首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inherited mutation of the purine salvage enzyme, hypoxanthine guanine phosphoribosyltransferase (HPRT) gives rise to Lesch–Nyhan syndrome (LNS) or Lesch–Nyhan variants (LNVs). We report three novel independent mutations in the coding region of HPRT gene: exon 3: c.141delA, p.D47fs53X; exon 5: c.400G>A, p.E134K; exon 7: c.499A>G, p.R167G from three LNS affected male patients.  相似文献   

2.
Lesch–Nyhan disease (LND) is a rare X-linked inherited neurogenetic disorder of purine metabolism in which the enzyme, hypoxanthine-guanine phosphoribosyltransferase (HGprt) is defective. The authors report three novel independent mutations in the coding region of the HPRT1 gene from genomic DNA of (a) a carrier sister of two male patients with LND: c.569G>C, p.G190A in exon 8; and (b) two LND affected male patients unrelated to her who had two mutations: c.648delC, p.Y216X, and c.653C>G, p.A218G in exon 9. Molecular analysis reveals the heterogeneity of genetic mutation of the HPRT1 gene responsible for the HGprt deficiency. It allows fast, accurate detection of carriers and genetic counseling.  相似文献   

3.
Hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency always causing hyperuricemia presents various degrees of neurological manifestations, the most severe which is Lesch–Nyhan syndrome. The HPRT gene is situated in the region Xq26-q27.2 and consists of 9 exons. At least 300 different mutations at different sites in the HPRT coding region from exon 1 to exon 9 have been identified. A new mutation in the HPRT gene has been determined in one patient with complete deficiency of erythrocyte activity, with hyperuricemia and gout but without Lesch–Nyhan disease. Analysis of cultured fibroblasts revealed minimal residual HPRT activity mainly when guanine was the substrate. Genomic DNA sequencing demonstrated patient's mother heterozygosity for the mutation and no mutation in her brother. The mutation consists in a C→T transversion at cDNA base 463 (C463T) in exon 6, resulting in proline to serine substitution at codon 155 (P155S). This mutation had not been reported previously and has been designated HPRTSardinia. The mutation identified in this patient allows some expression of functional enzyme in nucleated cells such as fibroblasts, indicating that such cell type may add further information to conventional blood analysis. A multicentre survey gathering patients with variant neurological forms could contribute to understand the pathophysiology of the neurobehavioral symptoms of HPRT deficiency.  相似文献   

4.
Hypoxanthine phosphoribosyltranferase (HPRT) deficiency is an X-linked disorder of purine salvage that ranges phenotypically from hyperuricaemia to Lesch–Nyhan Syndrome. Molecular testing is necessary to identify female carriers within families as a prelude to prenatal diagnosis. During the period 1999–2010 the Purine Research Laboratory studied 106 patients from 68 different families. Genomic sequencing revealed mutations in 88% of these families, 24 of which were novel. In eight patients, exon sequencing was not informative. Copy-DNA analysis in one patient revealed an insertion derived from a deep intronic sequence with a genomic mutation flanking this region, resulting in the creation of a false exon. Carrier testing was performed in 21 mothers of affected patients, out of these, 81% (17) were found to be carriers of the disease-associated mutation. Our results confirm the extraordinary variety and complexity of mutations in HPRT deficiency. A combination of genomic and cDNA sequencing may be necessary to define mutations.  相似文献   

5.
Lesch–Nyhan syndrome (LNS) is a rare X-linked inherited neurogenetic disorder of purine metabolism in which the enzyme, hypoxanthine-guanine phosphoribosyltransferase(HGprt) is defective. The authors report a novel mutation which led to LNS in a family with a deletion followed by an insertion (INDELS) via the serial replication slippage mechanism: c.428_432delTGCAGinsAGCAAA, p.Met143Lysfs*12 in exon 6 of HPRT1 gene. Molecular diagnosis discloses the genetic heterogeneity of HPRT1 gene responsible for HGprt deficiency. It allows fast, accurate carrier detection and genetic counseling.  相似文献   

6.
Inherited mutation of a purine salvage enzyme, hypoxanthine guanine phosphoribosyltransferase (HPRT), gives rise to Lesch-Nyhan Syndrome (LNS) or HPRT-related gout. Here, we report five novel independent mutations in the coding region of the HPRT gene from five unrelated male patients manifesting different clinical phenotypes associated with LNS: exon 2: c.133A > G, p.45R > G; c.35A > C, p.12D > A; c.88delG; exon 7: c.530A > T, p.177D > V; and c.318 + 1G > C: IVS3 + 1G > C splice site mutation.  相似文献   

7.
A novel point mutation (I137T) was identified in the hypoxanthine‐guanine phosphoribosyltransferase (HPRT) encoding gene, in a patient with partial deficiency of the enzyme. The mutation, ATT to ACT (substitution of isoleucine to threonine), occurred at codon 137, which is within the region encoding the binding site for 5‐phosphoribosyl‐1‐pyrophosphate (PRPP). The mutation caused decreased affinity for PRPP, manifested clinically as a Lesch–Nyhan variant (excessive purine production and delayed acquisition of language skills). The partial HPRT deficiency could be detected only by measuring HPRT activity in intact fibroblasts (uptake of hypoxanthine into nucleotides).  相似文献   

8.
Mutations in the gene encoding hypoxanthine‐guanine phosphoribosyltransferase (HPRT) cause Lesch–Nyhan disease, which is characterized by hyperuricemia, severe motor disability, and self‐injurious behavior. Mutations in the same gene also cause less severe clinical phenotypes with only some portions of the full syndrome. A large database of 271 mutations associated with both full and partial clinical phenotypes was recently compiled. Since the original database was assembled, 31 additional mutations have been identified, bringing the new total to 302. The results demonstrate a very heterogeneous collection of mutations for both LND and its partial syndromes. The differences between LND and the partial phenotypes cannot be explained by differences in the locations of mutations, but the partial phenotypes are more likely to have mutations predicted to allow some residual enzyme function. The reasons for some apparent exceptions to this proposal are addressed.  相似文献   

9.
Inherited mutation of hypoxanthine guanine phosphoribosyltransferase, (HPRT) gives rise to Lesch‐Nyhan syndrome or HPRT‐related gout. We have identified 34 mutations in 28 Japanese, 7 Korean, and 1 Indian families with the patients manifesting different clinical phenotypes, including two rare cases in female subjects, by the analysis of all nine exons of HPRT from the genomic DNA and reverse transcribed mRNA using PCR technique coupled with direct sequencing.  相似文献   

10.
Lesch–Nyhan syndrome is caused by a deficiency of hypoxanthine phosphoribosyltransferase (HPRT) encoded by HPRT1. About 20% of patients have a deletion of HPRT1 and large deletions of HPRT1 are not always fully characterized at the molecular level. Here, we report on a case of Lesch–Nyhan syndrome with a 33-kb deletion involving exon 1 of HPRT1. This novel mutation is caused by a nonhomologous recombination between different classes of interspersed repetitive DNA.  相似文献   

11.
Hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency is an inborn error of purine metabolism responsible for Lesch-Nyhan Disease (LND) and its partial phenotypes, HPRT-related hyperuricemia with neurologic dysfunction (HRND) and hyperuricemia alone. We report here the recognition of six Argentine patients, two with LND and four with HRND. All patients presented elevated excretion of uric acid, hypoxanthine, and xanthine and decreased HPRT enzyme activities <1 nmol/h/mg Hb. The molecular analysis demonstrated in the two LND patients a novel inherited transition mutation, c.203T >C (L68P), in one subject and a germline transition mutation, c.209G >A (G70E), in the other. In the HRND patients a novel transversion mutation, c.584 A >C (Y195S), was found in three related patients and an inherited transition mutation, c.143G >A (R48H), in the fourth subject.  相似文献   

12.
Autosomal dominant osteogenesis imperfecta (OI) is caused by mutations in COL1A1 or COL1A2. We identified a dominant missense mutation, c.3235G>A in COL1A1 exon 45 predicting p.G1079S, in a Japanese family with mild OI. As mutations in exon 45 exhibit mild to lethal phenotypes, we tested if disruption of an exonic splicing cis-element determines the clinical phenotype, but detected no such mutations. In the Japanese family, juvenile-onset hyperuricemia cosegregated with OI, but not in the previously reported Italian and Canadian families with c.3235G>A. After confirming lack of a founder haplotype in three families, we analyzed PRPSAP1 and PRPSAP2 as candidate genes for hyperuricemia on chr 17 where COL1A1 is located, but found no mutation. We next resequenced the whole exomes of two siblings in the Japanese family and identified variable numbers of previously reported hyperuricemia-associated SNPs in ABCG2 and SLC22A12. The same SNPs, however, were also detected in normouricemic individuals in three families. We then identified two missense SNVs in ZPBP2 and GPATCH8 on chromosome 17 that cosegregated with hyperuricemia in the Japanese family. ZPBP2 p.T69I was at the non-conserved region and was predicted to be benign by in silico analysis, whereas GPATCH8 p.A979P was at a highly conserved region and was predicted to be deleterious, which made p.A979P a conceivable candidate for juvenile-onset hyperuricemia. GPATCH8 is only 5.8 Mbp distant from COL1A1 and encodes a protein harboring an RNA-processing domain and a zinc finger domain, but the molecular functions have not been elucidated to date.  相似文献   

13.
Inherited mutation of a purine salvage enzyme, hypoxanthine guanine phosphoribosyltransferase (HPRT), gives rise to Lesch-Nyhan Syndrome (LNS) or HPRT-related gout. Here, we report five novel independent mutations in the coding region of the HPRT gene from five unrelated male patients manifesting different clinical phenotypes associated with LNS: exon 2: c.133A > G, p.45R > G; c.35A > C, p.12D > A; c.88delG; exon 7: c.530A > T, p.177D > V; and c.318 + 1G > C: IVS3 + 1G > C splice site mutation.  相似文献   

14.
汉族马凡综合征(MFS)患者FBN1基因两种新发突变分析   总被引:1,自引:0,他引:1  
为调查马凡综合征(Marfan syndrome, MFS)患者的原纤维蛋白-1(Fibrillin-1, FBN1)基因突变情况, 应用聚合酶链反应(PCR)和变性高效液相色谱法(Denaturing high-performance liquid chromatography, DHPLC)对MFS患者的FBN1基因进行突变筛查, 对DHPLC初筛异常的DNA片段进行测序分析。结果在两个MFS家系中发现FBN1基因两种新的突变: 一种为复合突变包含第55号外显子的缺失突变c.6862_6871delGGCTGTGTAG (p.Gly2288MetfsX109)、同义突变c.6861A>G和内含子的突变c.[6871+1_6871+11delGTAAGAGGATC; 6871+34dupCATCAGAAGTGACAGTGGACA]; 另一种为第20号外显子的错义突变c.2462G>A(p.Cys821Tyr)。研究表明, FBN1基因的缺失突变c.[6862_6871delGGCTGTGTAG; 6871+1_6871+11delGTAAGAGGATC] (p.Gly2288MetfsX109)和错义突变c.2462G>A(p.Cys821Tyr)可能分别是这两个家系患者的致病原因。  相似文献   

15.
We report a patient, an infant with a neurodevelopmental disorder manifesting intractable complex partial epilepsy, bull's eye maculopathy, microcephaly, bilateral cataracts, truncal hypotonia, and spasticity of all four extremities. Sequencing of genomic DNA revealed mutations in (a) exon 8 (Ox-2 antigen domain) of the amyloid precursor protein (APP) gene: c.1075C>T, p.Arg359* (b) exon 8 of the senataxin (SETX) gene: c.4738C>T, p.Arg1580Cys, and (c) exon 2 of the ceroid-lipofuscinosis, neuronal 8 (CLN8) gene: c.685C>G, p.Pro229Ala. Using a quantitative method for measurement of various APP-mRNA isoforms, we found that the APP-mRNA isoform of 624 bp with a deletion starting after 49 bp of the 5′ end of exon 3 followed by a complete deletion of exons 4–15, mutations in exon 1: c.22C>T, p.L18F, and exon 3: c.269A>G, p.Q90R encoding APP207 isoform was the most abundant one, and would appear to be responsible for the clinical manifestations. This is the first example that may underline the role of the epigenetic regulation in the expression of APP gene leading to a neurodevelopmental disorder resulting from a nonsense mutation in the Ox-2 antigen domain.  相似文献   

16.
Lesch-Nyhan disease (LND) is a rare X-linked inherited neurogenetic disorder of purine metabolism in which the enzyme, hypoxanthine-guanine phosphoribosyltransferase (HGprt) is defective. The authors report a novel point mutation that led to HGprt-related neurological dysfunction (HND) in a family in which there was a missense mutation in exon 6 of the coding region of the HPRT1 gene: g.34938G>T, c.403G>T, p.D135Y. Molecular diagnosis is consistent with the genetic heterogeneity of the HPRT1 gene responsible for HGprt deficiency. It allows fast, accurate carrier detection and genetic counseling.  相似文献   

17.
Hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency always causing hyperuricemia presents various degrees of neurological manifestations, the most severe which is Lesch-Nyhan syndrome. The HPRT gene is situated in the region Xq26-q27.2 and consists of 9 exons. At least 300 different mutations at different sites in the HPRT coding region from exon 1 to exon 9 have been identified. A new mutation in the HPRT gene has been determined in one patient with complete deficiency of erythrocyte activity, with hyperuricemia and gout but without Lesch-Nyhan disease. Analysis of cultured fibroblasts revealed minimal residual HPRT activity mainly when guanine was the substrate. Genomic DNA sequencing demonstrated patient's mother heterozygosity for the mutation and no mutation in her brother. The mutation consists in a C-->T transversion at cDNA base 463 (C463T) in exon 6, resulting in proline to serine substitution at codon 155 (P155S). This mutation had not been reported previously and has been designated HPRT(Sardinia). The mutation identified in this patient allows some expression of functional enzyme in nucleated cells such as fibroblasts, indicating that such cell type may add further information to conventional blood analysis. A multicentre survey gathering patients with variant neurological forms could contribute to understand the pathophysiology of the neurobehavioral symptoms of HPRT deficiency.  相似文献   

18.
Purine nucleoside phosphorylase (PNPase) deficiency is an autosomal recessive disorder affecting purine degradation and salvage pathways. Clinically, patients typically present with severe immunodeficiency, neurological dysfunction, and autoimmunity. Biochemically, PNPase deficiency may be suspected in the presence of hypouricemia. We report biochemical and genetic data on a cohort of seven patients from six families identified as PNPase deficient. In all patients, inosine, deoxyinosine, guanosine, and deoxyguanosine were elevated in urine, and mutation analysis revealed seven different mutations of which three were novel. The mutation c.770A>G resulted in the substitution p.His257Arg. A second novel mutation c.257A>G (p.His86Arg) was identified in two siblings and a third novel mutation, c.199C>T (p.Arg67X), was found in a 2-year-old female with delayed motor milestones and recurrent respiratory infections. A review of the literature identified 67 cases of PNPase deficiency from 49 families, including the cases from our own laboratory. PNPase deficiency was confirmed in 30 patients by genotyping and 24 disease causing mutations, including the three novel mutations described in this paper, have been reported to date. In five of the seven patients, plasma uric acid was found to be within the pediatric normal range, suggesting that PNPase deficiency should not be ruled out in the absence of hypouricemia.  相似文献   

19.
Lesch-Nyhan syndrome (LNS) is a rare X-linked inherited neurogenetic disorder of purine metabolism in which the enzyme, hypoxanthine-guanine phosphoribosyltransferase (HGprt) is defective. The authors report a novel mutation which led to HGprt-related neurological dysfunction (HND) in two brothers from the same family with a missense mutation in exon 6 of the coding region of the HPRT1 gene: c.437T>C, p.L146S. Molecular diagnosis discloses the genetic heterogeneity of the HPRT1 gene responsible for HGprt deficiency. It allows fast, accurate carrier detection and genetic counseling.  相似文献   

20.
Lesch-Nyhan disease (LND) is a rare X-linked recessive disorder caused by deficiency of the purine salvage enzyme hypoxanthine–guanine phosphoribosyltransferase (HPRT), encoded by the HPRT1. To date, nearly all types of mutations have been reported in the whole gene; however, duplication mutations are rare. We here report the case of a 9-month-old boy with LND. He showed developmental delay, athetosis, and dystonic posture from early infancy, but no self-injurious behaviors. Hyperuricemia was detected, and his HPRT enzyme activity in erythrocytes was completely deficient. A novel duplication mutation (c.372dupT, c.372_374 TTT > c.372_375 TTTT) was identified in exon 4 of the HPRT1, which causes aberrant splicing. This is the third case of a duplication mutation in the HPRT1 that causes splicing error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号