首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To better understand the biochemical consequences when polymeric polyphenols serve as biological antioxidants, we studied how reaction pH (pH 2.1–7.4) and protein affected the oxidation of pentagalloyl glucose (PGG) by NaIO4 in aqueous solution. PGG oxidation produced an o-semiquinone radical intermediate, which tended to form polymeric products at pH values below 5, and o-quinones at higher pH. The model protein bovine serum albumin promoted the formation of quinone even at low pH. Two other polyphenols, procyanidin (epicatechin16-(4→8)-catechin) and epigallocatechin gallate, had similar pH-dependent oxidation patterns.  相似文献   

2.
Understanding the role of electrostatics in protein stability requires knowledge of these interactions in both the folded and unfolded states. Electrostatic interactions can be probed experimentally by characterizing ionization equilibria of titrating groups, parameterized as pKa values. However, pKa values of the unfolded state are rarely accessible under native conditions, where the unfolded state has a very low population. Here, we report pKa values under nondenaturing conditions for two unfolded fragments of the protein G B1 domain that mimic the unfolded state of the intact protein. pKa values were determined for carboxyl groups by monitoring their pH-dependent 13C chemical shifts. Monte Carlo simulations using a Gaussian chain model provide corrections for changes in electrostatic interactions that arise from fragmentation of the protein. Most pKa values for the unfolded state agree well with model values, but some residues show significant perturbations that can be rationalized by local electrostatic interactions. The pH-dependent stability was calculated from the experimental pKa values of the folded and unfolded states and compared to experimental stability data. The use of experimental pKa values for the unfolded state results in significantly improved agreement with experimental data, as compared to calculations based on model data alone.  相似文献   

3.
The protein folding behavior of a polyelectrolyte protein, bovine dentine phosphophoryn (BDPP), in the pH range of 1.82–11.0 has been investigated. One- and two-dimensional nmr spectroscopy has been utilized to obtain proton spin assignments for amino acid residues in D2O and in H2O. One-dimensional 31P-nmr experiments verify the existence of three separate classes of O-phosphoserine (PSer) resonances in BDPP (α, β, χ), representing three distinct PSer residue populations at pH 6.94. By means of pH titration and 1H-nmr, five populations of Asp residues can be identified. Three of these populations exhibit secondary inflection points on their pH titration curves that correspond to an observed pKa of 6.17–6.95. The presence or absence of secondary inflection points for Asp populations and the 31P-nmr chemical shift dispersion for the three PSer residue populations indicate that BDPP may be comprised of homologous (Asp-Asp)n. (PSer-PSer)n, and heterologous (PSer-Asp)n sequences arranged into polyelectrolyte cluster regions. The pH titration also revealed that certain populations of Ser, Gly, and Pro residues in BDPP exhibit pH-dependent resonance frequency shifts. The “apparent” pK, for the transition points of these frequency shifts corresponds to either the pK of Pser monophosphatc ester and/or the pKa of Asp COOH group of BDPP polyelectrolyte regions. On the basis of these transition points, we can assign four types of Ser, Gly, or Pro-containing “intervening” regions in BDPP, based on their sensitivity to protonation and deprotonation events occurring at (Asp)n, (PSer)n, or (PSer-Asp)n anionic cluster regions that flank the intervening regions. Our 1H-ninr experiments also reveal that BDPP assumes a folded conformation at low pH. As the pH increases, this conformation undergoes several unfolding transitions as the BDPP molecule assumes more open conformations in response to increased electrostatic repulsion between polyelectrolyte anionic regions in the protein. These folding-unfolding transitions are mediated by the intervening regions, which act as “hinges” to allow the polyelectrolyte regions to fold relative to one another. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
The pK a values and charge states of ionizable residues in polypeptides and proteins are frequently determined via NMR-monitored pH titrations. To aid the interpretation of the resulting titration data, we have measured the pH-dependent chemical shifts of nearly all the 1H, 13C, and 15N nuclei in the seven common ionizable amino acids (X = Asp, Glu, His, Cys, Tyr, Lys, and Arg) within the context of a blocked tripeptide, acetyl-Gly-X-Gly-amide. Alanine amide and N-acetyl alanine were used as models of the N- and C-termini, respectively. Together, this study provides an essentially complete set of pH-dependent intra-residue and nearest-neighbor reference chemical shifts to help guide protein pK a measurements. These data should also facilitate pH-dependent corrections in algorithms used to predict the chemical shifts of random coil polypeptides. In parallel, deuterium isotope shifts for the side chain 15N nuclei of His, Lys, and Arg in their positively-charged and neutral states were also measured. Along with previously published results for Asp, Glu, Cys, and Tyr, these deuterium isotope shifts can provide complementary experimental evidence for defining the ionization states of protein residues.  相似文献   

5.
The conformational changes of polymavirus (Py) major capsid protein VP1 in solution by the solution pH, addition of calcium, and ionic strength were examined by circular dichroism (CD) and fluorescence spectroscopy. Comparison of the predicted secondary structures of PyVP1 and simian virus (SV) 40 by the methods of Chou-Fasman, Gamier et al., and Yang method are presented. Hydropathicity, surface probability, and chain flexibility of PyVP1 were computer-analyzed by the methods of Kyte and Doolittle, Emini et al., and Karplus and Schulz, respectively. The CD measurements indicate that the secondary structure of PyVP1 is little dependent on its concentration, Ca2+ concentration, and ionic strength, but is strongly pH dependent. Fluorescence studies showed that emission spectra of PyVP1 are also pH-dependent. At extreme acidic and alkaline pH, the fluorescence intensity of PyVP1 is decreased and the emission maximum is red-shifted. The fluorescence of PyVP1 is quenched by the presence of CsCl, KI, and acrylamide. The analyses of the modified Stern–Volmer plots indicate that five of seven tryptophan residues in PyVP1 are located on the surface of the protein, among which two are accessible to Cs+ and the other three are accessible to I. The two others are buried more deeply in the interior of the protein molecule.On leave from National Taiwan University;  相似文献   

6.
Site-specific pK(a) values measured by NMR spectroscopy provide essential information on protein electrostatics, the pH-dependence of protein structure, dynamics and function, and constitute an important benchmark for protein pK(a) calculation algorithms. Titration curves can be measured by tracking the NMR chemical shifts of several reporter nuclei versus sample pH. However, careful analysis of these curves is needed to extract residue-specific pK(a) values since pH-dependent chemical shift changes can arise from many sources, including through-bond inductive effects, through-space electric field effects, and conformational changes. We have re-measured titration curves for all carboxylates and His 15 in Hen Egg White Lysozyme (HEWL) by recording the pH-dependent chemical shifts of all backbone amide nitrogens and protons, Asp/Glu side chain protons and carboxyl carbons, and imidazole protonated carbons and protons in this protein. We extracted pK(a) values from the resulting titration curves using standard fitting methods, and compared these values to each other, and with those measured previously by 1H NMR (Bartik et al., Biophys J 1994;66:1180–1184). This analysis gives insights into the true accuracy associated with experimentally measured pK(a) values. We find that apparent pK(a) values frequently differ by 0.5–1.0 units depending upon the nuclei monitored, and that larger differences occasionally can be observed. The variation in measured pK(a) values, which reflects the difficulty in fitting and assigning pH-dependent chemical shifts to specific ionization equilibria, has significant implications for the experimental procedures used for measuring protein pK(a) values, for the benchmarking of protein pK(a) calculation algorithms, and for the understanding of protein electrostatics in general.  相似文献   

7.
《MABS-AUSTIN》2013,5(2):294-302
pH-dependent antibodies are engineered to release their target at a slightly acidic pH, a property making them suitable for clinical as well as biotechnological applications. Such antibodies were previously obtained by histidine scanning of pre-existing antibodies, a labor-intensive strategy resulting in antibodies that displayed residual binding to their target at pH 6.0. We report here the de novo isolation of pH-dependent antibodies selected by phage display from libraries enriched in histidines. Strongly pH-dependent clones with various affinity profiles against CXCL10 were isolated by this method. Our best candidate has nanomolar affinity for CXCL10 at pH 7.2, but no residual binding was detected at pH 6.0. We therefore propose that this new process is an efficient strategy to generate pH-dependent antibodies.  相似文献   

8.
9.
Summary The effects of soil acidification and micronutrient addition on levels of extractable Fe, Mn, Zn and Cu in a soil, and on the growth and micronutrient uptake of young highbush blueberry plants (Vaccinium corymbosum L. cv. Blueray) was investigated in a greenhouse study.Levels of 0.05M CaCl2-extractable Fe, Mn, Zn and Cu increased as the pH was lowered from 7.0 to 3.8. However, the solubility (CaCl2-extractability) of Fe and Cu was considerably less pH-dependent than that of Mn and Zn. With the exception of HCl-and DTPA-extractable Mn, micronutrients extractable with 0.1M HCl, 0.005M DTPA and 0.04M EDTA were unaffected or raised only slightly as the pH was lowered from 6.0 to 3.8. Quantities of Mn and Zn extractable with CaCl2 were similar in magnitude to those extractable with HCl, DTPA and EDTA whilst, in contrast, the latter reagents extracted considerably more Cu and Fe than did CaCl2. A fractionation of soil Zn and Cu revealed that soil acidification resulted in an increase in the CaCl2- and pyrophosphate-extractable fractions and a smaller decrease in the oxalate-extractable fraction.Plant dry matter production increased consistently when the soil pH was lowered from 7.0 to 4.6 but there was a slight decline in dry matter as the pH was lowered to 3.8. Micronutrient additions had no influence on plant biomass although plant uptake was increased. As the pH was lowered, concentrations of plant Fe first decreased and then increased whilst those of Mn, and to a lesser extent Zn and Cu, increased markedly.  相似文献   

10.
A dispersion of melting temperatures at pH 5.3 for individual residues of the BBL protein domain has been adduced as evidence for barrier-free downhill folding. Other members of the peripheral subunit domain family fold cooperatively at pH 7. To search for possible causes of anomalies in BBL's denaturation behavior, we measured the pH titration of individual residues by heteronuclear NMR. At 298 K, the pKa of His142 was close to that of free histidine at 6.47 ± 0.04, while that of the more buried His166 was highly perturbed at 5.39 ± 0.02. Protonation of His166 is thus energetically unfavorable and destabilizes the protein by ∼ 1.5 kcal/mol. Changes in Cα secondary shifts at pH 5.3 showed a decrease in helicity of the C-terminus of helix 2, where His166 is located, which was accompanied by a measured decrease of 1.1 ± 0.2 kcal/mol in stability from pH 7 to 5.3. Protonation of His166 perturbs, therefore, the structure of BBL. Only ∼ 1% of the structurally perturbed state will be present at the biologically relevant pH 7.6. Experiments at pH 5.3 report on a near-equal mixture of the two different native states. Further, at this pH, small changes of pH and pKa induced by changes in temperature will have near-maximal effects on pH-dependent conformational equilibria and on propagation of experimental error. Accordingly, conventional barrier-limited folding predicts some dispersion of measured thermal unfolding curves of individual residues at pH 5.3.  相似文献   

11.
Aims: To evaluate the efficacy of a novel microencapsulation procedure using whey protein and pectin to improve the survival rate of Lactobacillus rhamnosus CRL 1505 to low pH and bile. Methods and Results: Lactobacillus rhamnosus CRL 1505 was encapsulated by ionotropic gelation using pectin (PE) and pectin–whey protein (PE–WP). Both types of beads (MCPE/WP and MCPE–WP/WP) were covered with a layer of whey protein by complex coacervation. The noncapsulated lactobacilli were not sensitive to bile salts but to acid. Both microparticles protected Lact. rhamnosus CRL 1505 at pH 2·0, but only MCPE/WP was effective at pH 1·2. Conclusions: The combination of ionotropic gelation and complex coacervation techniques is efficient to obtain microcapsules of pectin covered with whey proteins. The MCPE/WP beads were more stable than the MCPE–WP/WP beads in simulated gastric conditions, thus offering better protection to Lact. rhamnosus CRL 1505 at low pH. Significance and Impact of the Study: Pectin beads with a whey protein layer (MCPE/WP) could be used as probiotic carrier in functional foods of low pH (e.g. apple juice), thus protecting Lact. rhamnosus CRL 1505 against the stressful conditions of the gastric tract.  相似文献   

12.
An improved procedure for the isolation of the cytochromeb 6/f complex from spinach chloroplasts is reported. With this preparation up to tenfold higher plastoquinol-plastocyanin oxidoreductase activities were observed. Like the complex obtained by our previous procedure, the complex prepared by the modified way consisted of five polypeptides with apparent molecular masses of 34, 33, 23, 20, and 17 kD, which we call Ia, Ib, II, III, and IV, respectively. In addition, one to three small components with molecular masses below 6 kD were now found to be present. These polypeptides can be extracted with acidic acetone. Cytochromef, cytochromeb 6, and the Rieske Fe-S protein could be purified from the isolated complex and were shown to be represented by subunits Ia + Ib, II, and III, respectively. The heterogeneity of cytochromef is not understood at present. Estimations of the stoichiometry derived from relative staining intensities with Coomassie blue and amido black gave 1:1:1:1 for the subunits Ia + Ib/II/III/IV, which is interesting in of the presence of two cytochromesb 6 per cytochromef. Cytochromef titrated as a single-electron acceptor with a pH-independent midpoint potential of +339 mV between pH 6.5 and 8.3, while cytochromeb 6 was heterogeneous. With the assumption of two components present in equal amounts, two one-electron transitions withE m(1)=–40 mV andE m(2)=–172 at pH 6.5 were derived. Both midpoint potentials were pH-dependent.Abbreviation Tris tris(hydroxymethyl)aminomethane - SDS sodium dodecylsulfate - SDS-PAGE SDS polyacrylamide gel electrophoresis - MES 2-(N-morpholino)ethanesulfonic acid  相似文献   

13.
Prostatic acid phosphatase (PAP) is expressed in nociceptive neurons and functions as an ectonucleotidase. When injected intraspinally, the secretory isoforms of human and bovine PAP protein have potent and long-lasting antinociceptive effects that are dependent on A1-adenosine receptor (A1R) activation. In this study, we purified the secretory isoform of mouse (m)PAP using the baculovirus expression system to determine if recombinant mPAP also had antinociceptive properties. We found that mPAP dephosphorylated AMP, and to a much lesser extent, ADP at neutral pH (pH 7.0). In contrast, mPAP dephosphorylated all purine nucleotides (AMP, ADP, ATP) at an acidic pH (pH 5.6). The transmembrane isoform of mPAP had similar pH-dependent ectonucleotidase activity. A single intraspinal injection of mPAP protein had long-lasting (three day) antinociceptive properties, including antihyperalgesic and antiallodynic effects in the Complete Freund''s Adjuvant (CFA) inflammatory pain model. These antinociceptive effects were transiently blocked by the A1R antagonist 8-cyclopentyl-1, 3-dipropylxanthine (CPX), suggesting mPAP dephosphorylates nucleotides to adenosine to mediate antinociception just like human and bovine PAP. Our studies indicate that PAP has species-conserved antinociceptive effects and has pH-dependent ectonucleotidase activity. The ability to metabolize nucleotides in a pH-dependent manner could be relevant to conditions like inflammation where tissue acidosis and nucleotide release occur. Lastly, our studies demonstrate that recombinant PAP protein can be used to treat chronic pain in animal models.  相似文献   

14.
Summary Efflux of36Cl from frog sartorius muscles equilibrated in two depolarizing solutions was measured. Cl efflux consists of a component present at low pH and a pH-dependent component which increases as external pH increases.For temperatures between 0 and 20°C, the measured activation energy is 7.5 kcal/mol for Cl efflux at pH 5 and 12.6 kcal/mol for the pH-dependent Cl efflux. The pH-dependent Cl efflux can be described by the relationu=1/(1+10n(pK a -pH)), whereu is the Cl efflux increment obtained on stepping from pH 5 to the test pH, normalized with respect to the increment obtained on stepping from pH 5 to 8.5 or 9.0. For muscles equilibrated in solutions containing 150mm KCl plus 120mm NaCl (internal potential about –15 mV), the apparent pK a is 6.5 at both 0 and 20°C, andn=2.5 for 0°C and 1.5 for 20°C. For muscles equilibrated in solutions containing 7.5mm KCl plus 120mm NaCl (internal potential about –65 mV), the apparent pK a at 0°C is 6.9 andn is 1.5. The voltage dependence of the apparent pK a suggests that the critical pH-sensitive moiety producing the pH-dependent Cl efflux is sensitive to the membrane electric field, while the insensitivity to temperature suggests that the apparent heat of ionization of this moiety is zero. The fact thatn is greater than 1 suggests that cooperativity between pH-sensitive moieties is involved in determining the Cl efflux increment on raising external pH.The histidine-modifying reagent diethylpyrocarbonate (DEPC) applied at pH 6 reduces the pH-dependent Cl efflux according to the relation, efflux=exp(–k·[DEPC]·t), wheret is the exposure time (min) to DEPC at a prepared initial concentration of [DEPC] (mm). At 17°C,k –1=188mm·min. For temperatures between 10 and 23°C,k has an apparent Q10 of 2.5. The Cl efflux inhibitor SCN at a concentration of 20mm substantially retards the reduction of the pH-dependent Cl efflux by DEPC. The findings that the apparent pK a is 6.5 in depolarized muscles, that DEPC eliminates the pH-dependent Cl efflux, and that this action is retarded by SCN supports the notion that protonation of histidine groups associated with Cl channels is the controlling reaction for the pH-dependent Cl efflux.  相似文献   

15.
《MABS-AUSTIN》2013,5(1):219-235
We set out to gain deeper insight into the potential of antibody light chain variable domains (VLs) as immunotherapeutics. To this end, we generated a naïve human VL phage display library and, by using a method previously shown to select for non-aggregating antibody heavy chain variable domains (VHs), we isolated a diversity of VL domains by panning the library against B cell super-antigen protein L. Eight domains representing different germline origins were shown to be non-aggregating at concentrations as high as 450 µM, indicating VL repertoires are a rich source of non-aggregating domains. In addition, the VLs demonstrated high expression yields in E. coli, protein L binding and high reversibility of thermal unfolding. A side-by-side comparison with a set of non-aggregating human VHs revealed that the VLs had similar overall profiles with respect to melting temperature (Tm), reversibility of thermal unfolding and resistance to gastrointestinal proteases. Successful engineering of a non-canonical disulfide linkage in the core of VLs did not compromise the non-aggregation state or protein L binding properties. Furthermore, the introduced disulfide bond significantly increased their Tms, by 5.5–17.5 °C, and pepsin resistance, although it somewhat reduced expression yields and subtly changed the structure of VLs. Human VLs and engineered versions may make suitable therapeutics due to their desirable biophysical features. The disulfide linkage-engineered VLs may be the preferred therapeutic format because of their higher stability, especially for oral therapy applications that necessitate high resistance to the stomach’s acidic pH and pepsin.  相似文献   

16.
pH-dependent (pH 6.0–8.0) quaternary structural changes of ferric Vitreoscilla hemoglobin (VHb) have been investigated using dynamic light scattering. The VHb exhibits a monomeric state under neutral conditions at pH 7.0, while the protein forms distinct homodimeric species at pH 6.0 and 8.0, respectively. The dissociation constant obtained using the Bio-Layer Interferometry technology indicates that, at pH 7.0, the monomer–monomer dissociation of VHb is about 6-fold or 5-fold higher (KD = 6.34 μM) compared with that at slightly acidic pH (KD = 1.05 μM) or slightly alkaline pH (KD = 1.22 μM). The pH-dependent absorption spectra demonstrate that the heme microenvironment of VHb is sensitive to the changes of pH value. The maximum absorption band of heme group of VHb shifts from 402 nm to 407 nm when pH changes from 6.0 to 8.0. In addition, the fluorescence emission spectra of VHb, taken at excitation wavelength of 295 nm, suggest that the single Trp122 fluorescence quantum yields in VHb are decreased due to the formation of the homodimeric species. However, the circular dichroism spectra data display that the secondary structures of VHb are little affected by pH transitions. The pH-dependent peroxidase activity of VHb was also investigated in this study. The optimum pH for VHb using 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) as substrate is 7.0, which implies that the monomer state of VHb would exhibit better peroxidase activity than the homodimeric species of VHb at pH 6.0 and 8.0.  相似文献   

17.
This study demonstrates a pH-dependent inhibition of Mg2+- and Ca2+- ATPase activities ofNostoc linckia andChlorella vulgaris exposed to AlCl3, AlF3, NaF and AlCl3 + NaF together. AlF3 and the combination of AlCl3 + NaF were more inhibitory to both the enzymes as compared with AlCl3 and NaF. Toxicity of the test compounds increased with increasing acidity. Interaction of AlCl3 + NaF was additive onN. linckia andC. vulgaris, respectively, at pH 7.5 and 6.8, and synergistic at pH 6.0 and 4.5. In the presence of 60 and 100 m PO4 3- an increased NaF concentration (in the AlCl3 + NaF combination) was required to produce the same degree of inhibition in ATP synthesis and ATPase activity. Toxicity of fluoroaluminate was reduced in the presence of EDTA and citrate. Except for beryllium to some extent, combinations of cadmium, cobalt, iron, manganese, tin and zinc with fluoride were not as effective as aluminium in inhibiting the ATPase activity. The presence of a 100 kDa protein band in SDS-PAGE of both control as well as AlCl3 + NaF-treated samples suggested that AlF4 inhibits the ATPase activity by acting as a functional barrier without affecting the structure of the enzyme.  相似文献   

18.
The ability of apocytochrome c and the heme containing respiratory chain component, cytochrome c, to induce fusion of phosphatidylcholine (PC) small unilamellar vesicles containing 0–50 mol% negatively charged lipids was examined. Both molecules mediated fusion of phosphatidylserine (PS):PC 1:1 vesicles as measured by energy transfer changes between fluorescent lipid probes in a concentration- and pH-dependent manner, although cytochrome c was less potent and interacted over a more limited pH range than the apocytochrome c. Maximal fusion occurred at pH 3, far below the pKa of the 19 lysine groups contained in the protein (pl = 10.5). A similar pH dependence was observed for vesicles containing 50 mol% cardiolipin (CL), phosphatidylglycerol (PG), and phosphatidylinositol (PI) in PC but the apparent pKa values varied somewhat. In the absence of vesicles, the secondary structure of apocytochrome c was unchanged over this pH range, but in the presence of negatively charged vesicles, the polypeptide underwent a marked conformational change from random coil to α-helix. By comparing the pH dependencies of fusion induced by poly-L-lysine and apocytochrome c, we concluded that the pH dependence derived from changes in the net charge on both the vesicles and apocytochrome c. Aggregation could occur under conditions where fusion was imperceptible. Fusion increased with increasing mole ratio of PS. Apocytochrome c did induce some fusion of vesicles composed only of PC with a maximum effect at pH 4. Biosynthesis of cytochrome c involves translocation of apocytochrome c from the cytosol across the outer mitochondrial membrane to the outer mitochondrial space where the heme group is attached. The ability of apocytochrome c to induce fusion of both PS-containing and PC-only vesicles may reflect characteristics of protein/membrane interaction that pertain to its biological translocation.  相似文献   

19.
We expand the spectroscopic utility of a well-known infrared and fluorescence probe, p-cyanophenylalanine, by showing that it can also serve as a pH sensor. This new application is based on the notion that the fluorescence quantum yield of this unnatural amino acid, when placed at or near the N-terminal end of a polypeptide, depends on the protonation status of the N-terminal amino group of the peptide. Using this pH sensor, we are able to determine the N-terminal pKa values of nine tripeptides and also the membrane penetration kinetics of a cell-penetrating peptide. Taken together, these examples demonstrate the applicability of using this unnatural amino acid fluorophore to study pH-dependent biological processes or events that accompany a pH change.  相似文献   

20.
Cytochrome b 5 is a membrane protein that comprises two fragments: one is water-soluble and heme-containing, and the other is hydrophobic and membrane-embedded. The function of electron transfer is performed by the former whose crystal structure is known; however, its conformational states when in the membrane field and interacting with other proteins are still to be studied. Previously, we proposed water–alcohol mixtures for modeling the effect of membrane surface on proteins, and used this approach to study the conformational behavior of positively charged cytochrome c as well as relatively neutral retinol-binding protein also functioning in the field of a negatively charged membrane. The current study describes the conformational behavior of the negatively charged water-soluble fragment of cytochrome b 5 as dependent on pH. Decreasing pH was shown to transform the fragment state from native to intermediate, similar to the molten globule reported earlier for other proteins in aqueous solutions: at pH 3.0, the fragment preserved a pronounced secondary structure and compactness but lost its rigid tertiary structure. A possible role of this intermediate state in cytochrome b 5 functioning is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号