共查询到3条相似文献,搜索用时 5 毫秒
1.
The objective of this study is using radiolabelled PBN to determine the tissue distribution, excretion, and metabolism of PBN in rats in order to evaluate the effective time to trap free radical in appropriate tissue(s). Our results demonstrated that PBN is rapidly absorbed when it is injected intraperitoneally in the animal. PBN can be used as an effective spin trapping agent for a variety of tissues since it is evenly distributed among a wide range of tissues measured. Since there is no difference in the tissue concentrations and distribution pattern of PBN at 15, 30 and 60min after injection of PBN. it is appropriate to choose any of these time intervals to terminate the experiment and extract the spin adduct. The excretion of PBN, however, is slow. The majority of the radioactivity (70%) was excreted by the first 3 days. Only 5.7% of radioactivity was collected from 3 to 14 days. The remaining 25% of the radioactivity may be in the form of expired 14CO2. Trace amounts of radioactivity were recovered in the feces. PBN has probably only one major form of metabolite excreted in the urine. A small amount of the parent compound, however, was also excreted in the urine. The chemical structure of the metabolite(s) is still unknown. 相似文献
2.
Luigi Granato Dario Longo Sbastien Boutry Luce Vander Elst Cline Henoumont Silvio Aime Robert N. Muller Sophie Laurent 《化学与生物多样性》2019,16(11)
The synthesis of poly[N,N‐bis(3‐aminopropyl)glycine] (PAPGly) dendrons Gd‐based contrast agents (GdCAs) via an orthogonal protection of the different functional groups and an activation/coupling strategy wherein a specific number of synthetic steps add a generation to the existing dendron has been described. The aim of this protocol is to build up two different generations of dendrons ( G‐0 or dendron's core, and G‐1 ) with peripheral NH2 groups to conjugate a 1,4,7,10‐tetraazacyclododecane‐1,4,7‐triacetic acid (DO3A) derivative and afterwards to chelate with Gd3+ paramagnetic ions. These complexes, which have a well‐defined molecular weight, are of relevance to MRI as an attempt to gain higher 1H relaxivity by slowing down the rotation of molecule compared to monomeric Gd(III) complexes used as contrast agents and to increase the number of paramagnetic centers present in one molecular structure. From the study of their water 1H longitudinal relaxation rate at different magnetic fields (NMRD, Nuclear Magnetic Relaxation Dispersion) and by evaluating the variable temperature 17O‐NMR data we determined the parameters characterizing the water exchange rate and the rotational correlation time of each complex, both affecting 1H relaxivity. Furthermore, these two novel PAPGly GdCAs were objects of i) an in vivo study to determine their biodistributions in healthy C57 mice at several time points, and ii) the Dynamic Contrast‐Enhanced MRI (DCE‐MRI) approach to assess their contrast efficiency measured in the tumor region of C57BL/6 mice transplanted subcutaneously with B16‐F10 melanoma cells. The aim of the comparison of these two dendrons GdCAs, having different molecular weights (MW), is to understand how MW and relaxivity may influence the contrast enhancement capabilities in vivo at low magnetic field (1 T). Significant contrast enhancement was observed in several organs (vessel, spleen and liver), already at 5 min post‐injection, for the investigated CAs. Moreover, these CAs induced a marked contrast enhancement in the tumor region, thanks to the enhanced permeability retention effect of those macromolecular structures. 相似文献