首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ultraviolet‐B (UV‐B) portion of the solar radiation functions as an environmental signal for which plants have evolved specific and sensitive UV‐B perception systems. The UV‐B‐specific UV RESPONSE LOCUS 8 (UVR8) and the multifunctional E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) are key regulators of the UV‐B response. We show here that uvr8‐null mutants are deficient in UV‐B‐induced photomorphogenesis and hypersensitive to UV‐B stress, whereas overexpression of UVR8 results in enhanced UV‐B photomorphogenesis, acclimation and tolerance to UV‐B stress. By using sun simulators, we provide evidence at the physiological level that UV‐B acclimation mediated by the UV‐B‐specific photoregulatory pathway is indeed required for survival in sunlight. At the molecular level, we demonstrate that the wild type but not the mutant UVR8 and COP1 proteins directly interact in a UV‐B‐dependent, rapid manner in planta. These data collectively suggest that UV‐B‐specific interaction of COP1 and UVR8 in the nucleus is a very early step in signalling and responsible for the plant's coordinated response to UV‐B ensuring UV‐B acclimation and protection in the natural environment.  相似文献   

2.
3.
4.
  • We studied the resistance of Parmotrema austrosinense to UV‐B stress. We focused on the effects of a high dose UV‐B radiation on the content of chlorophylls, carotenoids and UV‐B screening compounds.
  • Photosynthetic parameters were measured by chlorophyll fluorescence (potential and effective quantum yields, photochemical and non‐photochemical quenching) and evaluated in control and UV‐B‐treated lichens. Lichens from two different locations in Cordoba, Argentina, were selected: (i) high altitude and dry plots at (Los Gigantes) and (ii) lowland high salinity plots (Salinas Grandes).
  • UV‐B treatment led to a decrease in the content of photosynthetic pigments and UV‐B screens (absorbance decrease in 220–350 nm) in the samples from Salinas Grandes, while in Los Gigantes samples, an increase in UV‐B screen content was observed. Chlorophyll fluorescence parameters showed a UV‐B‐induced decline in FV/FM, ΦPSII and qP indicating limitation of primary photosynthetic processes in photosystem II (PSII) of symbiotic alga, more pronounced in Salinas Grandes samples. Protective mechanism of PSII were activated by the UV‐B treatment to a higher extent in samples from Salinas Grandes (NPQ 0.48) than in Los Gigantes samples (NPQ 0.26).
  • We concluded that site‐related characteristics, and in particular different UV‐B radiation regimen, had a strong effect on resistance of the photosynthetic apparatus of P. austrosinense to UV‐B radiation.
  相似文献   

5.
The green macroalga Ulva pertusa Kjellman produced UV‐B absorbing compounds with a prominent absorption maximum at 294 nm in response only to UV‐B, and the amounts induced were proportional to the UV‐B doses. Under a 12:12‐h light:dark regime, the production of UV‐absorbing compounds occurred only during the exposure periods with little turnover in the dark. There was significant reduction in growth in parallel with the production of UV‐B absorbing compounds. The polychromatic action spectrum for the induction of UV‐B absorbing compounds in U. pertusa exhibits a major peak at 292 nm with a smaller peak at 311.5 nm. No significant induction was detected above 354.5 nm, and radiation below 285 nm caused significant reduction in the levels of UV‐B absorbing compounds. After UV‐B irradiation at 1.0 W·m?2 for 9 h, the optimal photosynthetic quantum yield of the samples with UV‐B absorbing compounds slightly increased relative to the initial value, whereas that of thalli lacking the compounds declined to 30%–34% of the initial followed by subsequent recovery in dim light of up to 84%–85% of the initial value. There was a positive and significant relationship between the amount of UV‐B absorbing compounds with antioxidant activity as determined by the α,α‐diphenyl‐β‐picrylhydrazyl scavenging assay. In addition to mat‐forming characteristics and light‐driven photorepair, the existence and antioxidant capacity of UV‐B absorbing compounds may confer U. pertusa a greater selective advantage over other macroalgae, thereby enabling them to thrive in the presence of intense UV‐B radiation.  相似文献   

6.
Light plays an important role in plants’ growth and development throughout their life cycle. Plants alter their morphological features in response to light cues of varying intensity and quality. Dedicated photoreceptors help plants to perceive light signals of different wavelengths. Activated photoreceptors stimulate the downstream signaling cascades that lead to extensive gene expression changes responsible for physiological and developmental responses. Proteins such as ELONGATED HYPOCOTYL5 (HY5) and CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) act as important factors which modulate light‐regulated gene expression, especially during seedling development. These factors function as central regulatory intermediates not only in red, far‐red, and blue light pathways but also in the UV‐B signaling pathway. UV‐B radiation makes up only a minor fraction of sunlight, yet it imparts many positive and negative effects on plant growth. Studies on UV‐B perception, signaling, and response in plants has considerably surged in recent times. Plants have developed different strategies to use UV‐B as a developmental cue as well as to withstand high doses of UV‐B radiation. Plants’ responses to UV‐B are an integration of its cross‐talks with both environmental factors and phytohormones. This review outlines the current developments in light signaling with a major focus on UV‐B‐mediated plant growth regulation.  相似文献   

7.
8.
UV‐B is a high‐energy component of the solar radiation perceived by the plant and induces a number of modifications in plant growth and development, including changes in flowering time. However, the molecular mechanisms underlying these changes are largely unknown. In the present work, we demonstrate that Arabidopsis plants grown under white light supplemented with UV‐B show a delay in flowering time, and this developmental reprogramming is mediated by the UVR8 photoreceptor. Using a combination of gene expression analyses and UV‐B irradiation of different flowering mutants, we gained insight into the pathways involved in the observed flowering time delay in UV‐B‐exposed Arabidopsis plants. We provide evidence that UV‐B light downregulates the expression of MSI1 and CLF, two of the components of the polycomb repressive complex 2, which in consequence drives a decrease in H3K27me3 histone methylation of MIR156 and FLC genes. Modification in the expression of several flowering time genes as a consequence of the decrease in the polycomb repressive complex 2 activity was also determined. UV‐B exposure of flowering mutants supports the involvement of this complex in the observed delay in flowering time, mostly through the age pathway.  相似文献   

9.
UV RESISTANCE LOCUS8 (UVR8) is a photoreceptor for ultraviolet‐B (UV‐B) light that initiates photomorphogenic responses in plants. UV‐B photoreception causes rapid dissociation of dimeric UVR8 into monomers that interact with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) to initiate signal transduction. Experiments with purified UVR8 show that the dimer is maintained by salt‐bridge interactions between specific charged amino acids across the dimer interface. However, little is known about the importance of these charged amino acids in determining dimer/monomer status and UVR8 function in plants. Here we evaluate the use of different methods to examine dimer/monomer status of UVR8 and show that mutations of several salt‐bridge amino acids affect dimer/monomer status, interaction with COP1 and photoreceptor function of UVR8 in vivo. In particular, the salt‐bridges formed between arginine 286 and aspartates 96 and 107 are key to dimer formation. Mutation of arginine 286 to alanine impairs dimer formation, interaction with COP1 and function in vivo, whereas mutation to lysine gives a weakened dimer that is functional in vivo, indicating the importance of the positive charge of the arginine/lysine residue for dimer formation. Notably, a UVR8 mutant in which aspartates 96 and 107 are conservatively mutated to asparagine is strongly impaired in dimer formation but mediates UV‐B responses in vivo with a similar dose–response relationship to wild‐type. The UV‐B responsiveness of this mutant does not correlate with dimer formation and monomerisation, indicating that monomeric UVR8 has the potential for UV‐B photoreception, initiating signal transduction and responses in plants.  相似文献   

10.
Ultraviolet‐B (UV‐B) stress activates MAP kinases (MAPKs) MPK3 and MPK6 in Arabidopsis. MAPK activity must be tightly controlled in order to ensure an appropriate cellular outcome. MAPK phosphatases (MKPs) effectively control MAPKs by dephosphorylation of phosphothreonine and phosphotyrosine in their activation loops. Arabidopsis MKP1 is an important regulator of MPK3 and MPK6, and mkp1 knockout mutants are hypersensitive to UV‐B stress, which is associated with reduced inactivation of MPK3 and MPK6. Here, we demonstrate that MPK3 and MPK6 are hyperactivated in response to UV‐B in plants that are deficient in photorepair, suggesting that UV‐damaged DNA is a trigger of MAPK signaling. This is not due to a block in replication, as, in contrast to atr, the mkp1 mutant is not hypersensitive to the replication‐inhibiting drug hydroxyurea, hydroxyurea does not activate MPK3 and MPK6, and atr is not impaired in MPK3 and MPK6 activation in response to UV‐B. We further show that mkp1 leaves and roots are UV‐B hypersensitive, whereas atr is mainly affected at the root level. Tolerance to UV‐B stress has been previously associated with stem cell removal and CYCB1;1 accumulation. Although UV‐B‐induced stem cell death and CYCB1;1 expression are not altered in mkp1 roots, CYCB1;1 expression is reduced in mkp1 leaves. We conclude that the MKP1 and ATR pathways operate in parallel, with primary roles for ATR in roots and MKP1 in leaves.  相似文献   

11.
Plant UV-B responses are mediated by the photoreceptor UV RESISTANCE LOCUS 8(UVR8). In response to UV-B irradiation, UVR8 homodimers dissociate into monomers that bind to the E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC1(COP1). The interaction of the C27 domain in the C-terminal tail of UVR8 with the WD40 domain of COP1 is critical for UV-B signaling. However, the function of the last 17 amino acids(C17) of the C-terminus of UVR8, which are adjacent to C27, is unknown, although they are largely conserved in land plants. In this study, we established that Arabidopsis thaliana UVR8 C17 binds to full-length UVR8, but not to COP1, and reduces COP1 binding to the remaining portion of UVR8, including C27. We hypothesized that overexpression of C17 in a wild-type background would have a dominant negative effect on UVR8 activity;however, C17 overexpression caused strong silencing of endogenous UVR8, precluding a detailed analysis. We therefore generated YFP-UVR8~(N423) transgenic lines, in which C17 was deleted, to examine C17 function indirectly. YFP-UVR8~(N423) was more active than YFP-UVR8,suggesting that C17 inhibits UV-B signaling by attenuating binding between C27 and COP1. Our study reveals an inhibitory role for UVR8 C17 in fine-tuning UVR8–COP1 interactions during UV-B signaling.  相似文献   

12.
A previous study showed that the contents of caffeoylquinic acids and iridoids, the major bioactive components in the postharvest Lonicera japonica Thunb., were induced by enhanced ultraviolet (UV)‐A or UV‐B irradiation. To clarify the UV‐responsive key enzymes in the bioactive metabolites biosynthetic pathway and the related plant defense mechanism in L. japonica, 2DE in combination with MALDI‐TOF/TOF MS was employed. Seventy‐five out of 196 differential proteins were positively identified. Based on the functions, these proteins were grouped into nine categories, covering a wide range of molecular processes including the secondary metabolites (caffeoylquinic acids and iridoids) biosynthetic‐related proteins, photosynthesis, carbohydrate and energy metabolism, stress, DNA, transport‐related proteins, lipid metabolism, amino acid metabolism, cell wall. Of note is the increasing expression of 1‐deoxy‐d ‐xylulose 5‐phosphate reductoisomerase and 5‐enol‐pyruvylshikimate‐phosphate synthase, which was crucial to supply more precursor for the secondary metabolites including caffeoylquinic acids and iridoids. Thus, this study provides both the clues at the protein level for the increase of the two bioactive components upon UV irradiation and the profile of UV‐responsive proteins in L. japonica.  相似文献   

13.
  • Supplemental (s)‐UV‐B radiation has adverse effects on the majority of plants. The present study was conducted to evaluate the effects of exogenous application of the growth hormone indole acetic acid (IAA) on various morphological, physiological and biochemical characteristics of Withania somnifera, an indigenous medicinal plant, subjected to s‐UV‐B.
  • The s‐UV‐B‐treated plants received ambient + 3.6 kJm?2·day?1 biologically effective UV‐B, and IAA was applied at two doses (200 and 400 ppm) to s‐UV‐B‐exposed plants.
  • The plant was forced to compromise its growth, development and photosynthetic patterns to survive under s‐UV‐B by increasing concentrations of secondary metabolites and antioxidants (thiol, proline, ascorbic acid, α‐tocopherol, ascorbate peroxidase, catalase, glutathione reductase, peroxidase, polyphenol oxidase, superoxide dismutase) to counteract oxidative stress. Increases in secondary metabolites were evidenced as increased activity of phenylpropanoid pathway enzymes: phenylalanine ammonia lyase, cinnamyl alcohol dehydrogenase, 4‐coumarate CoA ligase, chalcone isomerase and dihydroflavonol reductase. Application of different IAA doses reversed the detrimental effects of s‐UV‐B on W. somnifera by improving growth and photosynthesis and reducing concentrations of secondary metabolites and non‐enzymatic antioxidants. Antioxidant enzymes, however, had a synergistic effect on s‐UV‐B treatment and IAA application.
  • The effects of s‐UV‐B on W. somnifera are ameliorated to varying degrees upon exogenous IAA application, and synergistic enhancement of antioxidant enzymes under s‐UV‐B+IAA treatment might be responsible for the partial recuperation of growth and plant protein content, as a UV‐B‐exposed plant is forced to allocate most of its photosynthate towards production of enzymes related to antioxidant defence.
  相似文献   

14.
Solar UV‐B radiation has been reported to enhance plant defenses against herbivore insects in many species. However, the mechanism and traits involved in the UV‐B mediated increment of plant resistance are unknown in crops species, such as soybean. Here, we studied defense‐related responses in undamaged and Anticarsia gemmatalis larvae‐damaged leaves of two soybean cultivars grown under attenuated or full solar UV‐B radiation. We determined changes in jasmonates, ethylene (ET), salicylic acid, trypsin protease inhibitor activity, flavonoids, and mRNA expression of genes related with defenses. ET emission induced by Anticarsia gemmatalis damage was synergistically increased in plants grown under solar UV‐B radiation and was positively correlated with malonyl genistin concentration, trypsin proteinase inhibitor activity and expression of IFS2, and the pathogenesis protein PR2, while was negatively correlated with leaf consumption. The precursor of ET, aminocyclopropane‐carboxylic acid, applied exogenously to soybean was sufficient to strongly induce leaf isoflavonoids. Our results showed that in field‐grown soybean isoflavonoids were regulated by both herbivory and solar UV‐B inducible ET, whereas flavonols were regulated by solar UV‐B radiation only and not by herbivory or ET. Our study suggests that, although ET can modulate UV‐B‐mediated priming of inducible plant defenses, some plant defenses, such as isoflavonoids, are regulated by ET alone.  相似文献   

15.
16.
17.
Plants face various abiotic and biotic environmental factors and therefore need to adjust their phenotypic traits on several levels. UV‐B radiation is believed to impact herbivorous insects via host plant changes. Plant responses to abiotic challenges (UV‐B radiation) and their interaction with two aphid species were explored in a multifactor approach. Broccoli plants [Brassica oleracea L. convar. botrytis (L.), Brassicaceae] were grown in two differently covered greenhouses, transmitting either 80% (high UV‐B) or 4% (low UV‐B) of ambient UV‐B. Three‐week‐old plants were infested with either specialist cabbage aphids [Brevicoryne brassicae (L.), Sternorrhyncha, Aphididae] or generalist green peach aphids [Myzus persicae (Sulzer), Sternorrhyncha, Aphididae]. Plants grown under high‐UV‐B intensities were smaller and had higher flavonoid concentrations. Furthermore, these plants had reduced cuticular wax coverage, whereas amino acid concentrations of the phloem sap were little influenced by different UV‐B intensities. Cabbage aphids reproduced less on plants grown under high UV‐B than on plants grown under low UV‐B, whereas reproduction of green peach aphids in both plant light sources was equally poor. These results are likely related to the different specialisation‐dependent sensitivities of the two species. The aphids also affected plant chemistry. High numbers of cabbage aphid progeny on low‐UV‐B plants led to decreased indolyl glucosinolate concentrations. The induced change in these glucosinolates may depend on an infestation threshold. UV‐B radiation considerably impacts plant traits and subsequently affects specialist phloem‐feeding aphids, whereas aphid growth forces broccoli to generate specific defence responses.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号