首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Cre/loxP technology is an important tool for studying cell type-specific gene functions. Cre recombinase mouse lines, including Agc1-CreERT2, Col2a1-Cre; Col2a1-CreERT2, Shh-Cre, Shh-CreERT2, and Osx-Cre, have been proven to be valuable tools to elucidate the biology of long bones, yet the information for their activity in postnatal intervertebral disc (IVD) tissues was very limited. In this study, we used R26-mTmG fluorescent reporter to systematically analyze cell specificity and targeting efficiency of these six mouse lines in IVD tissues at postnatal growing and adult stages. We found that Agc1-CreERT2 is effective to direct recombination in all components of IVDs, including annulus fibrosus (AF), nucleus pulposus (NP), and cartilaginous endplate (CEP), upon tamoxifen induction at either 2 weeks or 2 months of ages. Moreover, Col2a1-Cre targets most of the cells in IVDs, except for some cells in the outer AF (OAF) and NP. In contrast, the activity of Col2a1-CreERT2 is mainly limited to the IAF of IVD tissues at either stage of tamoxifen injection. Similarly, Shh-Cre directs recombination specifically in all NP cells, whereas Shh-CreERT2 is active only in a few NP cells when tamoxifen is administered at either stage. Finally, Osx-Cre targets cells in the CEP, but not in the NP or AF of IVDs tissues at these two stages. Thus, our data demonstrated that all these Cre lines can direct recombination in IVD tissues at postnatal stages with different cell type specificity and/or targeting efficiency, and can, therefore, serve as valuable tools to dissect cell type-specific gene functions in IVD development and homeostasis.  相似文献   

3.
4.
5.
6.
椎间盘退变是腰痛发生的主要原因,严重影响了人们的生活和工作。尽管具体发病机制尚不明确,但近年来其相关动物模型的研究有了很大的进步。造模方法包括结构损伤、应力改变及基因敲除等,本文综述并讨论了这些方法的优缺点和应用方向,以期为后续的研究奠定理论基础。  相似文献   

7.
  总被引:11,自引:0,他引:11  
Degeneration of the intervertebral disc is the main pathophysiological process implicated in low back pain and is a prerequisite to disc herniation. Clinically, mechanical forces are important modulators of the degeneration, but the underlying molecular mechanism is not known and needs investigation to identify the biological target. The aim of this work was to study, at the molecular level, the effects of cyclic tensile stretch (CTS) on the production of proteoglycan by intervertebral disc annulus fibrosus cells since proteoglycans seem to be implicated in the dynamic process of intervertebral disc degeneration. Such cells of rabbit were cultured at high density on plates with a flexible bottom. CTS was applied with use of a pressure-operated instrument to deform the plates. With CTS at 1% elongation (1 Hz frequency), the level of (35)S-labeled neosynthesized proteoglycans that accumulated in the cellular pool or were secreted in the culture medium did not change, but at 5% elongation, the level was significantly reduced after 8 h of stimulation (30 and 21%, respectively) and further reduced at 24 h (43 and 41%, respectively). Introducing the protein synthesis inhibitor cycloheximide had no effect on this result. Neither aggrecan and biglycan expression nor proteoglycan physical properties were modified. The level of nitrite oxide production significantly increased by 3.5 times after 8 h of 5% elongation. Introducing the nitric oxide synthase (NOS) inhibitors N(G)-methyl-l-arginine or N-omega nitro-l-arginine diminished the effects of CTS on the production of nitrite oxide and proteoglycans. By contrast, introducing N-iminoethyl-l-lysine (a more specific inhibitor of inductible NOS [iNOS]) had little or no effect. Taken together, these results suggest that cNOS activation seems to be more implicated in the 5% CTS modulation of proteoglycan production than iNOS activation. These results suggest that CTS can help regulate the intervertebral disc matrix by decreasing proteoglycan production through a post-translational regulation involving nitrite oxide. This result could be of interest in the development of local therapeutic strategies aimed at controlling intervertebral disc degeneration.  相似文献   

8.
    
Low back pain results from disc degeneration, which is a chronic inflammatory disease characterized by an imbalance between anabolic and catabolic factors. Today, regenerative medicine is focused on identifying inflammatory markers to target disc disease. Hyaluronan is used as a scaffold for cell delivery in disc degeneration; however, to date high molecular weight hyaluronan (HMW HA) is evaluated for its anti‐inflammatory and matrix modulatory properties in an in vivo disc injury model. Ex vivo bovine organ culture studies demonstrate the anti‐inflammatory and matrix modulatory effects of HMW HA on the IFNα2β signaling pathway that provides the motivation for evaluating its efficacy in regenerating the annulus fibrosus in an in vivo disc injury model. It is demonstrated that the HMW HA microgel acts as an anti‐inflammatory molecule in the annulus fibrosus, by downregulating the expression of the pro‐inflammatory interferon gamma (IFNα) and pro‐apoptotic insulin‐like growth factor‐binding protein 3 (IGFBP3) and the apoptosis marker caspase 3. Mass spectrometry studies demonstrate that the HMW HA microgel modulates the matrix modulatory effect by upregulating hyaluronic acid link protein (HAPLN1) and aggrecan, which are further confirmed by immunostaining. The microgel's regenerative capacity is illustrated by the increase in the disc height index.  相似文献   

9.
    
The intervertebral disc (IVD) is a complex fibrocartilaginous structure located between the vertebral bodies that allows for movement and acts as a shock absorber in our spine for daily activities. It is composed of three components: the nucleus pulposus (NP), annulus fibrosus, and cartilaginous endplate. The characteristics of these cells are different, as they produce specific extracellular matrix (ECM) for tissue function and the niche in supporting the differentiation status of the cells in the IVD. Furthermore, cell heterogeneities exist in each compartment. The cells and the supporting ECM change as we age, leading to degenerative outcomes that often lead to pathological symptoms such as back pain and sciatica. There are speculations as to the potential of cell therapy or the use of tissue engineering as treatments. However, the nature of the cells present in the IVD that support tissue function is not clear. This review looks at the origin of cells in the making of an IVD, from the earliest stages of embryogenesis in the formation of the notochord, and its role as a signaling center, guiding the formation of spine, and in its journey to become the NP at the center of the IVD. While our current understanding of the molecular signatures of IVD cells is still limited, the field is moving fast and the potential is enormous as we begin to understand the progenitor and differentiated cells present, their molecular signatures, and signals that we could harness in directing the appropriate in vitro and in vivo cellular responses in our quest to regain or maintain a healthy IVD as we age. Birth Defects Research (Part C) 102:83–100, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
11.
12.
13.
目的:观察采用经皮靶点穿刺臭氧注射术治疗伴有纤维环后方高信号(HIZ)的腰椎间盘突出症(LDH)的临床疗效。方法:136例伴有纤维环后方HIZ的LDH患者根据治疗方法分为2组:75例患者为经皮靶点穿刺臭氧注射治疗组(A组),61例患者为保守治疗组(B组)。A组患者在C型臂X光机引导下对靶点成功穿刺后注射浓度为40μg/mL的O_3~O_2混合气体2~5 mL。采用MacNab腰腿痛手术评价标准和Oswestry功能障碍指数(ODI)评分比较两组患者的治疗效果。结果:136例患者除24例外均获随访,时间18~44个月。在术后第1、2、3、6、9、12和18个月,根据MacNab腰腿痛手术评价标准,A组有效率分别为88.00%、90.67%、93.33%、89.39%、84.85%、78.13%和73.44%,B组的有效率分别为68.85%、62.30%、55.74%、61.82%、58.12%、54.17%和47.92%,各个时间点两组间比较差异均有显著性(P0.05)。术后第12和18个月,A组ODI评分较低,两时间点组间比较差异无显著性(P0.05),但与术前及B组比较差异均有显著性(P0.05)。结论:经皮靶点穿刺臭氧注射是一种有效的治疗伴有纤维环后方HIZ的LDH的方法,其临床疗效比较稳定。  相似文献   

14.
Chemokines are an important group of soluble molecules with specialized functions in inflammation. The roles of many specialized chemokines and their receptors remain poorly understood in the human intervertebral disc. We investigated CXCL16 and its receptor, CXCR6, to determine their immunolocalization in disc tissue and their presence following exposure of cultured human annulus fibrosus cells to proinflammatory cytokines. CXCL16 is a marker for inflammation; it also can induce hypoxia-inducible factor 1α (HIF-1α), which is a phenotypic marker of heathy nucleus pulposus tissue. We found CXCL16 and CXCR6 immunostaining in many cells of the annulus portion of the disc. Molecular studies showed that annulus fibrosus cells exposed to IL-1ß, but not TNF-α, exhibited significant up-regulation of CXCL16 expression vs. control cells. There was no significant difference in the percentage of annulus cells that exhibited immunolocalization of CXCL16 in grade I/II, grade III or grade IV/V specimens. The presence of CXCL16 and its receptor, CXCR6, in the annulus in vivo suggests the need for future research concerning the role of this chemokine in proinflammatory functions, HIF-1α expression and disc vascularization.  相似文献   

15.
The primary objective of this study was to generate a finite element model of the human lumbar spine (L1–L5), verify mesh convergence for each tissue constituent and perform an extensive validation using both kinematic/kinetic and stress/strain data. Mesh refinement was accomplished via convergence of strain energy density (SED) predictions for each spinal tissue. The converged model was validated based on range of motion, intradiscal pressure, facet force transmission, anterolateral cortical bone strain and anterior longitudinal ligament deformation predictions. Changes in mesh resolution had the biggest impact on SED predictions under axial rotation loading. Nonlinearity of the moment-rotation curves was accurately simulated and the model predictions on the aforementioned parameters were in good agreement with experimental data. The validated and converged model will be utilised to study the effects of degeneration on the lumbar spine biomechanics, as well as to investigate the mechanical underpinning of the contemporary treatment strategies.  相似文献   

16.
    
Currently, there are a number of nucleus replacements under development. The important concern is how well these implants duplicate the mechanical function of the native nucleus. This finite element model study aimed to investigate the influence of different nucleus replacements on the mechanical response of the disc. Models included partial, full, over-sized, partially saturated, elastic and poroelastic solid replacements. Over-sized nucleus replacements up to 25% yielded results that were comparable to those in the intact state. Differences were much greater in cases with under-sized nucleus replacements. The effect was most pronounced for the 75% under-sized replacement that resembled the condition with a full nucleotomy. Nucleus implants with elastic properties substantially altered load transmission when 10% under-sized and over-sized replacements were considered. Compared to intact, the under-sized implants should be avoided when using biphasic materials with properties similar to the native nucleus, whereas for elastic replacements both under- and over-sized implants should not be used.  相似文献   

17.
  总被引:4,自引:0,他引:4  
Mechanical forces regulate the developmental path and phenotype of a variety of tissues and cultured cells. Vibratory loading as a mechanical stimulus occurs in connective tissues due to energy returned from ground reaction forces, as well as a mechanical input from use of motorized tools and vehicles. Structures in the spine may be particularly at risk when exposed to destructive vibratory stimuli. Cells from many tissues respond to mechanical stimuli, such as fluid flow, by increasing intracellular calcium concentration ([Ca(2+)](ic)) and releasing adenosine 5'-triphosphate (ATP), extracellularly, as a mediator to activate signaling pathways. Therefore, we examined whether ATP is released from rabbit (rAN) and human (hAN) intervertebral disc annulus cells in response to vibratory loading. ATP release from annulus cells by vibratory stimulation as well as in control cells was quantitated using a firefly luciferin-luciferase assay. Cultured hAN and rAN cells had a basal level of extracellular ATP ([ATP](ec)) in the range of 1-1.5 nM. Vibratory loading of hAN cells stimulated ATP release, reaching a net maximum [ATP] within 10 min of continuous vibration, and shortly thereafter, [ATP] declined and returned to below baseline level. [ATP] in the supernatant fluid of hAN cells was significantly reduced compared to the control level when the cells received vibration for longer than 15 min. In rAN cells, [ATP] was increased in response to vibratory loading, attaining a level significantly greater than that of the control after 30 min of continuous vibration. Results of the current study show that resting annulus cells secrete ATP and maintain a basal [ATP](ec). Annulus cells may use this nucleotide as a signaling messenger in an autocrine/paracrine fashion in response to vibratory loading. Rapid degradation of ATP to ADP may alternatively modulate cellular responses. It is hypothesized that exposure to repetitive, complex vibration regimens may activate signaling pathways that regulate matrix destruction in the disc. As in tendon cells, ATP may block subsequent responses to load and modulate the vibration response. Rabbit annulus cells were used as a readily obtainable source of cells in development of an animal model for testing effects of vibration on the disc. Human cells obtained from discarded surgical specimens were used to correlate responses of animal to human cells.  相似文献   

18.
Computer tomography (CT)-based finite element (FE) models of vertebral bodies assess fracture load in vitro better than dual energy X-ray absorptiometry, but boundary conditions affect stress distribution under the endplates that may influence ultimate load and damage localisation under post-yield strains. Therefore, HRpQCT-based homogenised FE models of 12 vertebral bodies were subjected to axial compression with two distinct boundary conditions: embedding in polymethylmethalcrylate (PMMA) and bonding to a healthy intervertebral disc (IVD) with distinct hyperelastic properties for nucleus and annulus. Bone volume fraction and fabric assessed from HRpQCT data were used to determine the elastic, plastic and damage behaviour of bone. Ultimate forces obtained with PMMA were 22% higher than with IVD but correlated highly (R2 = 0.99). At ultimate force, distinct fractions of damage were computed in the endplates (PMMA: 6%, IVD: 70%), cortex and trabecular sub-regions, which confirms previous observations that in contrast to PMMA embedding, failure initiated underneath the nuclei in healthy IVDs. In conclusion, axial loading of vertebral bodies via PMMA embedding versus healthy IVD overestimates ultimate load and leads to distinct damage localisation and failure pattern.  相似文献   

19.
Diurnal changes of intervertebral disc height are caused by high compressive loading during the day, which expulses fluid from the disc, and by osmotic pressure, which imbibes fluid into the disc at low loading. The aim of the present study was to determine the magnitude of diurnal changes in spine flexibility, intradiscal pressures and contact forces in the facet joints. A validated osseoligamentous finite element model of the lumbar spine was used to determine these quantities for morning and evening situations. Disc height varied by 10% for these two situations. Spine flexibility and facet joint forces were markedly higher in the evening than in the morning. Intradiscal pressures were higher in the morning than in the evening. The different spine flexibilities in the morning and evening should be taken into account during kinematical measurements. Predicted facet joint forces may be used for the designing and pre-clinical testing of artificial facet joint replacements.  相似文献   

20.
The aim of this work is to show a quick and simple procedure able to identify the geometrical parameters of the intervertebral disc that strongly affect the behavior of the FEM model. First, we allocated a selection criterion for the minimum number of geometrical parameters that describe, with a good degree of approximation, a healthy human vertebra. Next, we carried out a sensitivity analysis using the ‘Taguchi orthogonal array’ to arrive at a quick identification of the parameters that strongly affect the behavior of the Fem model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号