首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phytoextraction, the use of plants to extract heavy metals from contaminated soils, could be an interesting alternative to conventional remediation technologies. However, calcareous soils with relatively high total metal contents are difficult to phytoremediate due to low soluble metal concentrations. Soil amendments such as ethylene diaminetetraacetate (EDTA) have been suggested to increase heavy metal bioavailability and uptake in aboveground plant parts. Strong persistence of EDTA and risks of leaching of potentially toxic metals and essential nutrients have led to research on easily biodegradable soil amendments such as citric acid. In our research, EDTA is regarded as a scientific benchmark with which degradable alternatives are compared for enhanced phytoextraction purposes. The effects of increasing doses of EDTA (0.1,1,10 mmol kg(-1) dry soil) and citric acid (0.01, 0.05, 0.25, 0.442, 0.5 mol kg(-1) dry soil) on bioavailable fractions of Cu, Zn, Cd, and Pb were assessed in one part of our study and results are presented in this article. The evolution of labile soil fractions of heavy metals over time was evaluated using water paste saturation extraction (approximately soluble fraction), extraction with 1 M NH4OAc at pH 7 (approximately exchangeable fraction), and extraction with 0.5 M NH4OAc + 05 M HOAc + 0.02 M EDTA at pH 4.65 (approximately potentially bioavailable fraction). Both citric acid and EDTA produced a rapid initial increase in labile heavy metal fractions. Metal mobilization remained constant in time for soils treated with EDTA, but a strong exponential decrease of labile metal fractions was noted for soils treated with citric acid. The half life of heavy metal mobilization by citric acid varied between 1.5 and 5.7 d. In the following article, the effect of heavy metal mobilization on uptake by Helianthus annuus will be presented.  相似文献   

2.
Soil pH Effects on Uptake of Cd and Zn by Thlaspi caerulescens   总被引:6,自引:0,他引:6  
For phytoextraction to be successful and viable in environmental remediation, strategies that can optimize plant uptake must be identified. Thlaspi caerulescens is an important hyperaccumulator of Cd and Zn, whether adjusting soil pH is an efficient way to enhance metal uptake by T. caerulescens must by clarified. This study used two soils differing in levels of Cd and Zn, which were adjusted to six different pH levels. Thlaspi caerulescens tissue metal concentrations and 0.1 M Sr(NO3)2 extractable soil metal concentrations were measured. The soluble metal form of both Cd and Zn was greatly increased with decreasing pH. Lowering pH significantly influenced plant metal uptake. For the high metal soil, highest plant biomass was at the lowest soil pH (4.74). The highest shoot metal concentration was at the second lowest pH (5.27). For low metal soil, due to low pH induced Al and Mn toxicity, both plant growth and metal uptake was greatest at intermediate pH levels. The extraordinary Cd phytoextraction ability of T. caerulescens was further demonstrated in this experiment. In the optimum pH treatments, Thlaspi caerulescens extracted 40% and 36% of total Cd in the low and high metal soils, respectively, with just one planting. Overall, decreasing pH is an effective strategy to enhance phytoextraction. But different soils had various responses to acidification treatment and a different optimum pH may exist. This pH should be identified to avoid unnecessarily extreme acidification of soils.  相似文献   

3.
Short rotation coppice (SRC) such as Salix spp. can be grown as an energy crop and offers some potential for economic and practical phytoextraction of marginally contaminated arable soil. This study tested various soil amendments intended to increase soil metal availability to Salix, investigated the distribution of metal between different tree fractions and assessed the viability of phytoextraction using SRC on arable soils. Several Salix genotypes were grown in field trials over 4 years. Cd and Zn concentrations were generally ranked in the order leaves > bark > wood. Metal concentrations in wood increased towards the top of the willow stems, whereas concentrations in leaves showed the opposite trend. None of the amendments significantly increased uptake of Zn by willow. However, in response to a range of soil HCl treatments, mean Cd concentrations in stems and leaves were 112% and 130% of control values. Data from the current experiment, and previous studies, were combined to develop a predictive model of Cd and Zn stem uptake by Salix. The minimum biological concentration factor (BCF) required to achieve a prescribed soil metal target was also calculated based on typical proportions of bioavailable Cd in sludge-amended soils for a 25-year Salix rotation. The best Salix genotypes investigated achieved less than 20% of the uptake rate required to remove one third of the soil Cd content (equivalent to the average isotopically exchangeable Cd fraction in soils at the study site).  相似文献   

4.
A growth chamber pot experiment and a field plot experiment were conducted with the installation of rhizobags to study the effects of repeated phytoextraction by Sedum plumbizincicola on the bioavailability of Cd and Zn in the rhizosphere and bulk soil Repeated phytoextraction gave significantly lower Cd and Zn concentrations in both rhizosphere and bulk soil solutions compared with soil without repeated phytoextraction. The depletion rates of NH40Ac-extractable Zn in rhizosphere soil in each treatment (L-PS, L-NPS, H-PS, and H-NPS) were 59.7, 18.0, 16.3, and 18.6%, respectively. For NH40Ac-extractable Cd, the depletion rates in treatments L-PS, L-NPS, H-PS, and H-NPS were 6.67, 29.4, 40.3, and 41.4%, respectively. Plant shoot biomass decreased in the order H-PS > H-NPS > L-PS > L-NPS, with dry weights of 0.56, 0.42, 1.43, and 1.21 g pot(-1), respectively. Plant Cd uptake increased with increasing aqua-regia extractable metal concentrations. The NH4OAc extraction procedure was satisfactory to predict the bioavailability of Cd and Zn in rhizosphere soil in terms of shoot uptake by S. plumbizincicola with positive correlation coefficients of 0.545 (p < 0.05) and 0.452 (p < 0.05), respectively. The field study results show a slight decrease in water soluble and NH4OAc-extractable metals, a trend similar to that found in the pot experiment.  相似文献   

5.

Aims

The aim of this study was to compare the residual effects in soil and the influence on a flax crop (Linum usitatissimum L.) of applying Zn from different commercial synthetic chelates. The chelates used were: Zn-EDDHSA (Zn-ethylenediamine-N,N'-bis(2-hydroxyphenylacetate), Zn-EDTA (Zn-ethylenediaminetetraacetate), Zn-HEDTA (Zn-N-2-hydroxyethyl-ethylenediaminetriacetate), Zn-EDTA-HEDTA and Zn-DTPA-HEDTA-EDTA (Zn-DTPA, Zn-diethylenetriaminepentaacetate).

Methods

The experiment was conducted in a greenhouse using two different soils (Soilacid: a weakly acidic soil and Soilcalc: a calcareous soil). Each treatment was administered, in a single application, to a previous flax crop at different Zn application rates. The yield and some of the flax crop quality parameters were determined in the present flax crop. Soil Zn behavior was then evaluated by single and sequential extraction.

Results

In Soilacid, the Zn-HEDTA and Zn-EDDHSA fertilizers produced the highest plant parameters values (total Zn concentration, total uptake Zn), percentages of Zn utilization and values of the transfer factor, TF. In contrast, in Soilcalc these fertilizers produced the lowest in-plant values, with this soil producing the highest yield, quality, percentage of utilization and TF associated with the application of Zn-DTPA-HEDTA-EDTA and Zn-EDTA fertilizers. However, the Zn-EDTA in Soilacid and Zn-DTPA-HEDTA-EDTA in Soilcalc, were associated with the greatest amounts of bioavailable Zn in soil and also with the highest Zn concentrations associated with the sum of the most labile fractions (water soluble plus exchangeable fractions).

Conclusions

The residual Zn produced by the different fertilizer treatments estimated using the DTPA, Mehlich-3- and LMWOAs methods- was available in sufficient quantities that it not be necessary to add any further Zn (which could have resulted in over-fertilization) for the subsequent crop to either of the soils.  相似文献   

6.
Abstract

In a greenhouse experiment, plant growth and copper (Cu) and zinc (Zn) uptake by four Salix cultivars grown in Cu and Zn contaminated soils collected from a mining area in Finland were tested to assess their suitability for phytoextraction. The cultivars displayed tolerance to heavily contaminated soils throughout the experiment. After uptake, total mean Cu concentrations in the leaves, shoots and roots in all cultivars and treatments ranged from 163 to 474?mg kg?1 and mean Zn concentrations ranged from 776 to 1823?mg kg?1. Lime and wood ash addition increased dry biomass growth (25–43%), chlorophyll fluorescence (Fv/Fm) values (3–6%), the translocation factor (TF) (15–60% for Cu; 10–25% for Zn), the bio-concentration factor (BCF) (40–85% for Cu; 70–120% for Zn), and metal uptake (55–70% for Cu; 50–65% for Zn) compared to unamended treatment across all cultivars. The results revealed that Salix cultivars have the potential to take up and accumulate significant amounts of Cu and Zn. Cultivar Klara (Salix viminalis × S. schwerinii × S. dasyclados) was found to be the most effective cultivar for phytoextraction since it displayed greater dry biomass production, Fv/Fm, TF, BCF values and uptake percentage rates of Cu and Zn compared to the other three cultivars. This study indicates that further research is needed to clarify the wider phytoextraction capabilities of different Salix cultivars.  相似文献   

7.
Phytoextraction is a green technique for the removal of soil contaminants by plants uptake with the subsequent elimination of the generated biomass. The halophytic plant Suaeda vera Forssk. ex J.F.Gmel. is an native Mediterranean species able to tolerate and accumulate salts and heavy metals in their tissues. The objective of this study was to explore the potential use of S. vera for soil metal phytoextraction and to assess the impact of different chelating agents such as natural organic acids (oxalic acid [OA], citric acid [CA]), amino acids (AA) and Pseudomonas fluorescens bacteria (PFB) on the metal uptake and translocation. After 12 months, the highest accumulation of Cu was observed in the root/stem of PFB plots (17.62/8.19 mg/kg), in the root/stem of CA plots for Zn (31.16/23.52 mg/kg) and in the root of OA plots for Cr (10.53 mg/kg). The highest accumulation of metals occurred in the roots (27.33–50.76 mg/kg). Zn was the metal that accumulated at the highest rates in most cases. The phytoextraction percentages were higher for Cu and Zn (~2%) with respect to Cr (~1%). The percentages of metal removal from soil indicate the need to monitor soil properties, to recognize the influence of each treatment and to increase the concentration of bioavailable metals by the use of agricultural management practices aimed at promoting plant growth.  相似文献   

8.
Phytoextraction is the removal of metals from contaminated soils into harvested plant tissues. The rate of phytoextraction is governed by both soil and plant characteristics. Most effort has focused on identifying appropriate plants for phytoextraction, but the benefits from this effort will be marginal unless the metals are in phytoavailable forms in the rhizosphere. The concentration of a metal in the rhizosphere can be estimated using solute transfer models that incorporate: the metal concentration in the bulk soil solution, the buffer power of the soil, diffusion coefficient for the metal, water movement, root size and morphology, and the rate of entry of metal into the roots. Here a solute transfer model is developed to predict the concentration of Zn in the rhizosphere solution ([Zn]ext) of Thlaspi caerulescens, a hyperaccumulator species that could be exploited for Zn phytoextraction. The model predicts that Zn accumulation by T. caerulescens is sub-optimal when the Zn concentration in the bulk soil solution is <27 M. Such a high [Zn]ext is rare in contaminated agricultural soils, but is possible in the metalliferous substrates where T. caerulescens is endemic. Sensitivity analyses indicate that Zn diffusion is more important than transpiration-driven mass flow for Zn delivery to the root, implying that management of soil physical and hydrological properties will improve phytoextraction. Sensitivity analyses also imply that strategies to enhance the Zn absorption power of the root will not necessarily be successful for enhancing phytoextraction per se. Thus, research into enhancing Zn availability and mobility in soil will be as important as understanding and manipulating Zn uptake by plants. In general, such models can be used to identify constraints to efficient phytoextraction (whether plant or soil) and to determine whether commercial phytoextraction is feasible.  相似文献   

9.
Rates of N uptake by spring wheat as ammonium and as nitrate, and rates of nitrification, gross N immobilization and gross N mineralization were measured in a pot experiment during 84 days of growth in a clay soil. Soil treatments included an unfertilized control and addition of 15NH4NO3 or NH4 15NO3 in the absence and presence of N-serve 24E. Incorporation of ammonium into the soil organic N pool was considerably higher in the presence compared to the absence of nitrapyrin, but the processes contributing to this effect could not be positively identified. Both dry matter and grain yield as well as N uptake by wheat were enhanced in the presence of the inhibitor in N fertilized soil, despite the increased immobilization of N. On the other hand, inhibitor application had a detrimental effect on yield and N uptake by wheat in unfertilized soil. Both ammonium and nitrate forms of inorganic N were absorbed by wheat, but nitrate uptake was dominant in the absence of the inhibitor. The uptake of N as ammonium was higher and the uptake of N as nitrate was less, both in absolute and proportional terms, in the presence compared to the absence of inhibitor. In addition, the proportion of N taken up as ammonium was higher than the proportion of N as ammonium in the available N pool up to day 56 in the inhibitor treatment, which indicated a preference for ammonium uptake by wheat. Evidence was obtained which suggested that several factors may have contributed to the positive response of wheat to inhibitor application in N fertilized soil, including reduced N losses, higher gross N mineralization and a physiological response due to the proportional increase in uptake of inorganic N as ammonium.  相似文献   

10.
Co-planting crops normally decreases the main crop yield due to the reduced soil surface area occupied by the main crop. However, in our previous experiments, co-planting Sedum alfredii, a shade-requiring, Cd and Zn-hyperaccumulating plant, with corn increased the biomass and metal phytoextraction of S. alfredii. This experiment was conducted to verify if co-planting another hyperaccumulator, Thlaspi caerulescens, with ryegrass (Lolium perenne) in a pot-trial could obtain a similar result. The soil was separated by two permeable nets with a 2 mm interface soil layer to obtain a shared rhizosphere zone. Soluble metal concentrations in the soil in different rooting zones were measured using 0.01 mol L?1 CaCl2 extraction. The results showed that the growth of T. caerulescens was significantly promoted by co-planting, with a growth increase of about 2-fold compared with monoculture growth. The total uptake of Cd and Zn by T. caerulescens was not decreased by co-planting, and resulted in similar phytoextraction rates for Cd (about 26.6% of the soil total Cd) and Zn (about 2.4% of the soil total Zn) when compared with monoculture, though the T. caerulescens population was decreased by 50% because of co-planting. Analysis of soil samples showed that T. caerulescens substantially reduced the concentrations of 0.01 mol L?1 CaCl2 extractable Cd and Zn throughout the soil, even in the interface area and the ryegrass rooting area. The ryegrass roots did not mobilize more metals for the co-planted T. caerulescens. Based on these results, existing grass on contaminated land could be partly left while planting metal hyperaccumulators for phytoremediation in order to reduce runoff from the contaminated soil. However a field scale trial would be required for these results to be verified.  相似文献   

11.

Aims

The thiosulphate induced accumulation of mercury by the three plants Brassica juncea var.LDZY, Brassica juncea var.ASKYC and Brassica napus var. ZYYC and the transformation of mercury fractionation in the rhizosphere of each plant was investigated in the field.

Methods

Experimental farmland was divided into control and thiosulphate plots. Each plot was divided into three subplots with each planted with one of the plants. After harvesting, the mercury concentration in plants, mercury fractionation in rhizosphere soil before and after phytoextraction, and the vertical distribution of bioavailable mercury in bulk soil profiles was analyzed.

Results

The cultivar B. juncea var.LDZY accumulated a higher amount of mercury in shoots than the other two plants. Thiosulphate treatment promoted an increase in the concentration of metal in plants and a transformation of Fe/Mn oxide-bound and organic-bound mercury (potential bioavailable fractions) into soluble and exchangeable and specifically-sorbed fractions in the rhizosphere. The observed increase in bioavailable rhizosphere mercury concentration was restricted to the root zone; mercury did not move down the soil profile as a function of thiosulphate application to soil.

Conclusions

Thiosulphate-induced phytoextraction has the potential to manage environmental risk of mercury in soil by decreasing the concentration of mercury associated with potential bioavailable fraction that can be accumulated by crop plants.  相似文献   

12.
A pot experiment was conducted to investigate the uptake of Zn from experimentally contaminated calcareous soil of low nutrient status by maize inoculated with the arbuscular mycorrhizal (AM) fungus Glomus caledonium. EDTA was applied to the soil to mobilize Zn and thus maximize plant Zn uptake. The highest plant dry matter (DM) yields were obtained with a moderate Zn addition level of 300 mg kg?1. Plant growth was enhanced by mycorrhizal colonization when no Zn was added and under the highest Zn addition level of 600 mg kg?1, while application of EDTA to the soil generally inhibited plant growth. EDTA application also increased plant Zn concentration, and Zn accumulation in the roots increased with increasing EDTA addition level. The effects of inoculation with Gcaledonium on plant Zn uptake varied with Zn addition level. When no Zn was added, Zn translocation from roots to shoots was enhanced by mycorrhizal colonization. In contrast, when Zn was added to the soil, mycorrhizal colonization resulted in lower shoot Zn concentrations in mycorrhizal plants. The P nutrition of the maize was greatly affected by AM inoculation, with mycorrhizal plants showing higher P concentrations and P uptake. The results indicate that application of EDTA mobilized soil Zn, leading to increased Zn accumulation by the roots and subsequent plant toxicity and growth inhibition. Mycorrhizal colonization alleviated both Zn deficiency and Zn contamination, and also increased host plant growth by influencing mineral nutrition. However, neither EDTA application nor arbuscular mycorrhiza stimulated Zn translocation from roots to shoots or metal phytoextraction under the experimental conditions. The results are discussed in relation to the environmental risk associated with chelate-enhanced phytoextraction and the potential role of arbuscular mycorrhiza in soil remediation.  相似文献   

13.
Summary In a pot experiment the soil volume available for ryegrass growth was varied. There was relatively greater uptake of phosphorus from the smaller amounts of soil and an increase in the pool of labile phosphorus (the L-value). It appears that an equilibrium exists in the soil between non-labile and labile phosphorus, and this equilibrium may be disturbed by the removal of phosphorus by plants.The variations of L-value with time followed a pattern indicating the initial influence of seed-borne phosphorus and slow isotopic exchange of the added carrier-free P32 with soil phosphorus.  相似文献   

14.
Products of the reaction between dialdehyde starch and Y-NH2 compounds (e.g. semicarbazide or hydrazine) are effective ligands for metal ions. The usefulness of these derivatives was tested in the experiment, both in terms of the immobilization of heavy metal ions in soil and the potential application in phytoextraction processes. The experimental model comprised maize and the ions of such metals as: Zn(II), Pb(II), Cu(II), Cd(II), and Ni(II). The amount of maize yield, as well as heavy metal content and uptake by the aboveground parts and roots of maize, were studied during a three-year pot experiment. The results of the study indicate the significant impact of heavy metals on reduced yield and increased heavy metal content in maize. Soil-applied dialdehyde starch derivatives resulted in lower yields, particularly disemicarbazone (DASS), but in heavy metal-contaminated soils they largely limited the negative impact of these metals both on yielding and heavy metal content in plants, particularly dihydrazone (DASH). It was demonstrated that the application of dihydrazone (DASH) to a soil polluted with heavy metals boosted the uptake of Zn, Pb, Cu, and Cd from the soil, hence there is a possibility to use this compound in the phytoextraction of these metals from the soil. Decreased Ni uptake was also determined, hence the possibility of using this compound in the immobilization of this metal. The study showed that dialdehyde starch disemicarbazone was ineffective in the discussed processes.  相似文献   

15.

Aims

Phytoextration of metal polluted soils using hyperaccumulators is a promising technology but requires long term successive cropping. This study investigated the dynamics of plant metal uptake and changes in soil metals over a long remediation time.

Methods

A soil slightly polluted with metals (S1) was mixed with highly polluted soil (S4) to give two intermediate pollution levels (S2, S3). The four resulting soils were repeatedly phyto-extracted using nine successive crops of Cd/Zn-hyperaccumulator Sedum plumbizincicola over a period of 4 years.

Results

Shoot Cd concentration decreased with harvest time in all soils but shoot Zn declined in S1 only. Similar shoot Zn concentrations were found in S2, S3 and S4 although these soils differed markedly in metal availability, and their available metals decreased during phytoextraction. A possible explanation is that plant active acquisition ability served to maintain plant metal uptake. Plant uptake resulted in the largest decrease in the acid-soluble metal fraction followed by reducible metals. Oxidisable and residual fractions were less available to plants. The coarse soil particle fractions made the major contribution to metal decline overall than the fine fractions.

Conclusion

Sedum plumbizincicola maintained long term metal uptake and the coarse soil particles played the most important role in phytoextraction.  相似文献   

16.

Aims

Phytomanagement of metal-polluted soils requires information on plant responses to metal availability in soil, but the predictability of metal accumulation in plant shoots and/or roots may be limited by metal toxicity and inherent shortfalls of the bioavailability assays.

Methods

We measured the uptake of Cd and Zn in a Salix smithiana clone grown in a pot experiment on soils with different characteristics and metal availabilities, determined by conventional soil single extractions (0.05 M Na2-EDTA and 1 M NH4NO3), soil solution obtained by centrifugation, and diffusive gradients in thin films (DGT). The Cd and Zn phytoavailability after a 2-year phytoextraction by willow was assessed by metal accumulation in the straw of the following barley culture.

Results

The phytoextraction efficiency was largest on a moderately polluted acid soil. Biomass and shoot Zn concentrations of S. smithiana were better predicted by DGT-measured Zn concentrations in soil solution (C DGT) than by Zn concentrations in the soil solution and extractable soil fractions. The weaker correlation for Cd in shoots may be related to relative Cd enrichment in the plant tissues. The metal accumulation in barley straw was unaffected or increased after a 2-year phytoextraction.

Conclusions

The shoot Zn and Cd removal of the tested Salix clone can be predicted by C DGT concentrations and is highest on either calcareous or moderately polluted acid soils. Single extraction with NH4NO3 and the C DGT value of Cd were not able to predict shoot Cd removal on the tested soils. Only shoot removal of Zn was predicted fairly well by the C DGT value.  相似文献   

17.
Temperate grasslands contribute about 20% to the global terrestrial carbon (C) budget with sugars contributing 10–50% to this soil C pool. Whether the observed increase of the atmospheric CO2 concentration (pCO2) leads to additional C sequestration into these ecosystems or enhanced mineralization of soil organic matter (SOM) is still unclear. Therefore, the aim of the presented study was to investigate the impact of elevated atmospheric pCO2 on C sequestration and turnover of plant‐ (arabinose and xylose) and microbially derived (fucose, rhamnose, galactose, mannose) sugars in soil, representing a labile SOM pool. The study was carried out at the Swiss Free Air Carbon Dioxide Enrichment (FACE) experiment near Zurich. For 7 years, Lolium perenne swards were exposed to ambient and elevated pCO2 (36 and 60 Pa, respectively). The additional CO2 in the FACE plots was depleted in 13C compared with ambient plots, so that ‘new’ (<7 years) C inputs could be determined by means of compound‐specific stable isotope analysis (13C : 12C). Samples were fractionated into clay, silt, fine sand and coarse sand, which yielded relatively stable and labile SOM pools with different turnover rates. Total sugar sequestration into bulk soil after 7 years of exposure to elevated pCO2 was about 28% compared with the control plots. In both ambient and elevated plots, total sugar concentrations in particle size fractions increased in the order sand2 for coarse sand, fine sand and silt (about 274%, 17% and 96%, respectively) but about 14% lower for clay compared with the control plots, corroborating that sugars belong to the labile SOM pool. The fraction of newly produced sugars gradually increased by up to 50% in bulk soil samples after 7 years under elevated pCO2. In the ambient plots, sugars were enriched in 13C by up to 10‰ when compared with bulk soil samples from the same plots. The enrichment of 13C in plant‐derived sugars was up to 13.4‰ when compared with parent plant material. After 7 years, the δ13C values of individual sugars decreased under elevated (13C‐depleted) CO2 in bulk soil and particle size fractions, varying between −13.7‰ and −37.8‰ under elevated pCO2. In coarse and fine sand, silt and clay fractions newly produced sugars made up 106%, 63%, 60% and 45%, respectively, of the total sugars present after 7 years. Mean residence time (MRT) of the sugars were calculated according to two models revealing a few decades, mean values increasing in the order coarse sand2 led to a net sequestration of about 30% of labile SOM (sugars) while no increase of total organic C was observed at the same plots. The additional labile SOM is gradually incorporated into more stable SOM pools such as silt and clay fractions in the medium term (<7 years). MRT of labile (sugar) SOM under elevated pCO2 is in the same order of magnitude when compared with studies under ambient pCO2 though no direct comparison of elevated and ambient plots was possible.  相似文献   

18.
Knowledge on physiological mechanisms and plant metabolism can be used to enhance metal uptake. The capacity to uptake metals of transgenic tobaccos overexpressing ferritin in plastids (P6) or in cytoplasm (C5) and a control tobacco (A) is assessed in three polluted soils from the same soil series, with a similar Cd content, but displaying pH from 5.8 to 7 (8b2, 8b3, S11). Differences in dry leave weight were not significant between the three tobaccos growing on each soil. Iron concentration in ferritin overexpression either in P6 or in C5 tobaccos increased only on the S11 soil, which had a soil pH 7, in comparison to A tobacco. In both 8b2 and 8b3 soils at pH lower than 7, the leaf Fe content was not different between the three tobaccos. Only the P6 tobacco growing in the S11 soil accumulated more Cd, Zn and Mn compared with the A and C5 tobaccos. This increase represents, compared to A tobacco, 88% for Fe, 120% for Mn, 30% for Cd, 80% for Zn. In soils with a pH higher than 7, the ferritin synthesis is over-expressed in the P6 tobacco cells inducing a iron deficiency. These metal accumulations were increased, owing to a rhizosphere modification. The A and P6 tobaccos uptake Cd in the same soil pool. The Cd totality in the 8b2 soil is labile and in the S11 soil, the labile Cd represents 86–88% of the total Cd.  相似文献   

19.
Three Cd and Zn hyperaccumulating plant species Noccaea caerulescens Noccaea praecox and Arabidopsis halleri (Brassicacceae) were cultivated in seven subsequent vegetation seasons in both pot and field conditions in soil highly contaminated with Cd, Pb, and Zn. The results confirmed the hyperaccumulation ability of both plant species, although A. halleri showed lower Cd uptake compared to N. caerulescens. Conversely, Pb phytoextraction was negligible for both species in this case. Because of the high variability in plant yield and element contents in the aboveground biomass of plants, great variation in Cd and Zn accumulation was observed during the experiment. The extraction ability in field conditions varied in the case of Cd from 0.2 to 2.9 kg ha?1 (N. caerulescens) and up to 0.15 kg ha?1 (A. halleri), and in the case of Zn from 0.2 to 6.4 kg ha?1 (N. caerulescens) and up to 13.8 kg.ha?1 (A. halleri). Taking into account the 20 cm root zone of the soil, the plants were able to extract up to 4.1% Cd and 0.2% Zn in one season. However, cropping measures should be optimized to improve and stabilize the long-term phytoextraction potential of these plants.  相似文献   

20.
In two long-term field experiments the zinc (Zn)/cadmium (Cd) hyperaccumulator Sedum plumbizincicola (S. plumbizincicola) was examined to optimize the phytoextraction of metal contaminated soil by two agronomic strategies of intercropping with maize (Zea mays) and plant densities. Soil total Zn and Cd concentrations decreased markedly after long-term phytoextraction. But shoot biomass and Cd and Zn concentrations showed no significant difference with increasing remediation time. In the intercropping experiment the phytoremediation efficiency in the treatment “S. plumbizincicola intercropped with maize” was higher than in S. plumbizincicola monocropping, and Cd concentrations of corn were below the maximum national limit. In the plant density experiment the phytoremediation efficiency increased with increasing plant density and 440,000 plants ha?1 gave the maximum rate. These results indicated that S. plumbizincicola at an appropriate planting density and intercropped with maize can achieve high remediation efficiency to contaminated soil without affecting the cereal crop productivity. This cropping system combines adequate agricultural production with soil heavy metal phytoextraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号