首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 564 毫秒
1.
Hyperuricemia is caused by hepatic overproduction of uric acid and/or underexcretion of urate from the kidneys and small intestine. Although increased intake of citrus fruits, a fructose-rich food, is associated with increased risk of gout in humans, hesperidin, a flavonoid naturally present in citrus fruits, reportedly reduces serum uric acid (SUA) levels by inhibiting xanthine oxidase (XOD) activity in rats. However, the effects of hesperidin on renal and intestinal urate excretion were previously unknown. In this study, we used glucosyl hesperidin (GH), which has greater bioavailability than hesperidin, to clarify comprehensive mechanisms underlying the hypouricemic effects of hesperidin in vivo. GH dose-dependently decreased SUA levels in mice with hyperuricemia induced by potassium oxonate and a fructose-rich diet, and inhibited XOD activity in the liver. GH decreased renal urate excretion without changes in kidney URAT1, ABCG2 or GLUT9 expressions, suggesting that reducing uric acid pool size by inhibiting XOD decreased renal urate excretion. We also found that GH had no effect on intestinal urate excretion or protein expression of ABCG2. Therefore, we concluded that GH exhibits a hypouricemic effect by inhibiting XOD activity in the liver without increasing renal or intestinal urate excretion. Of note, this is the first study to elucidate the effect of a flavonoid on intestinal urate excretion using a mice model, whose findings should prove useful in future food science research in the area of urate metabolism. Taking these findings together, GH may be useful for preventing hyperuricemia, especially in people with the overproduction type.  相似文献   

2.
The ATP-binding cassette, subfamily G, member 2 (ABCG2/BCRP) gene encodes a well-known transporter, which exports various substrates including nucleotide analogs such as 3′-azido-3′-deoxythymidine (AZT). ABCG2 is also located in a gout-susceptibility locus (MIM 138900) on chromosome 4q, and has recently been identified by genome-wide association studies to relate to serum uric acid (SUA) and gout. Becuase urate is structurally similar to nucleotide analogs, we hypothesized that ABCG2 might be a urate exporter. To demonstrate our hypothesis, transport assays were performed with membrane vesicles prepared from ABCG2-overexpressing cells. Transport of estrone-3-sulfate (ES), a typical substrate of ABCG2, is inhibited by urate as well as AZT and ES. ATP-dependent transport of urate was then detected in ABCG2-expressing vesicles but not in control vesicles. Kinetic analysis revealed that ABCG2 is a high-capacity urate transporter that maintained its function even under high-urate concentration. The calculated parameters of ABCG2-mediated transport of urate were a Km of 8.24 ± 1.44 mM and a Vmax of 6.96 ± 0.89 nmol/min per mg of protein. Moreover, the quantitative trait locus (QTL) analysis performed in 739 Japanese individuals revealed that a dysfunctional variant of ABCG2 increased SUA as the number of minor alleles of the variant increased (p = 6.60 × 10?5). Because ABCG2 is expressed on the apical membrane in several tissues, including kidney, intestine, and liver, these findings indicate that ABCG2, a high-capacity urate exporter, has a physiological role of urate homeostasis in the human body through both renal and extrarenal urate excretion.  相似文献   

3.
ATP-binding cassette transporter, sub-family G, member 2 (ABCG2/BCRP) is identified as a high-capacity urate exporter, and its dysfunction has an association with serum uric acid levels and gout/hyperuricemia risk. Generally, hyperuricemia has been classified into urate “overproduction type,” “underexcretion type,” and “combined type” based on only renal urate excretion, without considering an extra-renal pathway such as gut excretion. In this study, we investigated the effects of ABCG2 dysfunction on human urate handling and the mechanism of hyperuricemia.

Clinical parameters for urate handling including urinary urate excretion (UUE) were examined in 644 Japanese male outpatients with hyperuricemia. The severity of their ABCG2 dysfunction was estimated by genotype combination of two common ABCG2 variants, nonfunctional Q126X (rs72552713) and half-functional Q141K (rs2231142).

Contrary to the general understanding that ABCG2 dysfunction leads to decreased renal urate excretion, UUE was significantly increased by ABCG2 dysfunction (P = 3.60 × 10?10). Mild, moderate, and severe ABCG2 dysfunctions significantly raised the risk of “overproduction” hyperuricemia including overproduction type and combined type, conferring risk ratios of 1.36, 1.66, and 2.35, respectively.

The present results suggest that common dysfunctional variants of ABCG2 decrease extra-renal urate excretion including gut excretion and cause hyperuricemia. Thus, “overproduction type” in the current concept of hyperuricemia should be renamed “renal overload type,” which is caused by two different mechanisms, “extra-renal urate underexcretion” and genuine “urate overproduction.”

Our new concept will lead to a more accurate diagnosis and more effective therapeutic strategy for hyperuricemia and gout.  相似文献   

4.
The ATP-binding cassette, subfamily G, member 2 (ABCG2/BCRP) gene encodes a well-known transporter, which exports various substrates including nucleotide analogs such as 3'-azido-3'-deoxythymidine (AZT). ABCG2 is also located in a gout-susceptibility locus (MIM 138900) on chromosome 4q, and has recently been identified by genome-wide association studies to relate to serum uric acid (SUA) and gout. Becuase urate is structurally similar to nucleotide analogs, we hypothesized that ABCG2 might be a urate exporter. To demonstrate our hypothesis, transport assays were performed with membrane vesicles prepared from ABCG2-overexpressing cells. Transport of estrone-3-sulfate (ES), a typical substrate of ABCG2, is inhibited by urate as well as AZT and ES. ATP-dependent transport of urate was then detected in ABCG2-expressing vesicles but not in control vesicles. Kinetic analysis revealed that ABCG2 is a high-capacity urate transporter that maintained its function even under high-urate concentration. The calculated parameters of ABCG2-mediated transport of urate were a Km of 8.24 ± 1.44 mM and a Vmax of 6.96 ± 0.89 nmol/min per mg of protein. Moreover, the quantitative trait locus (QTL) analysis performed in 739 Japanese individuals revealed that a dysfunctional variant of ABCG2 increased SUA as the number of minor alleles of the variant increased (p = 6.60 × 10(-5)). Because ABCG2 is expressed on the apical membrane in several tissues, including kidney, intestine, and liver, these findings indicate that ABCG2, a high-capacity urate exporter, has a physiological role of urate homeostasis in the human body through both renal and extrarenal urate excretion.  相似文献   

5.
ABSTRACT

Uric acid (UA) is a potential risk factor of the progression of chronic kidney disease (CKD). Recently, we reported that intestinal UA excretion might be enhanced via upregulation of the ATP-binding cassette transporter G2 (Abcg2) in a 5/6 nephrectomy (Nx) rat model. In the present study, we examined the mRNA and protein expressions of UA transporters, URAT1, GLUT9/URATv1, ABCG2 and NPT4 in the kidney and ileum in the same rat model. Additionally, we investigated the Abcg2 mRNA expression of ileum in hyperuricemic rat model by orally administering oxonic acid. Male Wistar rats were randomly assigned to three groups consisting of Nx group, oxonic acid-treated (Ox) group and sham-operated control group, and sacrificed at 8 weeks. Creatinine and UA were measured and the mRNA expressions of UA transporters in the kidney and intestine were evaluated by a real time PCR. UA transporters in the kidney sections were also examined by immunohistochemistry. Serum creatinine elevated in the Nx group whereas serum UA increased in the Ox group. Both the mRNA expression and the immunohistochemistry of the UA transporters were decreased in the Nx group, suggesting a marginal role in UA elevation in decreased kidney function. In contrast, the mRNA expression of Abcg2 in the ileum significantly increased in the Ox group. These results suggest that the upregulation of Abcg2 mRNA in the ileum triggered by an elevation of serum UA may play a compensatory role in increasing intestinal UA excretion.  相似文献   

6.
The ATP binding cassette transporters ABCG5 and ABCG8 are indispensable for hepatobiliary cholesterol transport. In this study, we investigated the specificity of the heterodimer for cholesterol acceptors. Dog gallbladder epithelial cells were mono- or double-transfected with lentiviral mouse Abcg5 and Abcg8 vectors. Double-transfected cells showed increased efflux to different bile salt (BS) species, while mono-transfected cells did not show enhanced efflux. The efflux was initiated at micellar concentrations and addition of phosphatidylcholine increased efflux. Cholesterol secretion was highly BS dependent, whereas other cholesterol acceptors such as ApoAI, HDL or methyl-beta-cyclodextrin did not elicit Abcg5/g8 dependent cholesterol secretion.  相似文献   

7.
The ATP-binding cassette (ABC) half-transporters ABCG5 and ABCG8 heterodimerize into a functional complex that mediates the secretion of plant sterols and cholesterol by hepatocytes into bile and their apical efflux from enterocytes. We addressed the putative rate-controlling role of Abcg5/Abcg8 in hepatobiliary cholesterol excretion in mice during (maximal) stimulation of this process. Despite similar bile salt (BS) excretion rates, basal total sterol and phospholipid (PL) output rates were reduced by 82% and 35%, respectively, in chow-fed Abcg5(-/-) mice compared with wild-type mice. When mice were infused with the hydrophilic BS tauroursodeoxycholate, similar relative increases in bile flow, BS output, PL output, and total sterol output were observed in wild-type, Abcg5(+/-), and Abcg5(-/-) mice. Maximal cholesterol and PL output rates in Abcg5(-/-) mice were only 15% and 69%, respectively, of wild-type values. An infusion of increasing amounts of the hydrophobic BS taurodeoxycholate increased cholesterol excretion by 3.0- and 2.4-fold in wild-type and Abcg5(-/-) mice but rapidly induced cholestasis in Abcg5(-/-) mice. Treatment with the liver X receptor (LXR) agonist T0901317 increased the maximal sterol excretion capacity in wild-type mice (fourfold), concomitant with the induction of Abcg5/Abcg8 expression, but not in Abcg5(-/-) mice. In a separate study, mice were fed chow containing 1% (wt/wt) cholesterol. As expected, hepatic expression of Abcg5 and Abcg8 was strongly induced (fivefold and fourfold) in wild-type but not LXR-alpha-deficient (Lxra(-/-)) mice. Surprisingly, hepatobiliary cholesterol excretion was increased to the same extent, i.e., 2.2-fold in wild-type mice and 2.0-fold in Lxra(-/-) mice, upon cholesterol feeding. Our data confirm that Abcg5, as part of the Abcg5/Abcg8 heterodimer, strongly controls hepatobiliary cholesterol secretion in mice. However, our data demonstrate that Abcg5/Abcg8 heterodimer-independent, inducible routes exist that can significantly contribute to total hepatobiliary cholesterol output.  相似文献   

8.
9.
Recent genome-wide association studies showed that serum uric acid (SUA) levels relate to ABCG2/BCRP gene, which locates in a gout-susceptibility locus revealed by a genome-wide linkage study. Together with the ABCG2 characteristics, we hypothesized that ABCG2 transports urate and its dysfunction causes hyperuricemia and gout. Transport assays showed ATP-dependent transport of urate via ABCG2. Kinetic analysis revealed that ABCG2 mediates high-capacity transport of urate (Km: 8.24 ± 1.44 mM) even under high-urate conditions. Mutation analysis of ABCG2 in 90 Japanese hyperuricemia patients detected six nonsynonymous mutations, including five dysfunctional variants. Two relatively frequent dysfunctional variants, Q126X and Q141K, were then examined. Quantitative trait locus analysis of 739 Japanese individuals showed that Q141K increased SUA as the number of minor alleles of Q141K increased (p = 6.60 × 10?5). Haplotype frequency analysis revealed that there is no simultaneous presence of Q126X and Q141K in one haplotype. Becuase Q126X and Q141K are assigned to nonfunctional and half-functional haplotypes, respectively, their genotype combinations are divided into four functional groups. The association study with 161 male gout patients and 865 male controls showed that all of those with dysfunctional ABCG2 increased the gout risk, especially those with ≤1/4 function (OR, 25.8; 95% CI, 10.3–64.6; p = 3.39 × 10?21). These genotypes were found in 10.1% of gout patients, but in only 0.9% of control. Our function-based clinicogenetic (FBCG) analysis showed that combinations of the two dysfunctional variants are major causes of gout, thereby providing a new approach for prevention and treatment of the gout high-risk population.  相似文献   

10.
The individual roles of hepatic versus intestinal ABCG5 and ABCG8 in sterol transport have not yet been investigated. To determine the specific contribution of liver ABCG5/G8 to sterol transport and atherosclerosis, we generated transgenic mice that overexpress human ABCG5 and ABCG8 in the liver but not intestine (liver G5/G8-Tg) in three different genetic backgrounds: C57Bl/6, apoE-KO, and low density lipoprotein receptor (LDLr)-KO. Hepatic overexpression of ABCG5/G8 enhanced hepatobiliary secretion of cholesterol and plant sterols by 1.5-2-fold, increased the amount of intestinal cholesterol available for absorption and fecal excretion by up to 27%, and decreased the accumulation of plant sterols in plasma by approximately 25%. However, it did not alter fractional intestinal cholesterol absorption, fecal neutral sterol excretion, hepatic cholesterol concentrations, or hepatic cholesterol synthesis. Consequently, overexpression of ABCG5/G8 in only the liver had no effect on the plasma lipid profile, including cholesterol, HDL-C, and non-HDL-C, or on the development of proximal aortic atherosclerosis in C57Bl/6, apoE-KO, or LDLr-KO mice. Thus, liver ABCG5/G8 facilitate the secretion of liver sterols into bile and serve as an alternative mechanism, independent of intestinal ABCG5/G8, to protect against the accumulation of dietary plant sterols in plasma. However, in the absence of changes in fractional intestinal cholesterol absorption, increased secretion of sterols into bile induced by hepatic overexpression of ABCG5/G8 was not sufficient to alter hepatic cholesterol balance, enhance cholesterol removal from the body or to alter atherogenic risk in liver G5/G8-Tg mice. These findings demonstrate that overexpression of ABCG5/G8 in the liver profoundly alters hepatic but not intestinal sterol transport, identifying distinct roles for liver and intestinal ABCG5/G8 in modulating sterol metabolism.  相似文献   

11.
12.
The investigation of the human disease sitosterolemia (MIM 210250) has shed light not only on the pathways by which dietary sterols may traffic but also on how the mammalian body rids itself of cholesterol and defends against xenosterols. Two genes, ABCG5 and ABCG8, located at the sitosterolemia locus, each encodes a membrane-bound ABC half-transporter and constitutes a functional unit whose activity has now been shown to account for biliary and intestinal sterol excretion. Knockout mice deficient in Abcg5 or Abcg8 recapitulate many of the phenotypic features of sitosterolemia. During the course of our studies to characterize these knockout mice, we noted that these mice, raised on normal rodent chow, exhibited infertility as well as loss of abdominal fat. We show that, although sitosterolemia does not lead to any structural defects or to any overt endocrine defects, fertility could be restored if xenosterols are specifically blocked from entry and that the loss of fat is also reversed by a variety of maneuvers that limit xenosterol accumulation. These studies show that xenosterols may have a significant biological impact on normal mammalian physiology and that the Abcg5 or Abcg8 knockout mouse model may prove useful in investigating the role of xenosterols on mammalian physiology.  相似文献   

13.
Liver X receptor (LXR) is a nuclear receptor that plays a crucial role in orchestrating the trafficking of sterols between tissues. Treatment of mice with a potent and specific LXR agonist, T0901317, is associated with increased biliary cholesterol secretion, decreased fractional cholesterol absorption, and increased fecal neutral sterol excretion. Here we show that expression of two target genes of LXRalpha, the ATP-binding cassette (ABC) transporters Abcg5 and Abcg8, is required for both the increase in sterol excretion and the decrease in fractional cholesterol absorption associated with LXR agonist treatment. Mice expressing no ABCG5 and ABCG8 (G5G8(-/-) mice) and their littermate controls were treated for 7 days with T0901317. In wild type animals, treatment with the LXR agonist resulted in a 3-fold increase in biliary cholesterol concentrations, a 25% reduction in fractional cholesterol absorption, and a 4-fold elevation in fecal neutral sterol excretion. In contrast, the LXR agonist did not significantly affect biliary cholesterol levels, fractional cholesterol absorption, or neutral fecal sterol excretion in the G5G8(-/-) mice. Thus Abcg5 and Abcg8 are required for LXR agonist-associated changes in dietary and biliary sterol trafficking. These results establish a central role for ABCG5 and ABCG8 in promoting cholesterol excretion in vivo.  相似文献   

14.
The main player in biliary cholesterol secretion is the heterodimeric transporter complex, ABCG5/ABCG8, the function of which is necessary for the majority of sterols secreted into bile. It is not clear whether the primary step in this process is flopping of cholesterol from the inner to the outer leaflet of the canalicular membrane, with desorption by mixed micelles, or decreasing of the activation energy required for cholesterol desorption from the outer membrane leaflet. In this study, we investigated these mechanisms by infusing Abcg8(+/+), Abcg8(+/-), and Abcg8(-/-) mice with hydrophilic and hydrophobic bile salts. In Abcg8(-/-) mice, this failed to substantially stimulate biliary cholesterol secretion. Infusion of the hydrophobic bile salt taurodeoxycholate also resulted in cholestasis, which was induced in Abcg8(-/-) mice at a much lower infusion rate compared with Abc8(-/-) and Abcg8(+/-) mice, suggesting a reduced cholesterol content in the outer leaflet of the canalicular membrane. Indeed, isolation of canalicular membranes revealed a reduction of 45% in cholesterol content under these conditions in Abcg8(-/-) mice. Our data support the model that ABCG5/ABCG8 primarily play a role in flopping cholesterol (and sterols) from the inner leaflet to the outer leaflet of the canalicular membrane.  相似文献   

15.
Mutations in either ABCG5 or ABCG8 cause sitosterolemia, an inborn error of metabolism characterized by high plasma plant sterol concentrations. Recently, macrothrombocytopenia was described in a number of sitosterolemia patients, linking hematological dysfunction to disturbed sterol metabolism. Here, we demonstrate that macrothrombocytopenia is an intrinsic feature of murine sitosterolemia. Abcg5-deficient (Abcg5(-/-)) mice showed a 68% reduction in platelet count, and platelets were enlarged compared with wild-type controls. Macrothrombocytopenia was not due to decreased numbers of megakaryocytes or their progenitors, but defective megakaryocyte development with deterioration of the demarcation membrane system was evident. Lethally irradiated wild-type mice transplanted with bone marrow from Abcg5(-/-) mice displayed normal platelets, whereas Abcg5(-/-) mice transplanted with wild-type bone marrow still showed macrothrombocytopenia. Treatment with the sterol absorption inhibitor ezetimibe rapidly reversed macrothrombocytopenia in Abcg5(-/-) mice concomitant with a strong decrease in plasma plant sterols. Thus, accumulation of plant sterols is responsible for development of macrothrombocytopenia in sitosterolemia, and blocking intestinal plant sterol absorption provides an effective means of treatment.  相似文献   

16.
Gout is a common disease caused by hyperuricemia, which shows elevated serum uric acid (SUA) levels. From a viewpoint of urate handling in humans, gout patients can be divided into those with renal overload (ROL) gout with intestinal urate underexcretion, and those with renal underexcretion (RUE) gout. Recent genome-wide association studies (GWAS) revealed an association between SUA and a variant in human monocarboxylate transporter 9 (MCT9/SLC16A9) gene. Although the function of MCT9 remains unclear, urate is mostly excreted via intestine and kidney where MCT9 expression is observed. In this study, we investigated the relationship between a variant of MCT9 and gout in 545 patients and 1,115 healthy volunteers. A missense variant of MCT9 (K258T), rs2242206, significantly increased the risk of ROL gout (p = 0.012), with odds ratio (OR) of 1.28, although it revealed no significant association with all gout cases (p = 0.10), non-ROL gout cases (p = 0.83), and RUE gout cases (p = 0.34). In any case groups and the control group, minor allele frequencies of rs2242206 were >0.40. Therefore, rs2242206 is a common missense variant and is revealed to have an association with ROL gout, indicating that rs2242206 relates to decreased intestinal urate excretion rather than decreased renal urate excretion. Our study provides clues to better understand the pathophysiology of gout as well as the physiological roles of MCT9.  相似文献   

17.
In addition to triacylglycerols, adipocytes contain a large reserve of unesterified cholesterol. During adipocyte lipolysis and cell death seen during severe obesity and weight loss, free fatty acids and cholesterol become available for uptake and processing by adipose tissue macrophages (ATMs). We hypothesize that ATMs become cholesterol enriched and participate in cholesterol clearance from adipose tissue. We previously showed that ABCG1 is robustly upregulated in ATMs taken from obese mice and further enhanced by caloric restriction. Here, we found that ATMs taken from obese and calorie-restricted mice derived from transplantation of WT or Abcg1-deficient bone marrow are cholesterol enriched. ABCG1 levels regulate the ratio of classically activated (M1) to alternatively activated (M2) ATMs and their cellular cholesterol content. Using WT and Abcg1−/− cultured macrophages, we found that Abcg1 is most highly expressed by M2 macrophages and that ABCG1 deficiency is sufficient to retard macrophage chemotaxis. However, changes in myeloid expression of Abcg1 did not protect mice from obesity or impaired glucose homeostasis. Overall, ABCG1 modulates ATM cholesterol content in obesity and weight loss regimes leading to an alteration in M1 to M2 ratio that we suggest is due to the extent of macrophage egress from adipose tissue.  相似文献   

18.
Recent genome-wide association studies showed that serum uric acid (SUA) levels relate to ABCG2/BCRP gene, which locates in a gout-susceptibility locus revealed by a genome-wide linkage study. Together with the ABCG2 characteristics, we hypothesized that ABCG2 transports urate and its dysfunction causes hyperuricemia and gout. Transport assays showed ATP-dependent transport of urate via ABCG2. Kinetic analysis revealed that ABCG2 mediates high-capacity transport of urate (Km: 8.24 ± 1.44 mM) even under high-urate conditions. Mutation analysis of ABCG2 in 90 Japanese hyperuricemia patients detected six nonsynonymous mutations, including five dysfunctional variants. Two relatively frequent dysfunctional variants, Q126X and Q141K, were then examined. Quantitative trait locus analysis of 739 Japanese individuals showed that Q141K increased SUA as the number of minor alleles of Q141K increased (p = 6.60 × 10(-5)). Haplotype frequency analysis revealed that there is no simultaneous presence of Q126X and Q141K in one haplotype. Becuase Q126X and Q141K are assigned to nonfunctional and half-functional haplotypes, respectively, their genotype combinations are divided into four functional groups. The association study with 161 male gout patients and 865 male controls showed that all of those with dysfunctional ABCG2 increased the gout risk, especially those with ≤1/4 function (OR, 25.8; 95% CI, 10.3-64.6; p = 3.39 × 10(-21)). These genotypes were found in 10.1% of gout patients, but in only 0.9% of control. Our function-based clinicogenetic (FBCG) analysis showed that combinations of the two dysfunctional variants are major causes of gout, thereby providing a new approach for prevention and treatment of the gout high-risk population.  相似文献   

19.
20.
Dietary plant sterols (PS) reduce serum total and LDL-cholesterol in hyperlipidemic animal models and in humans. This hypocholesterolemic effect is generally ascribed to inhibition of cholesterol absorption. However, whether this effect fully explains the reported strong induction of neutral sterol excretion upon plant sterol feeding is not known. Recent data demonstrate that the intestine directly mediates plasma cholesterol excretion into feces, i.e., without involvement of the hepato-biliary route.

Objective

Aim of this study was to determine whether stimulation of fecal neutral sterol loss during PS feeding is (partly) explained by increased intestinal cholesterol excretion and to assess the role of the cholesterol transporter Abcg5/Abcg8 herein.

Methods and Results

Wild-type mice were fed a control diet or diets enriched with increasing amounts of PS (1%, 2%, 4% or 8%, wt/wt) for two weeks. In addition, Abcg5-/- mice were fed either control or 8% PS diet. PS feeding resulted in a dose-dependent decrease of fractional cholesterol absorption (∼2–7-fold reduction) in wild-type mice and ∼80% reduction in Abcg5-/- mice. Furthermore, PS feeding led to a strong, dose-independent induction of neutral sterol excretion (3.4-fold in wild-types and 2.7-fold in Abcg5-/- mice) without changes in biliary cholesterol secretion. It was calculated that PS feeding stimulated intestinal cholesterol excretion by ∼500% in wild-type mice and by ∼250% in Abcg5-/-.

Conclusions

Our data indicate that in mice the cholesterol-lowering effects of PS are to a large extent attributable to stimulation of intestinal, non-bile derived, cholesterol excretion. The Abcg5/Abcg8 heterodimer is involved in facilitating this PS-induced flux of cholesterol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号