首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three pleurocarpous mosses were studied to explore the haplotype diversity patterns in a Scandinavian system of interglacial refugia in which low‐competitive species of calcareous or base‐rich habitats occur. Hypnum bambergeri and H. vaucheri displayed little variation across Scandinavia. For the third species, Drepanocladus turgescens, an analysis of molecular variance showed that two S Scandinavian lowland regional populations were significantly different from each other and differed or almost differed (Gotland vs. Jämtland, according to pair‐wise ΦPT) from the populations of the Scandinavian mountain range and Svalbard. Haplotype diversity displayed little variation among regional populations, and did not reflect the higher frequency of sexual reproduction in southern than in mountain populations. A coalescent‐based analysis (LAMARC) indicated immigration into the population now found in the lowlands from that represented in the mountains. This is contrary to that found in Rhytidium rugosum in an earlier study and, together with the fact that sporophytes are produced almost exclusively in the lowlands, speaks against this direction of post‐glacial migration. Therefore, if the LAMARC results reflect migration patterns, these most probably reflect events that occurred earlier. Taken together with the results on R. rugosum, this study emphasizes the fact that moss species having similar distribution patterns reached these distributions in partly different ways. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 176 , 295–310.  相似文献   

2.
The Scandinavian post‐glacial history of the moss Rhytidium rugosum is traced on the basis of information from the nuclear markers ITS and gpd for 229 Scandinavian and 81 other specimens. Some haplotypes, groups or lineages identified in a NeighborNet split network are predominantly northern Scandinavian, whereas others are southern. With the distributions of individual haplotypes and the timing of the deglaciation in different parts of Scandinavia, this implies colonization from the south and from the north or north‐east. High haplotype and nucleotide diversity and the occurrence of certain private haplotypes in the north suggest that the species may have survived the Last Glacial Maximum in local refugia. Slightly higher numbers of private haplotypes in Scandinavia than in central or north‐eastern Europe also favour an explanation with at least some local glacial survival. Low diversity in the southernmost contiguous region of the Scandinavian mountain range is probably a result of recent land uplift and late colonization. The Scandinavian lowland regional populations probably represent remains of an earlier widespread population that became increasingly restricted to small and isolated areas when the vegetation closed during the post‐glacial period. Some of the lowland populations require extensive management to survive. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 635–657.  相似文献   

3.
Species in northern Europe re‐colonized the region after the last glacial maximum via several routes, which could have lingering signatures in current intraspecific trait variation. The spruce bark beetle, Ips typographus, occurs across Europe, and biological differences have been found between southern and northern Scandinavian populations. However, the postglacial history of I. typographus in Scandinavia has not been previously studied at a fine geographical scale. Therefore, we collected specimens across northern Europe and analysed the genetic variation in a quite large mitochondrial fragment (698 bp). A high genetic diversity was found in some of the most northern populations, in the Baltic States, Gotland and central Europe. Detected genetic and phylogeographic structures suggest that I. typographus re‐colonized Scandinavia via two pathways, one from the northeast and one from the south. These findings are consistent with the re‐colonization history of its host plant, Picea abies. However, we observed low haplotype and nucleotide diversity in southern Scandinavian populations of I. typographus, indicating that (unlike Pabies) it did not disperse across the Baltic Sea in multiple events. Further, the divergence among Scandinavian populations was shallow, conflicting with a scenario where I. typographus expanded concurrently with its host plant from a ‘cryptic refugium’ in the northwest.  相似文献   

4.
Aim The aim of this study was to test hypotheses regarding some of the main phylogeographical patterns proposed for European plants, in particular the locations of glacial refugia, the post‐glacial colonization routes, and genetic affinities between southern (alpine) and northern (boreal) populations. Location The mountains of Europe (Alps, Balkans, Carpathians, Central Massif, Pyrenees, Scandinavian chain, Sudetes), and central European/southern Scandinavian lowlands. Methods As our model system we used Pulsatilla vernalis, a widely distributed European herbaceous plant occurring both in the high‐mountain environments of the Alps and other European ranges and in lowlands north of these ranges up to Scandinavia. Based on a distribution‐wide sampling of 61 populations, we estimated chloroplast DNA (cpDNA) variation along six regions using polymerase chain reaction–restriction fragment‐length polymorphisms (PCR–RFLPs) (trnH–trnK, trnK–trnK, trnC–trnD, psbC–trnS, psaA–trnS, trnL–trnF) and further sequencing of trnL–trnF and trnH–psbA. In addition, 11 samples of other European species of Pulsatilla were sequenced to survey the genus‐scale cpDNA variation. Results Eleven PCR–RFLP polymorphisms were detected in P. vernalis, revealing seven haplotypes. They formed two distinct genetic groups. Three haplotypes representing both groups dominated and were widely distributed across Europe, whereas the others were restricted to localized regions (central Alps, Tatras/Sudetes mountains) or single populations. Sequencing analysis confirmed the reliability of PCR–RFLPs and homology of haplotypes across their distribution. The chloroplast DNA variation across the section Pulsatilla was low, but P. vernalis did not share haplotypes with other species. Main conclusions The genetic distinctiveness of P. vernalis populations from the south‐western Alps with respect to other Alpine populations, as well as the affinities between the former populations and those from the eastern Pyrenees, is demonstrated, thus providing support for the conclusions of previous studies. Glacial refugia in the Dolomites are also suggested. Isolation is inferred for the high‐mountain populations from the Tatras and Sudetes; this is in contrast to the case for the Balkans, which harboured the common haplotype. Specific microsatellite variation indicates the occurrence of periglacial lowland refugia north of the Alps, acting as a source for the post‐glacial colonization of Scandinavia. The presence of different fixed haplotypes in eastern and western Scandinavia, however, suggests independent post‐glacial colonization of these two areas, with possible founder effects.  相似文献   

5.
Genetic variation in the expanding moss species Pogonatum dentatum was studied using intersimple sequence repeat (ISSR) markers. The genetic consequences of range expansion were studied by comparing source populations in a mountain area with populations from a recently colonized lowland area in Sweden. Indices of genetic variation show slightly lower number of alleles per locus in the lowlands and a similar gene diversity in both areas. Three of four lowland populations had evidence of a recently passed bottleneck. Considerably higher haplotype diversity was found in the recently colonized lowlands compared to source populations in the mountains. Patterns of allelic diversity suggest that P. dentatum experiences loss of genetic variation through founder effects and genetic drift when expanding its distribution range. Higher haplotypic diversity, less linkage disequilibrium, and fewer compatible loci indicate that sexual recombination is relatively more important in the lowlands compared to the mountains. A likely explanation is higher success of establishment from spores in the lowlands, while clonal propagation predominates in the mountains. Less genetic differentiation among lowland populations indicates more gene flow in the lowland area, involving more spores and/or fragments moving among populations.  相似文献   

6.

Aim

Brown bear populations in Scandinavia show a strong mitochondrial DNA (mtDNA) phylogeographic structure and low diversity relative to other parts of Europe. Identifying the timing and origins of this mtDNA structure is important for conservation programs aimed at restoring populations to a natural state. Therefore, it is essential to identify whether contemporary genetic structure is linked to post‐glacial recolonisation from divergent source populations or an artefact of demographic impacts during recent population bottlenecks. We employed ancient DNA techniques to investigate the timing and potential causes of these patterns.

Location

Scandinavia and Europe.

Methods

Ancient mtDNA sequences from 20 post‐glacial Scandinavian bears were used to investigate phylogeographic structure and genetic diversity over the last 6000 years. MtDNA from 19 Holocene Norwegian bears was compared with 499 sequences from proximate extant populations in Sweden, Finland, Estonia and western Russia. A single mtDNA sequence from a Holocene Denmark sample was compared with 149 ancient and modern bears from Western Europe.

Results

All nineteen Holocene Norwegian samples are identical to or closely related to the most common mtDNA haplotype found in northern Europe today. MtDNA diversity was low and not significantly different from extant populations in northern Europe. In Denmark, we identified a single mtDNA haplotype that is previously unrecorded from Scandinavia.

Main conclusions

The current discrete phylogeographic structure and lack of mtDNA diversity in Scandinavia is attributed to serial founder effects during post‐glacial recolonisation from divergent source populations rather than an artefact of recent anthropogenic impacts. In contrast to previous interpretations, the recolonisation of southern Scandinavia may not have been limited to bears from a single glacial refugium. Results highlight the importance of conserving the long‐term evolutionary separation between northern and southern populations and identify southern Scandinavia as an important reservoir of mtDNA diversity that is under threat in other parts of Europe.
  相似文献   

7.

Loss of genetic diversity is expected to be a reason behind the decline of populations of many rare species. To what extent this is true for populations at the range periphery remains to be explored. Alpine species with peripheral lowland populations are an ideal but little-known model system to address this issue. We used 17 microsatellite markers to investigate the genetic diversity and structure of populations of Tofieldia calyculata, a common species in central European mountains, but highly endangered in lowlands. We showed that lowland populations have lower genetic diversity than mountain populations and that the two groups of populations are not clearly differentiated genetically. The species probably survived the last glaciation in refugia in the margins of the Alps and the western Carpathians and some lowland populations likely originated by postglacial colonisation. Some lowland populations may be relictual, but our data did not unequivocally confirm this. Low genetic diversity of lowland populations is likely the result of the reduction of population sizes, limited gene flow, and selfing. Based on data from herbarium specimens from extinct lowland populations, within-population genetic diversity has not changed over the last century suggesting that, under suitable habitat conditions, these populations are able to survive with low levels of genetic diversity. This idea is also supported by the presence of large viable extant populations with very low genetic diversity. Comparisons between modern and historic collection also showed that a large proportion of genetic diversity was lost, due mainly to the extinction of whole populations. Our results provided detailed insight into the recent past of the populations of Tofieldia calyculata, but the genetic diversity of the populations before the twentieth century remains unknown due to the poor quality of old DNA from herbaria samples. Overall, the study indicates that despite reduced genetic diversity, the lowland populations harbour some unique alleles and, with the current levels of genetic diversity, have a chance to survive in the long-term, and thus deserve conservation.

  相似文献   

8.
Quaternary glaciations have played a major role in shaping the genetic diversity and distribution of plant species. Strong palaeoecological and genetic evidence supports a postglacial recolonization of most plant species to northern Europe from southern, eastern and even western glacial refugia. Although highly controversial, the existence of small in situ glacial refugia in northern Europe has recently gained molecular support. We used genomic analyses to examine the phylogeography of a species that is critical in this debate. Carex scirpoidea Michx subsp. scirpoidea is a dioecious, amphi‐Atlantic arctic–alpine sedge that is widely distributed in North America, but absent from most of Eurasia, apart from three extremely disjunct populations in Norway, all well within the limits of the Weichselian ice sheet. Range‐wide population sampling and variation at 5,307 single nucleotide polymorphisms show that the three Norwegian populations comprise unique evolutionary lineages divergent from Greenland with high between‐population divergence. The Norwegian populations have low within‐population genetic diversity consistent with having experienced genetic bottlenecks in glacial refugia, and host private alleles that probably accumulated in long‐term isolated populations. Demographic analyses support a single, pre‐Weichselian colonization into Norway from East Greenland, and subsequent divergence of the three populations in separate refugia. Other refugial areas are identified in North‐east Greenland, Minnesota/Michigan, Colorado and Alaska. Admixed populations in British Columbia and West Greenland indicate postglacial contact. Taken together, evidence from this study strongly indicates in situ glacial survival in Scandinavia.  相似文献   

9.
There is an ongoing debate about the glacial history of non‐arctic species in central and northern Europe. The two main hypotheses are: (1) postglacial colonization from refugia outside this region; (2) glacial survival in microclimatically favourable sites within the periglacial areas. In order to clarify the glacial history of a boreo‐montane tall forb, we analysed AFLPs from populations of Cicerbita alpina through most of its range (Scandinavia, the mountains of central Europe, the Alps, the Pyrenees and the Balkan Peninsula). We found a major differentiation between the Pyrenean population and all others, supported by principal coordinate, neighbour joining and STRUCTURE analyses. Furthermore, three populations from the central and north‐eastern Alps were genetically distinct from the bulk of populations from Scandinavia, central Europe, the Alps and the Balkan Peninsula. Most populations, including those from central and northern Europe, had moderate to high levels of genetic diversity (mean Shannon index HSh = 0.292, mean percentage of polymorphic loci P = 54.1%, mean Nei's gene diversity H = 0.195). The results indicate separate glacial refugia in the Pyrenean region and the Italian Alps. Furthermore, they provide evidence of glacial persistence in cryptic refugia north of the Alps, from where Scandinavia and most of the Alps are likely to have been colonized following deglaciation. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 164 , 142–154.  相似文献   

10.
Mediterranean mountain ranges harbour highly endemic biota in islandlike habitats. Their topographic diversity offered the opportunity for mountain species to persist in refugial areas during episodes of major climatic change. We investigate the role of Quaternary climatic oscillations in shaping the demographic history and distribution ranges in the spider Harpactocrates ravastellus, endemic to the Pyrenees. Gene trees and multispecies coalescent analyses on mitochondrial and nuclear DNA sequences unveiled two distinct lineages with a hybrid zone around the northwestern area of the Catalan Pyrenees. The lineages were further supported by morphological differences. Climatic niche‐based species distribution models (SDMs) identified two lowland refugia at the western and eastern extremes of the mountain range, which would suggest secondary contact following postglacial expansion of populations from both refugia. Neutrality test and approximate Bayesian computation (ABC) analyses indicated that several local populations underwent severe bottlenecks followed by population expansions, which in combination with the deep population differentiation provided evidence for population survival during glacial periods in microrefugia across the mountain range, in addition to the main Atlantic and Mediterranean (western and eastern) refugia. This study sheds light on the complexities of Quaternary climatic oscillations in building up genetic diversity and local endemicity in the southern Europe mountain ranges.  相似文献   

11.
The role of glacial oscillations in shaping plant diversity has been only rarely addressed in endemics of formerly glaciated areas. The Galium pusillum group represents a rare example of an ecologically diverse and ploidy‐variable species complex that exhibits substantial diversity in deglaciated northern Europe. Using AFLP and plastid and nuclear DNA sequences of 67 populations from northern, central, and western Europe with known ecological preferences, we elucidate the evolutionary history of lineages restricted to deglaciated areas and identify the eco‐geographic partitioning of their genetic variation. We reveal three distinct endemic northern lineages: (i) diploids from southern Sweden + the British Isles, (ii) tetraploids from southern Scandinavia and the British Isles that show signs of ancient hybridization between the first lineage and populations from unglaciated central Europe, and (iii) tetraploids from Iceland + central Norway. Available evidence supports a stepwise differentiation of these three lineages that started at least before the last glacial maximum by processes of genome duplication, interlineage hybridization and/or allopatric evolution in distinct periglacial refugia. We reject the hypothesis of more recent postglacial speciation. Ecological characteristics of the populations under study only partly reflect genetic variation and suggest broad niches of postglacial colonizers. Despite their largely allopatric modern distributions, the north‐European lineages of the G. pusillum group do not show signs of rapid postglacial divergence, in contrast to most other northern endemics. Our study suggests that plants inhabiting deglaciated areas outside the Arctic may exhibit very different evolutionary histories compared with their more thoroughly investigated high‐arctic counterparts.  相似文献   

12.
We examined genetic variation in the Oriental fruit fly, Bactrocera dorsalis (Hendel), using six populations in two regions of Yunnan Province, China, to determine the distribution and likely mechanism for the dispersal of this fly. A 501‐bp portion of the mitochondrial cytochrome oxidase gene was sequenced from a minimum of eight individuals from each population, and 43 haplotypes were observed in the six Bactrocera dorsalis populations. When comparing the genetic diversity of populations in the northern and southern regions, which differ with respect to elevation, climate and plant phenology, we found a significantly greater haplotype diversity in the southern region (permutation test; P < 0.05), suggesting that the northern populations, those at Kunming and Qujing, probably originated from somewhere in the southern region. FST and number of pairwise differences revealed a high level of differentiation between the Panxi population and the other populations (permutation test; P < 0.05). Although the difference was marginally insignificant, the Shuitang population seemed to have differentiated from both northern populations. The Mantel test did not detect any isolation due to geographic distance. An amova analysis found that 2.56% of the variance was caused by the Panxi population. Haplotype network analysis showed that none of the six populations had a specific genetic lineage. Together, these analyses suggest that long‐distance dispersal has occurred for this species, and the species most probably took advantage of both a mountain pass and prevailing air currents. The Panxi population was significantly isolated from the others, probably because of its distinguishing habitat features, host plants or the recent reduction of the population size.  相似文献   

13.
Cold‐adapted species are thought to have had their largest distribution ranges in central Europe during the glacial periods. Postglacial warming caused severe range shifts of such taxa into higher latitudes and altitudes. We selected the boreomontane butterfly Lycaena helle (Denis & Schiffermüller, 1775) as an example to demonstrate the genetic effects of range changes, and to document the recent status of highly fragmented remnant populations. We analysed five polymorphic microsatellite loci in 1059 individuals sampled at 50 different localities scattered over the European distribution area of the species. Genetic differentiation was strong among the mountain ranges of western Europe, but we did not detect similarly distinct genetic groups following a geographical pattern in the more eastern areas. The Fennoscandian populations form a separate genetic group, and provide evidence for a colonization from southern Finland via northern Scandinavia to south‐central Sweden. Species distribution modelling suggests a large extension of the spatial distribution during the last glacial maximum, but highlights strong retractions to a few mountain areas under current conditions. These findings, combined with our genetic data, suggest a more or less continuous distribution of L. helle throughout central Europe at the end of the last ice age. As a consequence of postglacial warming, the species retreated northwards to Fennoscandia and escaped increasing temperatures through altitudinal shifts. Therefore, the species is today restricted to population remnants located at the mountain tops of western Europe, genetically isolated from each other, and evolved into genetically unique entities. Rising temperatures and advancing habitat destruction threaten this wealth of biodiversity. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 155–168.  相似文献   

14.
Abstract: The biennial Gentianella austriaca (A. & J. Kern.) Holub, representing a nutrient-poor grassland taxon of low competition power, is becoming rare in the lowlands of eastern Austria due to changes in land use. To estimate effects of isolation and decreasing population sizes, as well as evolutionary relationships, we investigated variation in isozymes and morphological characters within and between seven populations from the mountains, foothills, and lowlands. Additionally, data on reproduction, habitat, germination and population sizes were collected to examine possible causes of variation and differentiation. We found highest genetic diversity (va, vgo) in the lowland and foothill populations, and highest genetic differentiation (Dja, Djgo) (i.e., lowest genetic identity: Nei's I) in the lowland populations. The low diversity of the mountain populations might indicate that they are derived from lowland populations. Surprisingly, highest genetic diversity was found in the smallest population. This indicates that in small remnant populations of taxa with a mixed mating system, genetic diversity might be maintained even after many generations after reducing population size dramatically. We found some relationship between genetic diversity and high fitness (germination success) and (inversely) with seed size. Plant size and reproductive success are negatively correlated with altitude, whereas flower size and seed size seem to be subject to other forces of selection. Combining all morphometric, reproductive and genetic traits, the lowland populations are most strongly differentiated and therefore of highest conservation priority.  相似文献   

15.
Genetic admixture is supposed to be an important trigger of species expansions because it can create the potential for selection of genotypes suitable for new climatic conditions. Up until now, however, no continent‐wide population genetic study has performed a detailed reconstruction of admixture events during natural species expansions. To fill this gap, we analysed the postglacial history of Alnus glutinosa, a keystone species of European swamp habitats, across its entire distribution range using two molecular markers, cpDNA and nuclear microsatellites. CpDNA revealed multiple southern refugia located in the Iberian, Apennine, Balkan and Anatolian Peninsulas, Corsica and North Africa. Analysis of microsatellites variation revealed three main directions of postglacial expansion: (i) from the northern part of the Iberian Peninsula to Western and Central Europe and subsequently to the British Isles, (ii) from the Apennine Peninsula to the Alps and (iii) from the eastern part of the Balkan Peninsula to the Carpathians followed by expansion towards the Northern European plains. This challenges the classical paradigm that most European populations originated from refugial areas in the Carpathians. It has been shown that colonizing lineages have met several times and formed secondary contact zones with unexpectedly high population genetic diversity in Central Europe and Scandinavia. On the contrary, limited genetic admixture in southern refugial areas of A. glutinosa renders rear‐edge populations in the Mediterranean region more vulnerable to extinction due to climate change.  相似文献   

16.
The systematic structure and postglacial population history of the freshwater amphipod Gammarus lacustris were explored in an allozyme survey of 65 populations across Northern Europe. A strong multilocus pattern of differentiation discriminated populations of the north‐east (north‐eastern Norway, northern Finland) from those in the west and the south (southern and central Scandinavia, Denmark, Poland). This principal division is attributed to postglacial colonization of the area by two main refugial races or lineages, one from the east (Russia), the other from the south (north‐western European continent). The strongly diverged Eastern and Western races (Nei's D= 0.3, from 22 loci) now meet in a secondary contact zone across a narrow sector of northernmost Norway. Genetic population compositions in this zone vary in a mosaic pattern, and show no evidence of reproductive incompatibility. Similar contacts of eastern and western lineages, far older than the latest glaciation, are now known from a number of taxa and they constitute a general pattern in Fennoscandian phylogeography. Within the Western Gammarus race, the populations through coastal north‐western Norway are further distinguished from those in southern Scandinavia and Denmark by a set of unique alleles at high frequencies (D = 0.12). This suggests an independent early colonization of the coastal region by another distinct stock, either along an early deglaciated coastal corridor from the south‐west, or directly from the ice‐free continental shelf off the Norwegian coast – a hypothesis that has also previously been presented for G. lacustris, and parallels controversial suggestions of local refugia for other taxa in Scandinavia. The coastal population type only later could come into contact with Gammarus invading over the mountains from the south; these two population types now smoothly intergrade. © 2003 The Linnean Society of London, Biological Journal of the Linnean Society, 2003, 79, 523–542.  相似文献   

17.
Taxonomic complexity may be associated with migration history and polyploidy. We used plastid and nuclear DNA markers to investigate the evolutionary history of the systematically challenging Dactylorhiza maculata polyploid complex. A total of 1833 individuals from 298 populations from throughout Europe were analysed. We found that gene flow was limited between the two major taxa, diploid ssp. fuchsii (including ssp. saccifera) and tetraploid ssp. maculata. A minimum of three autotetraploid lineages were discerned: (1) southern/western ssp. maculata; (2) northern/eastern ssp. maculata; and (3) Central European ssp. fuchsii. The two ssp. maculata lineages, which probably pre‐date the last glaciation, form a contact zone with high genetic diversity in central Scandinavia. Intermediate plastid haplotypes in the contact zone hint at recombination. Central Europe may have been a source area for the postglacial migration for the southern/western lineage of ssp. maculata, as well as for ssp. fuchsii. The northern/eastern lineage of ssp. maculata may have survived the LGM in central Russia west of the Urals. The tetraploid lineage of ssp. fuchsii is indistinguishable from diploid ssp. fuchsii, and is probably of postglacial origin. The Mediterranean region and the Caucasus have not contributed to the northward migration of either ssp. fuchsii or ssp. maculata. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 503–525.  相似文献   

18.
Freshwater pearl mussels (Margaritifera margaritifera) are among the most critically threatened bivalve molluscs worldwide. An understanding of spatial patterns of genetic diversity is crucial for the development of integrative conservation strategies. We used microsatellites to study the genetic diversity and differentiation of 14 populations of M. margaritifera in central Sweden, an area which was described as a major secondary contact zone in postglacial colonisation for other species. Genetic diversity of Swedish pearl mussel populations was much greater than in central and southern Europe but similar to the genetic diversity observed in the northeastern portion of their European range. Genetic differentiation among populations was pronounced but to a large extent independent from present-day drainage systems. The complex patterns of genetic diversity and differentiation in pearl mussel seem to be strongly influenced by the species’ high degree of specialisation and extraordinary life history strategy which involves facultative hermaphrodism and an obligatory encystment stage on a host fish. Genetic drift effects and anthropogenic disturbances resulting in reduction of population size and loss of connectivity are less pronounced in northern pearl mussel populations compared to those in central and southern Europe.  相似文献   

19.
Variation in ITS and the two chloroplast markers rpl16 and tRNA-Gly was studied to explore phylogeographic patterns in, especially, western Eurasiatic Cratoneuron filicinum (Hedw.) Spruce. ITS and chloroplast data yield incongruent results and are therefore analysed separately; recombination is indicated for ITS. For both data sets one group of haplotypes is widespread in western Eurasia. Another is found in the Mediterranean region and occurs in southern Scandinavia (ITS) or large portions of northern Europe, but is missing in central Europe. It is suggested that the northern populations of the latter haplotypes have dispersed from eastern or south-eastern glacial refugia. At the continental scale, south-east Asiatic populations differ from those in western Eurasia, with an apparent meeting zone west of the Himalayas. American haplotypes are most similar to some European ones according to ITS, but to south-east Asiatic ones according to chloroplast data.  相似文献   

20.
We conducted a large‐scale population genetic survey of genetic diversity of the host grass Festuca rubra s.l., which fitness can be highly dependent on its symbiotic fungus Epichloë festucae, to evaluate genetic variation and population structure across the European range. The 27 studied populations have previously been found to differ in frequencies of occurrence of the symbiotic fungus E. festucae and ploidy levels. As predicted, we found decreased genetic diversity in previously glaciated areas in comparison with nonglaciated regions and discovered three major maternal genetic groups: southern, northeastern, and northwestern Europe. Interestingly, host populations from Greenland were genetically similar to those from the Faroe Islands and Iceland, suggesting gene flow also between those areas. The level of variation among populations within regions is evidently highly dependent on the postglacial colonization history, in particular on the number of independent long‐distance seed colonization events. Yet, also anthropogenic effects may have affected the population structure in F. rubra. We did not observe higher fungal infection rates in grass populations with lower levels of genetic variability. In fact, the fungal infection rates of E. festucae in relation to genetic variability of the host populations varied widely among geographical areas, which indicate differences in population histories due to colonization events and possible costs of systemic fungi in harsh environmental conditions. We found that the plants of different ploidy levels are genetically closely related within geographic areas indicating independent formation of polyploids in different maternal lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号