首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While in recent years environmental DNA (eDNA) metabarcoding surveys have shown great promise as an alternative monitoring method, the integration into existing marine monitoring programs may be confounded by the dispersal of the eDNA signal. Currents and tidal influences could transport eDNA over great distances, inducing false‐positive species detection, leading to inaccurate biodiversity assessments and, ultimately, mismanagement of marine environments. In this study, we determined the ability of eDNA metabarcoding surveys to distinguish localized signals obtained from four marine habitats within a small spatial scale (<5 km) subject to significant tidal and along‐shore water flow. Our eDNA metabarcoding survey detected 86 genera, within 77 families and across 11 phyla using three established metabarcoding assays targeting fish (16S rRNA gene), crustacean (16S rRNA gene) and eukaryotic (cytochrome oxidase subunit 1) diversity. Ordination and cluster analyses for both taxonomic and OTU data sets show distinct eDNA signals between the sampled habitats, suggesting dispersal of eDNA among habitats was limited. Individual taxa with strong habitat preferences displayed localized eDNA signals in accordance with their respective habitat, whereas taxa known to be less habitat‐specific generated more ubiquitous signals. Our data add to evidence that eDNA metabarcoding surveys in marine environments detect a broad range of taxa that are spatially discrete. Our work also highlights that refinement of assay choice is essential to realize the full potential of eDNA metabarcoding surveys in marine biodiversity monitoring programs.  相似文献   

2.
Environmental DNA (eDNA) metabarcoding surveys enable rapid, noninvasive identification of taxa from trace samples with wide‐ranging applications from characterizing local biodiversity to identifying food‐web interactions. However, the technique is prone to error from two major sources: (a) contamination through foreign DNA entering the workflow, and (b) misidentification of DNA within the workflow. Both types of error have the potential to obscure true taxon presence or to increase taxonomic richness by incorrectly identifying taxa as present at sample sites, but multiple error sources can remain unaccounted for in metabarcoding studies. Here, we use data from an eDNA metabarcoding study designed to detect vertebrate species at waterholes in Australia's arid zone to illustrate where and how in the workflow errors can arise, and how to mitigate those errors. We detected the DNA of 36 taxa spanning 34 families, 19 orders and five vertebrate classes in water samples from waterholes, demonstrating the potential for eDNA metabarcoding surveys to provide rapid, noninvasive detection in remote locations, and to widely sample taxonomic diversity from aquatic through to terrestrial taxa. However, we initially identified 152 taxa in the samples, meaning there were many false positive detections. We identified the sources of these errors, allowing us to design a stepwise process to detect and remove error, and provide a template to minimize similar errors that are likely to arise in other metabarcoding studies. Our findings suggest eDNA metabarcoding surveys need to be carefully conducted and screened for errors to ensure their accuracy.  相似文献   

3.
Three mantras often guide species and ecosystem management: (i) for preventing invasions by harmful species, ‘early detection and rapid response’; (ii) for conserving imperilled native species, ‘protection of biodiversity hotspots’; and (iii) for assessing biosecurity risk, ‘an ounce of prevention equals a pound of cure.’ However, these and other management goals are elusive when traditional sampling tools (e.g. netting, traps, electrofishing, visual surveys) have poor detection limits, are too slow or are not feasible. One visionary solution is to use an organism’s DNA in the environment (eDNA), rather than the organism itself, as the target of detection. In this issue of Molecular Ecology, Thomsen et al. (2012) provide new evidence demonstrating the feasibility of this approach, showing that eDNA is an accurate indicator of the presence of an impressively diverse set of six aquatic or amphibious taxa including invertebrates, amphibians, a fish and a mammal in a wide range of freshwater habitats. They are also the first to demonstrate that the abundance of eDNA, as measured by qPCR, correlates positively with population abundance estimated with traditional tools. Finally, Thomsen et al. (2012) demonstrate that next‐generation sequencing of eDNA can quantify species richness. Overall, Thomsen et al. (2012) provide a revolutionary roadmap for using eDNA for detection of species, estimates of relative abundance and quantification of biodiversity.  相似文献   

4.
Freshwater fish biodiversity is quickly decreasing and requires effective monitoring and conservation. Environmental DNA (eDNA)‐based methods have been shown to be highly sensitive and cost‐efficient for aquatic biodiversity surveys, but few studies have systematically investigated how spatial sampling design affects eDNA‐detected fish communities across lentic systems of different sizes. We compared the spatial patterns of fish diversity determined using eDNA in three lakes of small (SL; 3 ha), medium (ML; 122 ha) and large (LL; 4,343 ha) size using a spatially explicit grid sampling method. A total of 100 water samples (including nine, 17 and 18 shoreline samples and six, 14 and 36 interior samples from SL, ML and LL, respectively) were collected, and fish communities were analysed using eDNA metabarcoding of the mitochondrial 12S region. Together, 30, 35 and 41 fish taxa were detected in samples from SL, ML, and LL, respectively. We observed that eDNA from shoreline samples effectively captured the majority of the fish diversity of entire waterbodies, and pooled samples recovered fewer species than individually processed samples. Significant spatial autocorrelations between fish communities within 250 m and 2 km of each other were detected in ML and LL, respectively. Additionally, the relative sequence abundances of many fish species exhibited spatial distribution patterns that correlated with their typical habitat occupation. Overall, our results support the validity of a shoreline sampling strategy for eDNA‐based fish community surveys in lentic systems but also suggest that a spatially comprehensive sampling design can reveal finer distribution patterns of individual species.  相似文献   

5.
Preserving biodiversity is a global challenge requiring data on species’ distribution and abundance over large geographic and temporal scales. However, traditional methods to survey mobile species’ distribution and abundance in marine environments are often inefficient, environmentally destructive, or resource‐intensive. Metabarcoding of environmental DNA (eDNA) offers a new means to assess biodiversity and on much larger scales, but adoption of this approach for surveying whole animal communities in large, dynamic aquatic systems has been slowed by significant unknowns surrounding error rates of detection and relevant spatial resolution of eDNA surveys. Here, we report the results of a 2.5 km eDNA transect surveying the vertebrate fauna present along a gradation of diverse marine habitats associated with a kelp forest ecosystem. Using PCR primers that target the mitochondrial 12S rRNA gene of marine fishes and mammals, we generated eDNA sequence data and compared it to simultaneous visual dive surveys. We find spatial concordance between individual species’ eDNA and visual survey trends, and that eDNA is able to distinguish vertebrate community assemblages from habitats separated by as little as ~60 m. eDNA reliably detected vertebrates with low false‐negative error rates (1/12 taxa) when compared to the surveys, and revealed cryptic species known to occupy the habitats but overlooked by visual methods. This study also presents an explicit accounting of false negatives and positives in metabarcoding data, which illustrate the influence of gene marker selection, replication, contamination, biases impacting eDNA count data and ecology of target species on eDNA detection rates in an open ecosystem.  相似文献   

6.
Organisms continuously release DNA into their environments via shed cells, excreta, gametes and decaying material. Analysis of this ‘environmental DNA’ (eDNA) is revolutionizing biodiversity monitoring. eDNA outperforms many established survey methods for targeted detection of single species, but few studies have investigated how well eDNA reflects whole communities of organisms in natural environments. We investigated whether eDNA can recover accurate qualitative and quantitative information about fish communities in large lakes, by comparison to the most comprehensive long‐term gill‐net data set available in the UK. Seventy‐eight 2L water samples were collected along depth profile transects, gill‐net sites and from the shoreline in three large, deep lakes (Windermere, Bassenthwaite Lake and Derwent Water) in the English Lake District. Water samples were assayed by eDNA metabarcoding of the mitochondrial 12S and cytochrome b regions. Fourteen of the 16 species historically recorded in Windermere were detected using eDNA, compared to four species in the most recent gill‐net survey, demonstrating eDNA is extremely sensitive for detecting species. A key question for biodiversity monitoring is whether eDNA can accurately estimate abundance. To test this, we used the number of sequence reads per species and the proportion of sampling sites in which a species was detected with eDNA (i.e. site occupancy) as proxies for abundance. eDNA abundance data consistently correlated with rank abundance estimates from established surveys. These results demonstrate that eDNA metabarcoding can describe fish communities in large lakes, both qualitatively and quantitatively, and has great potential as a complementary tool to established monitoring methods.  相似文献   

7.
Biological diversities of multiple kingdoms potentially respond in similar ways to environmental changes. However, studies either compare details of microbial diversity across general vegetation or land use classes or relate details of plant community diversity with the extent of microbially governed soil processes, via physiological profiling. Here, we test the hypothesis of shared responses of plant and rhizosphere bacterial, fungal and metazoan biodiversities (especially across‐habitat β‐diversity patterns) along a disturbance gradient encompassing grazed to abandoned Alpine pasture, on acid soil in the European Central Alps. Rhizosphere biological diversity was inferred from eDNA fractions specific to bacteria, fungi and metazoans from contrasting plant habitats indicative of different disturbance levels. We found that soil β‐diversity patterns were weakly correlated with plant diversity measures and similarly ordinated along an evident edaphic (pH, C:N, assimilable P) and disturbance gradient but, contrary to our hypothesis, did not demonstrate the same diversity patterns. While plant communities were well separated along the disturbance gradient, correlating with fungal diversity, the majority of bacterial taxa were shared between disturbance levels (75% of bacteria were ubiquitous, cf. 29% plant species). Metazoa exhibited an intermediate response, with communities at the lowest levels of disturbance partially overlapping. Thus, plant and soil biological diversities were only loosely dependent and did not exhibit strictly linked environmental responses. This probably reflects the different spatial scales of organisms (and their habitats) and capacity to invest resources in persistent multicellular tissues, suggesting that vegetation responses to environmental change are unreliable indicators of below‐ground biodiversity responses.  相似文献   

8.
Global biodiversity in freshwater and the oceans is declining at high rates. Reliable tools for assessing and monitoring aquatic biodiversity, especially for rare and secretive species, are important for efficient and timely management. Recent advances in DNA sequencing have provided a new tool for species detection from DNA present in the environment. In this study, we tested whether an environmental DNA (eDNA) metabarcoding approach, using water samples, can be used for addressing significant questions in ecology and conservation. Two key aquatic vertebrate groups were targeted: amphibians and bony fish. The reliability of this method was cautiously validated in silico, in vitro and in situ. When compared with traditional surveys or historical data, eDNA metabarcoding showed a much better detection probability overall. For amphibians, the detection probability with eDNA metabarcoding was 0.97 (CI = 0.90–0.99) vs. 0.58 (CI = 0.50–0.63) for traditional surveys. For fish, in 89% of the studied sites, the number of taxa detected using the eDNA metabarcoding approach was higher or identical to the number detected using traditional methods. We argue that the proposed DNA‐based approach has the potential to become the next‐generation tool for ecological studies and standardized biodiversity monitoring in a wide range of aquatic ecosystems.  相似文献   

9.
In the face of global biodiversity declines, surveys of beneficial and antagonistic arthropod diversity as well as the ecological services that they provide are increasingly important in both natural and agro-ecosystems. Conventional survey methods used to monitor these communities often require extensive taxonomic expertise and are time-intensive, potentially limiting their application in industries such as agriculture, where arthropods often play a critical role in productivity (e.g. pollinators, pests and predators). Environmental DNA (eDNA) metabarcoding of a novel substrate, crop flowers, may offer an accurate and high throughput alternative to aid in the detection of these managed and unmanaged taxa. Here, we compared the arthropod communities detected with eDNA metabarcoding of flowers, from an agricultural species (Persea americana—‘Hass’ avocado), with two conventional survey techniques: digital video recording (DVR) devices and pan traps. In total, 80 eDNA flower samples, 96 h of DVRs and 48 pan trap samples were collected. Across the three methods, 49 arthropod families were identified, of which 12 were unique to the eDNA dataset. Environmental DNA metabarcoding from flowers revealed potential arthropod pollinators, as well as plant pests and parasites. Alpha diversity levels did not differ across the three survey methods although taxonomic composition varied significantly, with only 12% of arthropod families found to be common across all three methods. eDNA metabarcoding of flowers has the potential to revolutionize the way arthropod communities are monitored in natural and agro-ecosystems, potentially detecting the response of pollinators and pests to climate change, diseases, habitat loss and other disturbances.  相似文献   

10.
Abstract. Soil seed bank and floristic diversity were studied in a forest of Quercus suber, a forest of Quercus canariensis and a grassland, forming a vegetation mosaic in Los Alcornocales Natural Park, southern Spain. The soil seed bank was estimated by the germination technique. In each community patch, diversity, woody species cover and herbaceous species frequency was measured. Three biodiversity components – species richness, endemism and taxonomic singularity – were considered in the vegetation and the seed bank. Forest patches had a soil seed bank of ca. 11 200–14 100 seed.m?2 and their composition had low resemblance to (epigeal) vegetation. The grassland patch had a more dense seed bank (ca. 31 800 seed.m?2) and a higher index of similarity with vegetation, compared with the forests nearby. The complete forest diversity was 71–78 species on 0.1 ha, including 12–15 species found only in the seed bank; the grassland species richness was higher (113 species on 0.1 ha). We discuss the role of soil seed banks in the vegetation dynamics and in the complete plant biodiversity of the mosaic landscape studied.  相似文献   

11.
Plant and animal biodiversity can be studied by obtaining DNA directly from the environment. This new approach in combination with the use of generic barcoding primers (metabarcoding) has been suggested as complementary or alternative to traditional biodiversity monitoring in ancient soil sediments. However, the extent to which metabarcoding truly reflects plant composition remains unclear, as does its power to identify species with no pollen or macrofossil evidence. Here, we compared pollen‐based and metabarcoding approaches to explore the Holocene plant composition around two lakes in central Scandinavia. At one site, we also compared barcoding results with those obtained in earlier studies with species‐specific primers. The pollen analyses revealed a larger number of taxa (46), of which the majority (78%) was not identified by metabarcoding. The metabarcoding identified 14 taxa (MTUs), but allowed identification to a lower taxonomical level. The combined analyses identified 52 taxa. The barcoding primers may favour amplification of certain taxa, as they did not detect taxa previously identified with species‐specific primers. Taphonomy and selectiveness of the primers are likely the major factors influencing these results. We conclude that metabarcoding from lake sediments provides a complementary, but not an alternative, tool to pollen analysis for investigating past flora. In the absence of other fossil evidence, metabarcoding gives a local and important signal from the vegetation, but the resulting assemblages show limited capacity to detect all taxa, regardless of their abundance around the lake. We suggest that metabarcoding is followed by pollen analysis and the use of species‐specific primers to provide the most comprehensive signal from the environment.  相似文献   

12.
The use of environmental DNA (eDNA) surveys to monitor terrestrial species has been relatively limited, with successful implementations still confined to sampling DNA from natural or artificial water bodies and soil. Sampling water for eDNA depends on proximity to or availability of water, whereas eDNA from soil is limited in its spatial scale due to the large quantities necessary for processing and difficulty in doing so. These challenges limit the widespread use of eDNA in several systems, such as surveying forests for invasive insects. We developed two new eDNA aggregation approaches that overcome the challenges of above‐ground terrestrial sampling and eliminate the dependency on creating or utilizing pre‐existing water bodies to conduct eDNA sampling. The first, “spray aggregation,” uses spray action to remove eDNA from surface substrates and was developed for shrubs and other understorey vegetation, while the second, “tree rolling,” uses physical transfer via a roller to remove eDNA from the surface of tree trunks and large branches. We tested these approaches by surveying for spotted lanternfly, Lycorma delicatula, a recent invasive pest of northeastern USA that is considered a significant ecological and economic threat to forests and agriculture. We found that our terrestrial eDNA surveys matched visual surveys, but also detected L. delicatula presence ahead of visual surveys, indicating increased sensitivity of terrestrial eDNA surveys over currently used methodology. The terrestrial eDNA approaches we describe can be adapted for use in surveying a variety of forest insects and represent a novel strategy for surveying terrestrial biodiversity.  相似文献   

13.
Aim To review published evidence regarding the factors that influence the geographic variation in diversity of soil organisms at different spatial scales. Location Global. Methods A search of the relevant literature was conducted using the Web of Science and the author's personal scientific database as the major sources. Special attention was paid to include seminal studies, highly cited papers and/or studies highlighting novel results. Results Despite their significant contribution to global biodiversity, our taxonomic knowledge of soil biota is still poor compared with that of most above‐ground organisms. This is particularly evident for small‐bodied taxa. Global patterns of soil biodiversity distribution have been poorly documented and are thought to differ significantly from what is reported above‐ground. Based on existing data, it appears that microorganisms do not respond to large‐scale environmental gradients in the same way as metazoans. Whereas soil microflora seem to be mainly represented by cosmopolitan species, soil animals respond to altitudinal, latitudinal or area gradients in the same way as described for above‐ground organisms. At local scales, there is less evidence that local factors regulate above‐ and below‐ground communities in the same way. Except for a few taxa, the humpbacked response to stress and disturbance gradients doesn't seem to apply underground. Soil communities thus appear weakly structured by competition, although competitive constraints may account for assembly rules within specific taxa. The main factor constraining local soil biodiversity is the compact and heterogeneous nature of soils, which provides unrivalled potential for niche partitioning, thus allowing high levels of local biodiversity. This heterogeneity is increased by the impact of ecosystem engineers that generate resource patchiness at a range of spatio‐temporal scales.  相似文献   

14.
15.
We analyzed the phytoplankton present in the lower sector of the Salado River (Buenos Aires, Argentina) for 10 years (1995–2005) and detected significant changes occurring in chlorophyte abundance and species richness during La Niña event (1998–1999), which period was analyzed throughout the entire basin (main stream and tributaries). We compared the physicochemical and biologic variables between two El Niño–La Niña–Southern Oscillation (ENSO) periods – El Niño (March 1997–January 1998) and La Niña (May 1998–May 1999) – to identify possible indicators of a relationship between climatic anomalies and chlorophyte performance. Chlorophyte density increased during the La Niña. Under normal or extreme hydrologic conditions, mobile (Chlamydomonas spp.) and nonmobile (Monoraphidium spp.) chlorophytes codominated. These species belonged to Reynolds's functional groups X1 and X2, those typical of nutrient‐enriched environments. Comparative analyses between El Niño and La Niña periods indicated significant differences in physicochemical (K+, dissolved polyphenols, particulate reactive phosphorus, alkalinity, pH) and biologic (species diversity and richness, phytoplankton and chlorophyte total densities) variables between the two periods at all basin sites. During the La Niña condition, species richness was greater owing to interconnected shallow lakes and drainage‐channel inputs, while the Shannon diversity index was lower because of the high abundance values of Monoraphidium minutum. A detailed analysis of the chlorophytes in the entire basin, indicated that changes in density and species dominance occurred on a regional scale although diverse chlorophyte assemblages were identified in the different sectors of the Salado River basin. After La Niña event, the entire basin had the potential to revert to the previous density values, showing the resilience to global environmental changes and the ability to reestablish the general conditions of stability.  相似文献   

16.
Species extinctions from local communities negatively affect ecosystem functioning. Ecological mechanisms underlying these impacts are well studied, but the role of evolutionary processes is rarely assessed. Using a long‐term field experiment, we tested whether natural selection in plant communities increased biodiversity effects on productivity. We re‐assembled communities with 8‐year co‐selection history adjacent to communities with identical species composition but no history of co‐selection (‘naïve communities’). Monocultures, and in particular mixtures of two to four co‐selected species, were more productive than their corresponding naïve communities over 4 years in soils with or without co‐selected microbial communities. At the highest diversity level of eight plant species, no such differences were observed. Our findings suggest that plant community evolution can lead to rapid increases in ecosystem functioning at low diversity but may take longer at high diversity. This effect was not modified by treatments simulating co‐evolutionary processes between plants and soil organisms.  相似文献   

17.
Variation in the diet of the Pacific sand lance Ammodytes hexapterus was examined in three years (2009–2011) at four sites in British Columbia, Canada. There were 12 major taxa of prey in diets, eight of which were Crustacea, with copepods being by far the dominant taxon in all 12 site‐years. Of the 22 copepod taxa recorded, only Calanus marshallae and Pseudocalanus spp. occurred in all collections, and these two calanoid species dominated diets in terms of frequency of occurrence and total numbers of prey (Pseudocalanus spp. in most collections), and total prey biomass (C. marshallae in all collections). Based on an index of relative importance, C. marshallae was the primary prey at the two southerly sampling sites (Pine and Triangle Islands) and Pseudocalanus spp. at the two northerly sites (Lucy Island and S'G ang Gwaay). Based on an index of dietary overlap, the species composition of the copepod component of A. hexapterus diets overlapped very strongly at the northerly and the southerly pairs of sites in both a cold‐water La Niña year (2009) and a warm‐water El Niño year (2010), but overall there was more homogeneity amongst all four sites in the La Niña year.  相似文献   

18.
19.
Environmental DNA (eDNA) metabarcoding is an increasingly popular tool for measuring and cataloguing biodiversity. Because the environments and substrates in which DNA is preserved differ considerably, eDNA research often requires bespoke approaches to generating eDNA data. Here, we explore how two experimental choices in eDNA study design—the number of PCR replicates and the depth of sequencing of PCR replicates—influence the composition and consistency of taxa recovered from eDNA extracts. We perform 24 PCR replicates from each of six soil samples using two of the most common metabarcodes for Fungi and Viridiplantae (ITS1 and ITS2), and sequence each replicate to an average depth of ~84,000 reads. We find that PCR replicates are broadly consistent in composition and relative abundance of dominant taxa, but that low abundance taxa are often unique to one or a few PCR replicates. Taxa observed in one out of 24 PCR replicates make up 21–29% of the total taxa detected. We also observe that sequencing depth or rarefaction influences alpha diversity and beta diversity estimates. Read sampling depth influences local contribution to beta diversity, placement in ordinations, and beta dispersion in ordinations. Our results suggest that, because common taxa drive some alpha diversity estimates, few PCR replicates and low read sampling depths may be sufficient for many biological applications of eDNA metabarcoding. However, because rare taxa are recovered stochastically, eDNA metabarcoding may never fully recover the true amplifiable alpha diversity in an eDNA extract. Rare taxa drive PCR replicate outliers of alpha and beta diversity and lead to dispersion differences at different read sampling depths. We conclude that researchers should consider the complexity and unevenness of a community when choosing analytical approaches, read sampling depths, and filtering thresholds to arrive at stable estimates.  相似文献   

20.
Environmental DNA (eDNA) metabarcoding, a technique for retrieving multispecies DNA from environmental samples, can detect a diverse array of marine species from filtered seawater samples. There is a growing potential to integrate eDNA alongside existing monitoring methods in order to establish or improve the assessment of species diversity. Remote island reefs are increasingly vulnerable to climate‐related threats and as such there is a pressing need for cost‐effective whole‐ecosystem surveying to baseline biodiversity, study assemblage changes and ultimately develop sustainable management plans. We investigated the utility of eDNA metabarcoding as a high‐resolution, multitrophic biomonitoring tool at the Cocos (Keeling) Islands, Australia (CKI)—a remote tropical coral reef atoll situated within the eastern Indian Ocean. Metabarcoding assays targeting the mitochondrial 16S rRNA and CO1 genes, as well as the 18S rRNA nuclear gene, were applied to 252 surface seawater samples collected from 42 sites within a 140 km2 area. Our assays successfully detected a wide range of bony fish and elasmobranchs (244 taxa), crustaceans (88), molluscs (37) and echinoderms (7). Assemblage composition varied significantly between sites, reflecting habitat partitioning across the island ecosystem and demonstrating the localisation of eDNA signals, despite extensive tidal and oceanic movements. In addition, we document putative new occurrence records for 46 taxa and compare the efficiency of our eDNA approach to visual survey techniques at CKI. Our study demonstrates the utility of a multimarker metabarcoding approach in capturing multitrophic biodiversity across an entire coral reef atoll and sets an important baseline for ongoing monitoring and management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号