首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 2 毫秒
1.
2.
3.
The intervertebral disc (IVD) is a complex fibrocartilaginous structure located between the vertebral bodies that allows for movement and acts as a shock absorber in our spine for daily activities. It is composed of three components: the nucleus pulposus (NP), annulus fibrosus, and cartilaginous endplate. The characteristics of these cells are different, as they produce specific extracellular matrix (ECM) for tissue function and the niche in supporting the differentiation status of the cells in the IVD. Furthermore, cell heterogeneities exist in each compartment. The cells and the supporting ECM change as we age, leading to degenerative outcomes that often lead to pathological symptoms such as back pain and sciatica. There are speculations as to the potential of cell therapy or the use of tissue engineering as treatments. However, the nature of the cells present in the IVD that support tissue function is not clear. This review looks at the origin of cells in the making of an IVD, from the earliest stages of embryogenesis in the formation of the notochord, and its role as a signaling center, guiding the formation of spine, and in its journey to become the NP at the center of the IVD. While our current understanding of the molecular signatures of IVD cells is still limited, the field is moving fast and the potential is enormous as we begin to understand the progenitor and differentiated cells present, their molecular signatures, and signals that we could harness in directing the appropriate in vitro and in vivo cellular responses in our quest to regain or maintain a healthy IVD as we age. Birth Defects Research (Part C) 102:83–100, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
Two groups of 4-unit zirconia frameworks were produced by CAD/CAM to simulate the restoration of an anterior edentulous gap supported by 2 implant-abutment assemblies. Group 1 comprised straight configuration frameworks and group 2 consisted of arched frameworks. Specimens were made with the same connector cross-section area and were cemented and submitted to static loads. Displacements were captured with two high-speed photographic cameras and analysed with video correlation system. Frameworks and the implant-abutment assembly were scanned and converted to 3DCAD objects by reverse engineering process. A specimen of each group was veneered and the corresponding 3D geometry was similarly obtained after scanning. Numerical models were created from the CAD objects and the FE analysis was performed on the zirconia frameworks and on the FPDs bi-layered with porcelain (veneered frameworks). Displacements were higher for the curved frameworks group, under any load. The predicted displacements correlated well with the experimental values of the two framework groups, but on the straight framework the experimental vertical displacements were superior to those predicted by the FEA. The results showed that the round curvature of zirconia anterior implant-supported FPDs plays a significant role on the deformation/stress of FPDs that cannot be neglected neither in testing nor in simulation and should be considered in the clinical setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号