首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
    
The extent to which both water source and atmospheric humidity affect δ2H values of terrestrial plant leaf waxes will affect the interpretations of δ2H variation of leaf waxes as a proxy for hydrological conditions. To elucidate the effects of these parameters, we conducted a long‐term experiment in which we grew two tree species, Populus fremontii and Betula occidentalis, hydroponically under combinations of six isotopically distinct waters and two different atmospheric humidities. We observed that leaf n‐alkane δ2H values of both species were linearly related to source water δ2H values, but with slope differences associated with differing humidities. When a modified version of the Craig–Gordon model incorporating plant factors was used to predict the δ2H values of leaf water, all modelled leaf water values fit the same linear relationship with n‐alkane δ2H values. These observations suggested a relatively constant biosynthetic fractionation factor between leaf water and n‐alkanes. However, our calculations indicated a small difference in the biosynthetic fractionation factor between the two species, consistent with small differences calculated for species in other studies. At present, it remains unclear if these apparent interspecies differences in biosynthetic fractionation reflect species‐specific biochemistry or a common biosynthetic fractionation factor with insufficient model parameterization.  相似文献   

3.
Stable sulphur isotopes in plants: a review   总被引:2,自引:0,他引:2  
The determination of the natural abundances of stable isotopes has become a useful method by which to study the transformations of elements in biological and ecological studies as well as to investigate the mechanisms of chemical reactions. Unlike carbon and nitrogen isotopes, however, stable sulphur isotopes are used infrequently, and their potential as tracers in biochemical and physiological studies are only beginning to be realized. This review provides an overview of research involving stable sulphur isotopes in studies of plant metabolism and pollution. Topics discussed include the mechanisms and accompanying isotopic fractionations involved during the uptake and assimilation of inorganic sulphur compounds by plants, the utility of plants as bioindicators of environmental sulphur pollution, and the emission of isotopically light H2S by plants in response to high concentations of sulphur. Future advances in the field are proposed.  相似文献   

4.
Ten soils collected from the major arable areas in Britain were used to assess the availability of soil sulphur (S) to spring wheat in a pot experiment. Soils were extracted with various reagents and the extractable inorganic SO4-S and total soluble S(SO4-S plus a fraction of organic S) were determined using ion chromatography (IC) or inductively-coupled plasma atomic emission spectrometry (ICP-AES), respectively. Water, 0.016 M KH2PO4, 0.01 M CaCl2 and 0.01 M Ca(H2PO4)2 extracted similar amounts of SO4-S, as measured by IC, which were consistently smaller than the total extractable S as measured by ICP-AES. The amounts of organic S extracted varied widely between different extractants, with 0.5 M NaHCO3 (pH 8.5) giving the largest amounts and 0.01 M CaCl2 the least. Organic S accounted for approximately 30–60% of total S extracted with 0.016 M KH2PO4 and the organic C:S ratios in this extract varied typically between 50 and 70. The concentrations of this S fraction decreased in all soils without added S after two months growth of spring wheat, indicating a release of organic S through mineralisation. All methods tested except 0.5 M NaHCO3-ICP-AES produced satisfactory results in the regression with plant dry matter response and S uptake in the pot experiment. In general, 0.016 M KH2PO4 appeared to be the best extractant and this extraction followed by ICP-AES determination was considered to be a good method to standardise on.  相似文献   

5.
    
Atmospheric carbon dioxide (CO2) and reactive nitrogen (N) concentrations have been increasing due to human activities and impact the global carbon (C) cycle by affecting plant photosynthesis and decomposition processes in soil. Large amounts of C are stored in plants and soils, but the mechanisms behind the stabilization of plant‐ and microbial‐derived organic matter (OM) in soils are still under debate and it is not clear how N deposition affects soil OM dynamics. Here, we studied the effects of 4 years of elevated (13C‐depleted) CO2 and N deposition in forest ecosystems established in open‐top chambers on composition and turnover of fatty acids (FAs) in plants and soils. FAs served as biomarkers for plant‐ and microbial‐derived OM in soil density fractions. We analyzed above‐ and belowground plant biomass of beech and spruce trees as well as soil density fractions for the total organic C and FA molecular and isotope (δ13C) composition. FAs did not accumulate relative to total organic C in fine mineral fractions, showing that FAs are not effectively stabilized by association with soil minerals. The δ13C values of FAs in plant biomass increased under high N deposition. However, the N effect was only apparent under elevated CO2 suggesting a N limitation of the system. In soil fractions, only isotope compositions of short‐chain FAs (C16+18) were affected. Fractions of ‘new’ (experimental‐derived) FAs were calculated using isotope depletion in elevated CO2 plots and decreased from free light to fine mineral fractions. ‘New’ FAs were higher in short‐chain compared to long‐chain FAs (C20?30), indicating a faster turnover of short‐chain compared to long‐chain FAs. Increased N deposition did not significantly affect the quantity of ‘new’ FAs in soil fractions, but showed a tendency of increased amounts of ‘old’ (pre‐experimental) C suggesting that decomposition of ‘old’ C is retarded by high N inputs.  相似文献   

6.
    
When soybean plants are pulsed with [35S]sulphate, label is subsequently redistributed from the roots to the leaves. This confounds studies to measure the redistribution of label from leaves. Accordingly, soybean plants ( Glycine max [L.] Merr. cv. Stephens) were grown in 20 μ M sulphate and a small portion of the root system (donor root) was pulsed with [35S]sulphate for 24 h. After removing the donor root, the plants were transferred into unlabelled solution, either without sulphate (S20→SO) or with 20 μ M sulphate (S20→20) (intact plants). Also at this time, the expanding leaf (L3) was excised from half of the plants in each treatment (excised plants). Immediately after the pulse, only ca 15% of the label occurred in the roots and ca 40% in the expanding leaf, L3, mostly in the soluble fraction. In intact S20→20 plants, 35S-label was exported from the soluble fraction of L3, mostly as sulphate, whilst L4 and L5 imported label. Similar responses occurred in S20→SO plants except that export of label from L3 was more rapid. Excision of L3 from S20→S20 plants inhibited labelling of leaves L4-L6 but not total sulphur, whereas in S20→SO plants, excision of L3 inhibited the import of both total sulphur and 35S-label in leaves L4, L5 and L6. The data suggest that the soluble fraction of almost fully expanded leaves is an important reserve of sulphur for redistribution to growing leaves. The 35S-label in the root system exhibited fluctuations consistent with its proposed role in the recycling of soluble sulphur from the leaves.  相似文献   

7.
Riley  N.G.  Zhao  F.J.  McGrath  S.P. 《Plant and Soil》2000,222(1-2):139-147
A pot experiment was conducted to compare the availability and efficiency of three sulphur (S) fertilisers to wheat in the first year and oilseed rape in the second year, using six agricultural soils. Four treatments were applied in the initial year: control (no S), two forms of elemental S (either micronised S° particles or a bentonite + S° mixture) and a sulphate fertiliser (ammonium sulphate). In the first year, the micronised S° was as effective as the sulphate fertiliser, both producing similar increases of wheat grain yield (on average 36%) and S uptake (on average 164%) over the control. In contrast, responses to the bentonite + S° form were minimal, indicating a limited S supply. In the second year the control treatment failed to produce seeds in most soils, whereas the micronised S° and sulphate treatments increased seed yields of oilseed rape to an average of 13.4 and 12.9 g pot-1, respectively. The performance of the bentonite + S° varied between soils: two soils produced yields similar to those of the other S fertilisers, while the remaining soils had low yields. To test whether the poor performance of the bentonite clay + S° fertiliser was due to the lack of exposure of the prills to physical weathering in the glasshouse, the effect of freeze-thaw action on the fertilisers performance was assessed in a separate pot experiment. The responses in wheat yield and S uptake showed that freeze-thaw did not enhance the physical disruption of the prills or fertiliser effectiveness. These results suggest that the release of available S from the bentonite + S° mixture was too slow to meet the requirement of wheat and oilseed rape. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Growth and iron oxidation by acidophilic moderate thermophiles   总被引:4,自引:0,他引:4  
Abstract Most of the moderately thermophilic, acidophilic iron-oxidizing bacteria which have been isolated required a source of reduced sulphur for growth on iron. One isolate (strain ALV) utilized sulphate as the sole source of sulphur. All of the isolates were capable of chemolitho-heterotrophin growth on iron in the presence of yeast extract. Autotrophic growth has been confirmed in all strains except one previously described, but now re-isolated, moderate thermophile (TH3).  相似文献   

9.
Aims: To investigate the production of volatile sulphur compounds (VSC) in the segments of the large intestine of pigs and to assess the impact of diet on this production. Methods and Results: Pigs were fed two diets based on either wheat and barley (STD) or wheat and dried distillers grains with solubles (DDGS). Net production of VSC and potential sulphate reduction rate (SRR) (sulphate saturated) along the large intestine were determined by means of in vitro incubations. The net production rate of hydrogen sulphide and potential SRR increased from caecum towards distal colon and were significantly higher in the STD group. Conversely, the net methanethiol production rate was significantly higher in the DDGS group, while no difference was observed for dimethyl sulphide. The number of sulphate‐reducing bacteria and total bacteria were determined by quantitative PCR and showed a significant increase along the large intestine, whereas no diet‐related differences were observed. Conclusion: VSC net production varies widely throughout the large intestine of pigs and the microbial processes involved in this production can be affected by diet. Significance and Impact of the Study: This first report on intestinal production of all VSC shows both spatial and dietary effects, which are relevant to both bowel disease‐ and odour mitigation research.  相似文献   

10.
    
The first few months of life is the most vulnerable period for fish and their optimal hatching time with zooplankton prey is favored by natural selection. Traditionally, however, prey abundance (i.e., zooplankton density) has been considered important, whereas prey nutritional composition has been largely neglected in natural settings. High‐quality zooplankton, rich in both essential amino acids (EAAs) and fatty acids (FAs), are required as starting prey to initiate development and fast juvenile growth. Prey quality is dependent on environmental conditions, and, for example, eutrophication and browning are two major factors defining primary producer community structures that will directly determine the nutritional quality of the basal food sources (algae, bacteria, terrestrial matter) for zooplankton. We experimentally tested how eutrophication and browning affect the growth and survival of juvenile rainbow trout (Oncorhynchus mykiss) by changing the quality of basal resources. We fed the fish on herbivorous zooplankton (Daphnia) grown with foods of different nutritional quality (algae, bacteria, terrestrial matter), and used GC‐MS, stable isotope labeling as well as bulk and compound‐specific stable isotope analyses for detecting the effects of different diets on the nutritional status of fish. The content of EAAs and omega‐3 (ω‐3) polyunsaturated FAs (PUFAs) in basal foods and zooplankton decreased in both eutrophication and browning treatments. The decrease in ω‐3 PUFA and especially docosahexaenoic acid (DHA) was reflected to fish juveniles, but they were able to compensate for low availability of EAAs in their food. Therefore, the reduced growth and survival of the juvenile fish was linked to the low availability of DHA. Fish showed very low ability to convert alpha‐linolenic acid (ALA) to DHA. We conclude that eutrophication and browning decrease the availability of the originally phytoplankton‐derived DHA for zooplankton and juvenile fish, suggesting bottom‐up regulation of food web quality.  相似文献   

11.
    
Organically bound species have been identified as prominent and mobile forms of nitrogen and phosphorus in soils. Since a large portion of sulphur (S) in soil is bonded to carbon (C) also dissolved organic S likely is a significant constituent in soil water. To investigate the role of dissolved organic forms in leaching and cycling of S in forest soils, we examined concentrations, fluxes, and chemical composition of organic S in forest floor leachates and in soil solutions of Rendzic Leptosols under 90-year-old European beech (Fagus sylvatica L.) and Haplic Arenosols under 160-year-old Scots pine (Pinus sylvestris L.) for 27 months. These soils are low in adsorbed SO42- and receive little atmospheric S depositions at present. The chemical composition of organic S was estimated by fractionation with XAD-8 and wet-chemical characterisation (HI reduction) of binding forms. Although not as prominent as the organic forms of other nutrient elements, organic S proved to be an important contributor to S dissolved in forest floor leachates and in mineral soil solutions. Dissolved organic matter contained on average 29% of total S in forest floor leachates at the pine site and 34% at the beech site. The largest portion of organic S occurred in the subsoil solutions under beech in summer and autumn (up to 53%). Mean concentrations of organic S peaked (up to 1.1 mg l-1) in summer after rainstorms that followed dry periods. Fluxes with forest floor leachates and at 90 cm soil depth were largest in autumn because of huge amounts of rainfall. Organic S contributed significantly to the fluxes of S in the subsoils under beech comprising on average 39% of total dissolved S at 90 cm depth. Organic S produced in the forest floor layers was mainly in the hydrophilic fraction of dissolved organic matter (62 ± 6% at the pine site, 85 ± 4% at the beech site). The major binding form of organic S in the hydrophobic fraction was C-bonded S while in the hydrophilic fraction ester sulphate S, possibly associated with carbohydrates, was more prominent. Since the hydrophobic fraction increased in summer and autumn, C-bonded S was of greater importance during that time of the year than in winter and spring. With depth, concentrations and composition of organic S (and also of C) hardly changed at the pine site because of little retention of dissolved organic matter, presumably because of the small sorption capability of that soil. At the beech where organic C showed a marked decrease with depth, only a slight decrease in organic S, exclusively from the hydrophobic fraction, was found indicating that organic S was mobile compared with organic C. This was probably due to the concentration of S in the hydrophilic fraction of dissolved organic matter. Because of being concentrated in the mobile hydrophilic fraction, ester sulphate S was more mobile in the soil under beech than C-bonded S.  相似文献   

12.
13.
Barley plants were grown in a nutrient solution containing 25 μ M sulphate and the roots were pulsed with [35S]sulphate for 48-h periods at 6 different times between the emergence of leaf 5 (L5) and the emergence of leaf 8 (L8). Growth was continued in unlabelled solution until the emergence of L10. Within the shoot system sulphur was directed principally into the leaf undergoing expansion. A large proportion of the 35S-label delivered to young expanding leaves (> 40% of full expansion) did not occur at the time of the pulse, but subsequently during the ensuing chase indicating slow redistribution of sulphur from another site. During the later stages of leaf expansion (40–100%), most of the sulphur entered the leaf during the pulse, suggesting that sulphur was delivered more directly from the nutrient solution. Up to 75% of the sulphur delivered to L3–L6 at the time they approached or attained full expansion (70–100%) was re-exported. At least some of the sulphur exported from fully expanded leaves was redistributed to developing leaves.  相似文献   

14.
海河流域植物硫素含量特征的研究   总被引:9,自引:0,他引:9       下载免费PDF全文
本文研究了海流域各类植物硫元素含量特征及与土壤硫素的关系,结果表明:海河流域植物全硫量平均值为0.232%,为正常含量的下限值,与我国南,北方一些地区比较属中等水平,其中栽培植物略高于野生植物,植物硫含量范围差别悬殊,最大值可为最小值的26倍,以沿大城市的水系和地区的植物含硫量高,海流域的土壤全硫含量平均值为0.043%(指耕地和天然植被的土壤),为正常土壤含量的中上水平,植物硫元素含量与土壤硫含  相似文献   

15.
    
Movement of photoassimilates from leaves to phloem is an important step for the flux of carbon through plants. Fractionation of carbon isotopes during this process may influence their abundance in heterotrophic tissues. We subjected Eucalyptus globulus to 20, 25 and 28 °C ambient growth temperatures and measured compound-specific δ(13)C of carbohydrates obtained from leaves and bled phloem sap. We compared δ(13)C of sucrose and raffinose obtained from leaf or phloem and of total leaf soluble carbon, with modelled values predicted by leaf gas exchange. Changes in δ(13)C of sucrose and raffinose obtained from either leaves or phloem sap were more tightly coupled to changes in c(i)/c(a) than was δ(13)C of leaf soluble carbon. At 25 and 28 °C, sucrose and raffinose were enriched in (13)C compared to leaf soluble carbon and predicted values - irrespective of tissue type. Phloem sucrose was depleted and raffinose enriched in (13)C compared to leaf extracts. Intermolecular and tissue-specific δ(13)C reveal that multiple systematic factors influence (13)C composition during export to phloem. Predicting sensitivity of these factors to changes in plant physiological status will improve our ability to infer plant function at a range of temporal and spatial scales.  相似文献   

16.
    
Increasing atmospheric carbon dioxide (ab. CO2) and fertilizer‐nitrogen (ab. N) applications may have marked direct effects on the plant growth of agricultural crops, and in turn affect the higher trophic level of insect herbivores. In this study, the effects of elevated CO2 (i.e., 650 µl/L vs. ambient 400 µl/L) and fertilizer‐N (0, 50, 100, 200 kg/ha) on the population abundances and the inter‐specific competition among three co‐occurring species of wheat aphids, Sitobion avenae, Rhopalosiphum padi and Schizaphis graminum, were studied. The grain weight per ear and the 1,000‐grain weight were generally increased when grown under elevated CO2 and showed a significant effect at the 100 kg/ha (grain weight per ear) and 0, 50 and 100 kg/ha (1,000‐grain weight) N. These two yield indexes increased with increasing fertilizer‐N levels within reasonable limits and reached a maximum at 100 kg/ha. Elevated CO2 combined with fertilizer‐N levels formed complex indirect effects on the three wheat aphids through the wheat crops they fed on. Elevated CO2 significantly decreased the niche overlap index (ab. NOI) between S. avenae and R. padi under 0 and 100 kg/ha and that between R. padi and S. graminum under 0 kg/ha, while significantly increased the three NOIs under 50 kg/ha and that between R. padi and S. graminum under 100 and 200 kg/ha. S. avenae and R. padi had the larger population and stronger competition in low‐N condition (0 and 50 kg/ha), which was harmful to wheat yield and quality when combined with its own poor nutrition. Overall, the 100 kg/ha N level was the best option based on the aphid population, competition and wheat yields. Therefore, the balanced relationship formed among fertilizers, plants and insects under 100 kg/ha N was vital for the interactive ecosystem.  相似文献   

17.
  总被引:28,自引:0,他引:28  
1. The concentration of sulphate is low in lakes and sulphur cycling has often been neglected in studies of organic matter diagenesis in lake sediments. The cycling of sulphur is, however, both spatially and temporally dynamic and strongly influences many biogeochemical reactions in sediments, such as the binding of phosphorus. This review examines the control of sulphate reduction and sulphur cycling in sediments of lakes with different trophic status. 2. The factors that control the rate of sulphate reduction have not been identified with certainty in the various environments because many factors are involved, e.g. oxygen and sulphate concentrations, temperature and organic matter availability. 3. Sulphate reduction is less significant under oligotrophic conditions, where mineralization is dominated by oxic decomposition. The supply of organic matter may not be sufficient to support sulphate reduction in the anoxic parts of sediments and, also, sulphate availability may control the rate as the concentration is generally low in oligotrophic lakes. 4. There is a potential for significant sulphate reduction in eutrophic lakes, as both the availability of organic matter and sulphate concentration are often higher than in oligotrophic lakes. Sulphate is rapidly depleted with sediment depth, however, and methanogenesis is generally the most important process in overall carbon mineralization. Sulphate reduction is generally low in acidic lakes because of low sulphate availability and reduced microbial activity. 5. It is still unclear which of the forms of sulphur deposits are the most important and under which conditions burial occurs. Sulphur deposition is controlled by the rate of sulphate reduction and reoxidation. Reoxidation of sulphides occurs rapidly through several pathways, both under oxic and anoxic conditions. Only a few studies have been able to examine the importance of reoxidation, but it is hypothesized that most of the reoxidation takes place under anoxic conditions and that disproportionation is often involved. The presence of sulphide oxidizing bacteria, benthic fauna and rooted macrophytes may substantially enhance oxic reoxidation. Deposition of sulphur is generally higher in eutrophic than in oligotrophic lakes because of a number of factors: a higher rate of sulphate reduction, enhanced sedimentation of organic sulphur and less reoxidation as a result of reduced penetration of oxygen into the sediments, a lack of faunal activity and rooted macrophytes.  相似文献   

18.
  总被引:1,自引:0,他引:1  
Atmospheric nitrogen (N) deposition has frequently been observed to increase soil carbon (C) storage in forests, but the underlying mechanisms still remain unclear. Changes in microbial community composition and substrate use are hypothesized to be one of the key mechanisms affected by N inputs. Here, we investigated the effects of N deposition on amino sugars, which are used as biomarkers for fungal‐ and bacterial‐derived microbial residues in soil. We made use of a 4‐year combined CO2 enrichment and N deposition experiment in model forest ecosystems, providing a distinct 13C signal for ‘new’ and ‘old’ C in soil organic matter and microbial residues measured in density and particle‐size fractions of soils. Our hypothesis was that N deposition decreases the amount of fungal residues in soils, with the new microbial residues being more strongly affected than old residues. The soil fractionation showed that organic matter and microbial residues are mainly stabilized by association with soil minerals in the heavy and fine fractions. Moreover, the bacterial residues are relatively enriched at mineral surfaces compared to fungal residues. The 13C tracing indicated a greater formation of fungal residues compared to bacterial residues after 4 years of experiment. In contradiction to our hypotheses, N deposition significantly increased the amount of new fungal residues in bulk soil and decreased the decomposition of old microbial residues associated with soil minerals. The preservation of old microbial residues could be due to decreased N limitation of microorganisms and therefore a reduced dependence on organic N sources. This mechanism might be especially important in fine heavy fractions with low C/N ratios, where microbial residues are effectively protected from decomposition by association with soil minerals.  相似文献   

19.
应用总体平衡 (mass_balance)法研究了施硫肥 (0 ,30及 6 0kgS/hm2 )对内蒙古典型草原放牧生态系统硫循环的影响及在硫肥需要量上的应用。结果表明 ,施硫肥使牧草硫的吸收量提高了 5 0 % ,并使放牧系统硫的生物循环速率提高了 15 %以上。 1995和 1996年两年内两种硫肥处理 30和 6 0kgS/hm2 的硫的利用效率分别为 74.0 %和37.6 %。当其他硫的来源较低时 ,土壤中有机硫的矿化是草原有效硫的主要来源 ,约占整个有效硫输入量的 70 %。放牧家畜在物质循环中具有重要的生态功能 ,其硫采食量的 90 %左右以排泄物的形式返回到土壤 ,经过排泄物而释放的有效硫量约占硫的生物再循环量的 30 %。土壤中硫的淋溶损失是放牧系统中硫的主要输出形式 ;同时 ,家畜尿和粪中硫的损失 (包括转移到非生产区和淋溶损失 )也影响着放牧系统硫的平衡状况。因此 ,应该深入研究粪尿硫的再循环速率及其影响因素。基于总体平衡原则 ,该地区放牧系统中至少每年应施入 10kgS/hm2 才能保持有效硫的平衡状态  相似文献   

20.
  总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号