粘红酵母(Rhodotorula glutinis(Fresen.)F.C.Harrison)。其中,抑病效果最好的T.pullulans是一种用于采后果实生物防治的新型拮抗菌,研究了这三种拮抗菌不同浓度处理和外加营养物质以及与钙配合使用对苹果青霉病的抑病效果。实验结果表明;酵母菌浓度越高,抑病作用越强;外源营养物质的加入削弱了酵母菌的拮抗效果;在C.laurentii的细胞悬浮液中加入0.18mol/L的CaCl2能显著提高其抑病能力。但增加CaCl2对T.pullulans和R.glutinis的抑病效果却没有明显作用。  相似文献   

5.
Post-harvest pathogens cause major losses in apple production. Biological control by using epiphytic yeasts against Penicillium expansum has been considered as an alternative method for controlling the post-harvest decays. The yeast isolates Rhodotorula mucilaginosa, Pichia guilliermondii, which showed high biocontrol efficacy against P. expansum, were selected for formulation tests. Formulation is an important step in developing a biocontrol product. The successful delivery of biocontrol agents, shelf life, stability and effectiveness in commercial conditions depend on the formulation. In the formulation, the carrier is the primary material used to allow a bioproduct to be dispersed effectively. Yeast isolates were grown in a cane molasses-based medium. Harvested yeast cells were combined with inorganic (talk, kaolin) and organic (Rice bran, wheat bran) carriers. Viability of the yeast cells in formulations stored at 4°C and 24°C was determined each month during 6 months storage. After 6 months storage to evaluate efficacy of formulations, all formulations were tested on apple to control blue mold in storage condition. High stability of antagonistic yeasts was achieved by using organic and inorganic carriers. Rice bran and wheat bran stimulated the germination of the yeasts cells during storage period. Both of the yeasts had significantly highest viable yeast cell content over 6 months in formulation containing wheat bran as a carrier. P.guillermondii in all formulations had significantly higher shelf life and was effective than R. mucilaginosa.  相似文献   

6.
Recombinant Pichia pastoris yeasts expressing cecropin A (GS115/CEC), was evaluated for the control of the blue mold of apple caused by Penicillium expansum due to cecropin A peptide’s effective antimicrobial effects on P. expansum spores by the thiazolyl blue (MTT) assay. Then, the protein concentration was determined and it was expressed at high levels up to 14.2 mg/L in the culture medium. Meanwhile, the population growth was assayed in vivo. The population growth of recombinant strain GS115/CEC was higher than that of non-transformed strain GS115 in red Fuji apples wounds. Recombinant yeast strains GS115/CEC significantly inhibited growth of germinated P. expansum spores in vitro and inhibited decay development caused by P. expansum in apple fruits in vivo when compared with apple fruits inoculated with sterile water or the yeast strain GS115/pPIC (plasmid pPIC9k transformed in GS115). This study demonstrated the potential of expression of the antifungal peptide in yeast for the control of postharvest blue mold infections on pome fruits.  相似文献   

7.
R.D. Reeleder 《BioControl》2004,49(5):583-594
Yeasts are promising biological control agents(BCAs) for a number of plant diseases. Studieswere carried out to evaluate various adjuvantsand nutrients for their ability to supportgrowth of a yeast BCA (Cryptococcusalbidus). Hydroxyethylcellulose (HEC) andinvert emulsions were found to stimulate growthof C. albidus in vitro. Severalcommercial spray adjuvants were compatible withC. albidus although they did not markedlystimulate growth. Other adjuvants were lethalto the yeast. In controlled environmentand field trials, the yeasts C. albidusand Pichia anomala provided low levels ofcontrol of white mould, a disease of bean (Phaseolus vulgaris) caused by the fungus Sclerotinia sclerotiorum. However, they weregenerally inferior in performance when comparedto either the biocontrol fungus Epicoccumnigrum or to the fungicide iprodione.  相似文献   

8.
In this study we have isolated and characterized yeasts from the soil, leaves and fruits of the indigenous Moroccan Argan tree (Argania spinosa) in two locations: the coastal city of Essaouira and a drier, more stressed environment in Taroudant city. Factorial and classification analyses of the metabolic profiles showed that the yeasts from the soil and those from the fruit seemed to form distinctive groups while those from the leaves were common to the two groups. Associating the profiles with yeast species, the soil isolates seemed to be dominated by profiles associated with basidiomycetous yeasts (Bullera variabilis, association to Filobasidium capsuligenum, and Rhodotorula glutinis) while those of the fruits were associated with ascomycetous yeasts (Pichia angusta and Zygoascus hellenicus). Most profile groups were shared between the leaves and one of the other biotopes owing to the semi-deciduous character of the Argan leaves that dominate in the rhizospheric soil and to the fibrous and low flesh fruits of Argan. Although most metabolic profile groups were represented in both sampling locations, certain groups were encountered only in Taroudant samples among which a group of four yeasts that grew at 44 °C. The Taroudant samples also presented the two most osmo-tolerant yeasts capable of growing at 15% NaCl and 125% sucrose. Some of the yeast strains showed very promising activities of polygalacturonase (0.40 units/g protein) without any pectinesterase activity while others strongly inhibited the gray rot mould Botrytis cinerea, and could be good candidates for the post-harvest control of this mould on fruits.  相似文献   

9.
The yeast Wickerhamomyces anomalus has been studied for its wide biotechnological potential, mainly for applications in the food industry. Different strains of W. anomalus have been isolated from diverse habitats and recently from insects, including mosquitoes of medical importance. This paper reports the isolation and phylogenetic characterization of W. anomalus from laboratory‐reared adults and larvae of Phlebotomus perniciosus (Diptera: Psychodidae), a main phlebotomine vector of human and canine leishmaniasis. Of 65 yeast strains isolated from P. perniciosus, 15 strains were identified as W. anomalus; one of these was tested for the killer phenotype and demonstrated inhibitory activity against four yeast sensitive strains, as reported for mosquito‐isolated strains. The association between P. perniciosus and W. anomalus deserves further investigation in order to explore the possibility that this yeast may exert inhibitory/killing activity against Leishmania spp.  相似文献   

10.
Malted barley is a major raw material of beer, as well as distilled spirits and several food products. The production of malt (malting) exploits the biochemical reactions of a natural process, grain germination. In addition to germinating grain, the malting process includes another metabolically active component: a diverse microbial community that includes various types of bacteria and fungi. Therefore, malting can be considered as a complex ecosystem involving two metabolically active groups. Yeasts and yeast-like fungi are an important part of this ecosystem, but previously the significance of yeasts in malting has been largely underestimated. Characterization and identification of yeasts in industrial processes revealed 25 ascomycetous yeasts belonging to 10 genera, and 18 basidiomycetous yeasts belonging to 7 genera. In addition, two ascomycetous yeast-like fungi belonging to the genera Aureobasidium and Exophiala were commonly detected. Yeasts and yeast-like fungi produced extracellular hydrolytic enzymes with a potentially positive contribution to the malt enzyme spectrum. Several ascomycetous yeast strains showed strong antagonistic activity against field and storage moulds, Wickerhamomyces anomalus (synonym Pichia anomala) being the most effective species. Malting studies revealed that W. anomalus VTT C-04565 effectively restricted Fusarium growth and hydrophobin production during malting and prevented beer gushing. In order to broaden the antimicrobial spectrum and to improve malt brewhouse performance, W. anomalus could be combined with other starter cultures such as Lactobacillus plantarum. Well-characterized microbial mixtures consisting of barley and malt-derived microbes open up several possibilities to improve malt properties and to ensure the safety of the malting process.  相似文献   

11.
We previously found that Wickerhamomyces anomalus (formerly Hansenula anomala, Pichia anomala) was the second most frequently isolated yeast in Belgian artisan bakery sourdoughs and that the yeast dominated laboratory sourdough fermentations. Such findings are of interest in terms of the advantage of W. anomalus over other commonly encountered sourdough yeasts and its potential introduction into the sourdough ecosystem. Here, we provide a brief overview of current knowledge on yeast ecology and diversity in sourdough in the context of the potential natural habitat of W. anomalus. Insight into the population structure of W. anomalus was obtained by comparing internal transcribed spacer rDNA sequences of selected sourdough isolates with publicly available database sequences.  相似文献   

12.
The yeast Cryptococcus albidus, originally isolated from mature strawberry fruits, was tested for antagonistic activity against Botrytis cinerea, the causal agent of grey mould in strawberries. Conidial germination and germ tube growth of conidia of B. cinerea were inhibited by a cell suspension of the antagonist in aqueous strawberry fruit pulp suspension (1%) after 6 and 24 hours of incubation. Application of a cell suspension (1 × 106 cells/ml) on detached strawberry leaf disks incubated at 10°C reduced incidence and conidiophore density of B. cinerea by 86 and 99%, respectively, but effectiveness was reduced at higher temperatures. Treatments with C. albidus during bloom of strawberries reduced incidence of grey mould on ripe strawberry fruits after harvest by 33, 28 and 21% in three years of field trials. The effectiveness of the yeast was increased when formulation substances (alginate, xanthan and cellulose) were added to the cell suspension.  相似文献   

13.
In this study, Torulaspora delbrueckii alone and in combination with silicon were evaluated for the control of apple blue mould disease caused by Penicillium expansum. In vitro, the antagonistic effects of T. delbrueckii in controlling mycelial growth of P. expansum on potato-dextrose-agar (PDA) in dual cultures, and the growth of P. expansum alone with cell-free metabolites and volatile components of T. delbrueckii were assayed. In vitro, to evaluate the direct effect of silicon on mycelial growth of pathogen, silicon at different concentrations (0.2, 0.4, 0.6, 1 and 2% (wt./vol.)) was added to PDA medium. Silicon at 0.6% (wt./vol.) and above concentrations completely inhibited the mycelial growth of P. expansum. However, it had no significant effect on population dynamics of yeast in vitro and in apple wounds. In vivo, silicon at 0.2 and 1% (wt./vol.) in combination with antagonistic yeast (1 × 108 cell/ml) was a more effective approach to reduce the lesion diameter of blue mould decay of apples than the application of silicon or T. delbrueckii alone at 20 and 4°C, respectively.  相似文献   

14.
The yeast Wickerhamomyces anomalus has been investigated for several years for its wide biotechnological potential, especially for applications in the food industry. Specifically, the antimicrobial activity of this yeast, associated with the production of Killer Toxins (KTs), has attracted a great deal of attention. The strains of W. anomalus able to produce KTs, called “killer” yeasts, have been shown to be highly competitive in the environment. Different W. anomalus strains have been isolated from diverse habitats and recently even from insects. In the malaria mosquito vector Anopheles stephensi these yeasts have been detected in the midgut and gonads. Here we show that the strain of W. anomalus isolated from An. stephensi, namely WaF17.12, is a killer yeast able to produce a KT in a cell-free medium (in vitro) as well as in the mosquito body (in vivo). We showed a constant production of WaF17.12-KT over time, after stimulation of toxin secretion in yeast cultures and reintroduction of the activated cells into the mosquito through the diet. Furthermore, the antimicrobial activity of WaF17.12-KT has been demonstrated in vitro against sensitive microbes, showing that strain WaF17.12 releases a functional toxin. The mosquito-associated yeast WaF17.12 thus possesses an antimicrobial activity, which makes this yeast worthy of further investigations, in view of its potential as an agent for the symbiotic control of malaria.  相似文献   

15.
Our overall objectives were to prepare commercially acceptable formulations of the postharvest biological control yeasts, Metschnikowia pulcherrima and Pichia guilliermondii, which have a long storage life and to determine the effectiveness of these formulations to control postharvest green and blue moulds on citrus fruit. Yeasts, grown on a cane molasses-based medium, were combined with talc or kaolin carriers and various adjuvants and the viability of yeast in 12 formulations was determined over a 6 month period. Formulation no. 11, containing talc, sodium alginate, sucrose, and yeast extract, for both yeasts had a significantly higher viable yeast cell content over a 6 month storage period. Among the formulations, three formulations (formulations no. 5, 6, and 11) were selected for additional in vivo testing because they had higher levels of viability amongst yeast cell populations during storage and were easier to resuspend remained in suspension more easily. These formulations were tested on Satsuma mandarin and grapefruit to control green and blue moulds. Formulations no. 5, 6, and 11 for both yeasts effectively controlled green mould, while only formulation no. 11 with either yeast isolate M. pulcherrima (isolate M1/1) or P. guilliermondii (isolate P1/3) effectively controlled both blue and green moulds.  相似文献   

16.
Torulaspora delbrueckii alone and in combination with methyl jasmonate was applied to the control of Penicillium expansum. For evaluation of direct effect of Methyl jasmonate on mycelial growth of pathogen, it was added to potato dextrose agar culture at different concentrations. Effect of methyl jasmonate on population of yeast in nutrient yeast dextrose broth media was determined after 24 and 48 h. Results showed that methyl jasmonate had no significant direct effect on pathogen and yeast. Also, evaluation of methyl jasmonate effect on the population of yeast in apple wounds indicated that methyl jasmonate at different concentrations increased population growth of yeast at 20°C, 8 and 15 days after inoculation in toward the control and it had no significant effect on population dynamics of yeast at 4°C. In vivo, the results indicated that combination of methyl jasmonate with antagonistic yeast reduced the blue mould of apples better than methyl jasmonate and yeast alone.  相似文献   

17.
The potential of using an antagonistic yeast alone or in combination with microwave treatment for controlling blue mould rot of jujube fruit, and its effect on postharvest quality of fruit, was investigated. The results showed that the growth of Penicillium citrinum was completely inhibited by a 2450‐MHz microwave heating for 2 or more minutes in vitro. The population density of P. citrinum in surface wounds of fruit treated with microwave treatment for 2–3 min was significantly lower than that of controls. When tested on jujube fruit, antagonistic yeast or microwave treatment, as stand‐alone treatment, the disease incidence of infected wounds was reduced from 100% to 45.0% and 36.0%, and lesion diameters were reduced from 1.92 cm to 1.50 cm and 1.38 cm, respectively. However, in fruit treated with a combination of Metschnikowia pulcherrima and microwave treatment, the disease incidence of infected wounds and lesion diameters was only 21.0% and 1.00 cm, respectively. The natural decay incidence on jujube fruit treated with the combination of microwave treatment and M. pulcherrima was 6.2% after storage at 2 ± 1°C for 45 days and at 22°C for 7 days. None of the treatments impaired quality parameters of fruits. Thus, the combination of microwave treatment and M. pulcherrima could provide an alternative to synthetic fungicides for controlling postharvest blue mould rot of jujube fruit.  相似文献   

18.
The fungal pathogen Botrytis cinerea causes severe rots on tomato fruit during storage and shelf life. Biological control of postharvest diseases of fruit may be an effective alternative to chemical control. Yeasts are particularly suitable for postharvest use, proving to be highly effective in reducing the incidence of fungal pathogens. Yeast fungi isolated from the surface of solanaceous plants were evaluated for their activity in reducing the postharvest decay of tomato caused by B. cinerea. Of 300 isolates, 14 strains of Rhodotorula rubra and Candida pelliculosa were found to be strongly antagonistic to the pathogen in vitro and were selected for further storage experiment. The antagonists were evaluated for their effect on the biological control of postharvest grey mould. Artificially wounded fruits were treated by means of a novel technique: small sterile discs of filter paper imbibed separately in suspensions of each yeast and the pathogen were superposed onto each wound. After 1‐week, 11 isolates were significantly effective in reducing the diameter of lesions by more than 60% compared to the control treated with B. cinerea alone. Total protection was obtained with the strain 231 of R. rubra on fruits challenged with pathogen spores. To our knowledge, R. rubra and C. pelliculosa have not been described as biocontrol agents against grey mould caused by B. cinerea. Our data demonstrate that the application of antagonistic yeasts represents a promising and environmentally friendly alternative to fungicide treatments to control postharvest grey mould of tomato.  相似文献   

19.
In this study, antagonistic yeast Candida membranifaciens was combined with different concentrations of silicon (Si; 0, 0.1, 0.3 and 0.5% wt/vol) to evaluate the control of blue mold of apple in storage at 20°C and 5°C. Preliminary studies showed that Si at 0.6% or above inhibited mycelial growth of pathogens significantly in vitro. In vitro studies showed that Si at 0.1% had lower effect on yeast growth. In vivo studies showed that combination of different concentrations of Si with C. membranifaciens improved the efficacy of yeast in control of disease better than Si and yeast alone (P < 0.05). Our result showed that the effective concentration of Si is varied based on pathogen isolates and temperature, so that the most effective concentration of Si was 0.5% for isolate P2 at 20°C and 0.5% and 0.1% for isolates P1 and P2 at 5°C.  相似文献   

20.
Apple fruits are rich in phenolic compounds that may enhance resistance to grey mould disease caused by Botrytis cinerea. Using Malus domestica Borkh. cultivars Fuji and Qinguan, we analysed the contents of total phenols, total flavonoids, eight individual phenolic compounds, H2O2 and O2.? as well as the activities of key enzymes in the phenylpropanoid pathway in the flesh of control and B. cinerea‐inoculated fruits. Chlorogenic acid contents increased for a short period in the less susceptible cultivar Qinguan fruits, but decreased in the disease‐susceptible Fuji fruits. Additionally, ferulic acid production was induced in both cultivars in response to B. cinerea. Furthermore, the activities of phenylalanine ammonia lyase, cinnamate 4‐hydroxylase, 4‐coumarate:coenzyme A ligase and cinnamyl alcohol dehydrogenase were differentially induced between the two apple cultivars. Remarkably, the contents of H2O2 and O2.? as well as the activities of enzymes in phenolic metabolism tested in this study were always higher in Qinguan fruits than in Fuji fruits. Our data imply that phenylpropanoid metabolism is closely associated with apple fruit resistance to grey mould disease. These findings may be useful for characterizing the mechanism(s) underlying plant resistance to B. cinerea, with potential implications for the screening of grey mould disease‐resistant apple varieties in breeding programmes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号