共查询到20条相似文献,搜索用时 0 毫秒
1.
Yo Toma John Clifton‐Brown Shinji Sugiyama Makoto Nakaboh Ryusuke Hatano Fabián G. Fernández J. Ryan Stewart Aya Nishiwaki Toshihiko Yamada 《Global Change Biology》2013,19(6):1676-1687
Global soil carbon (C) stocks account for approximately three times that found in the atmosphere. In the Aso mountain region of Southern Japan, seminatural grasslands have been maintained by annual harvests and/or burning for more than 1000 years. Quantification of soil C stocks and C sequestration rates in Aso mountain ecosystem is needed to make well‐informed, land‐use decisions to maximize C sinks while minimizing C emissions. Soil cores were collected from six sites within 200 km2 (767–937 m asl.) from the surface down to the k‐Ah layer established 7300 years ago by a volcanic eruption. The biological sources of the C stored in the Aso mountain ecosystem were investigated by combining C content at a number of sampling depths with age (using 14C dating) and δ13C isotopic fractionation. Quantification of plant phytoliths at several depths was used to make basic reconstructions of past vegetation and was linked with C‐sequestration rates. The mean total C stock of all six sites was 232 Mg C ha?1 (28–417 Mg C ha?1), which equates to a soil C sequestration rate of 32 kg C ha?1 yr?1 over 7300 years. Mean soil C sequestration rates over 34, 50 and 100 years were estimated by an equation regressing soil C sequestration rate against soil C accumulation interval, which was modeled to be 618, 483 and 332 kg C ha?1 yr?1, respectively. Such data allows for a deeper understanding in how much C could be sequestered in Miscanthus grasslands at different time scales. In Aso, tribe Andropogoneae (especially Miscanthus and Schizoachyrium genera) and tribe Paniceae contributed between 64% and 100% of soil C based on δ13C abundance. We conclude that the seminatural, C4‐dominated grassland system serves as an important C sink, and worthy of future conservation. 相似文献
2.
Yo Toma J. Ryan Stewart Aya Nishiwaki Fabián G. Fernández 《Global Change Biology Bioenergy》2012,4(5):566-575
Although Miscanthus sinensis grasslands (Misc‐GL) and Cryptomeria japonica forest plantations (Cryp‐FP) are proposed bioenergy feedstock systems, their relative capacity to sequester C may be an important factor in determining their potential for sustainable bioenergy production. Therefore, our objective was to quantify changes in soil C sequestration 47 years after a Misc‐GL was converted to a Cryp‐FP. The study was conducted on adjacent Misc‐GL and Cryp‐FP located on Mt. Aso, Kumamoto, Japan. After Cryp‐FP establishment, only the Misc‐GL continued to be managed by annual burning every March. Mass C and N, δ13C, and δ15N at 0–30 cm depth were measured in 5 cm increments. Carbon and N concentrations, C:N ratio, δ13C, and δ15N were measured in litter and/or ash, and rhizomes or roots. Although C input in Misc‐GL by M. sinensis was approximately 36% of that in Cryp‐FP by C. japonica, mean annual soil C sequestration in Misc‐GL (503 kg C ha?1 yr?1) was higher than that in Cryp‐FP (284 kg C ha?1 yr?1). This was likely the result of larger C input from aboveground litter to soil, C‐quality (C:N ratio and lignin concentration in aboveground litter) and possibly more recalcitrant C (charcoal) inputs by annual burning. The difference in soil δ15N between sites indicated that organic C with N had greater cycling between heterotrophic microbes and soil and produces more recalcitrant humus in Misc‐GL than in Cryp‐FP. Our data indicate that in terms of soil C sequestration, maintenance of Misc‐GL may be more advantageous than conversion to Cryp‐FP in Aso, Japan. 相似文献
3.
4.
Katarzyna Głowacka Lindsay V. Clark Shivani Adhikari Junhua Peng J. Ryan Stewart Aya Nishiwaki Toshihiko Yamada Uffe Jørgensen Trevor R. Hodkinson Justin Gifford John A. Juvik Erik J. Sacks 《Global Change Biology Bioenergy》2015,7(2):386-404
Miscanthus × giganteus (Mxg) is an important bioenergy feedstock crop, however, genetic diversity among legacy cultivars may be severely constrained. Only one introduction from Japan to Denmark of this sterile, triploid, vegetatively propagated crop was recorded in the 1930s. We sought to determine if the Mxg cultivars in North America were all synonyms, and if they were derived from the European introduction. We used 64 nuclear and five chloroplast simple sequence repeat (SSR) markers to estimate genetic similarity for 27 Mxg accessions from North America, and compared them with six accessions from Europe, including the species’ type‐specimen. A subset of accessions was also evaluated by restriction‐site associated DNA sequencing (RAD‐seq). In addition, we assessed the potential of new crosses to increase Mxg genetic diversity by comparing eight new triploid Mxg progeny grown from seed, along with samples of the parental species M. sacchariflorus and M. sinensis. Estimates of genotyping error rates were essential for distinguishing between experimental error and true genotypic differences among accessions. Given differences in estimated error rates and costs per marker for SSRs and RAD‐seq, the former is currently more cost‐effective for determining if two accessions are genetically identical. We concluded that all of the Mxg legacy cultivars were derived via vegetative propagation from a single genet. In contrast with the Mxg legacy cultivars, genetic similarity to the type‐specimen of eight new triploid Mxg progeny ranged from 0.46 to 0.56. Though genetic diversity among the Mxg legacy cultivars is critically low, new crosses can provide much‐needed variation to growers. 相似文献
5.
6.
Lindsay V. Clark Maria S. Dwiyanti Kossonou G. Anzoua Joe E. Brummer Bimal Kumar Ghimire Katarzyna Gowacka Megan Hall Kweon Heo Xiaoli Jin Alexander E. Lipka Junhua Peng Toshihiko Yamada Ji Hye Yoo Chang Yeon Yu Hua Zhao Stephen P. Long Erik J. Sacks 《Global Change Biology Bioenergy》2019,11(10):1125-1145
To breed improved biomass cultivars of Miscanthus ×giganteus, it will be necessary to select the highest‐yielding and best‐adapted genotypes of its parental species, Miscanthus sinensis and Miscanthus sacchariflorus. We phenotyped a diverse clonally propagated panel of 569 M. sinensis and nine natural diploid M. ×giganteus at one subtropical (Zhuji, China) and five temperate locations (Sapporo, Japan; Leamington, Ontario, Canada; Fort Collins, CO; Urbana, IL; and Chuncheon, Korea) for dry biomass yield and 14 yield‐component traits, in trials grown for 3 years. Notably, dry biomass yield of four Miscanthus accessions exceeded 80 Mg/ha in Zhuji, China, approaching the highest observed for any land plant. Additionally, six M. sinensis in Sapporo, Japan and one in Leamington, Canada also yielded more than the triploid M. ×giganteus ‘1993‐1780’ control, with values exceeding 20 Mg/ha. Diploid M. ×giganteus was the best‐yielding group at the northern sites. Genotype‐by‐environment interactions were modest among the five northern trial sites but large between Zhuji, and the northern sites. M. sinensis accessions typically yielded best at trial sites with latitudes similar to collection sites, although broad adaptation was observed for accessions from southern Japan. Genotypic heritabilities for third year yields ranged from 0.71 to 0.88 within locations. Compressed circumference was the best predictor of yield. These results establish a baseline of data for initiating selection to improve biomass yield of M. sinensis and M. ×giganteus in a diverse set of relevant geographies. 相似文献
7.
Danny Awty‐Carroll Barbara Hauck John Clifton‐Brown Paul Robson 《Global Change Biology Bioenergy》2020,12(6):396-409
High yielding perennial crops are being developed as a sustainable feedstock for renewable energy and bioproducts. Miscanthus is a leading biomass crop, but most plantations comprise a sterile hybrid Miscanthus × giganteus that is clonally propagated. To develop new varieties across large areas, rhizome cloning is inefficient, time consuming and expensive. Alternative approaches use seed, and in temperate regions, this has been successfully applied by raising seedlings as plug plants in glasshouses before transfer to the field. Direct sowing has yet to be proven commercially viable because poor germination has resulted in inconsistent stand establishment. Oversowing using seed clusters is a common approach to improve the establishment of crops and it was hypothesized that such an approach will improve uniformity of density in early Miscanthus stands and thereby improve yield. Sowing multiple seeds creates potential for new interactions, and we identified at least two inhibitory mechanisms related to seed numbers. Germinating seed produced allelopathic effects on nearby seed thereby inhibiting plant growth. The inhibitory effect of Miscanthus seed on germination percentages was related to seed number within clusters. An extract from germinating Miscanthus seed inhibited the germination of Miscanthus seed. The extract was analysed by HPLC, which identified a complex mixture including several known allelopathic compounds including proanthocyanidins and vanillic acid. There was also evidence of root competition in soil in a controlled environment experiment. When the experiment on competition was replicated at field scale, the establishment rates were much lower and there was evidence of shoot competition. We conclude that the numbers of seed required to ensure an acceptable level of establishment in the field may be economically impractical until other agronomic techniques are included either to reduce the inhibitory effects of higher seed numbers or to reduce oversowing rates. 相似文献
8.
J. A. M. Holtum L. P. Hancock E. J. Edwards K. Winter 《Plant biology (Stuttgart, Germany)》2018,20(3):409-414
- C4 and crassulacean acid metabolism (CAM) have evolved in the order Caryophyllales many times but neither C4 nor CAM have been recorded for the Basellaceae, a small family in the CAM‐rich sub‐order Portulacineae.
- 24 h gas exchange and day–night changes in titratable acidity were measured in leaves of Anredera baselloides exposed to wet–dry–wet cycles.
- While net CO2 uptake was restricted to the light period in well‐watered plants, net CO2 fixation in the dark, accompanied by significant nocturnal increases in leaf acidity, developed in droughted plants. Plants reverted to solely C3 photosynthesis upon rewatering.
- The reversible induction of nocturnal net CO2 uptake by drought stress indicates that this species is able to exhibit CAM in a facultative manner. This is the first report of CAM in a member of the Basellaceae.
9.
10.
Marjorie R. Lundgren Guillaume Besnard Brad S. Ripley Caroline E. R. Lehmann David S. Chatelet Ralf G. Kynast Mary Namaganda Maria S. Vorontsova Russell C. Hall John Elia Colin P. Osborne Pascal‐Antoine Christin 《Ecology letters》2015,18(10):1021-1029
Adaptation to changing environments often requires novel traits, but how such traits directly affect the ecological niche remains poorly understood. Multiple plant lineages have evolved C4 photosynthesis, a combination of anatomical and biochemical novelties predicted to increase productivity in warm and arid conditions. Here, we infer the dispersal history across geographical and environmental space in the only known species with both C4 and non‐C4 genotypes, the grass Alloteropsis semialata. While non‐C4 individuals remained confined to a limited geographic area and restricted ecological conditions, C4 individuals dispersed across three continents and into an expanded range of environments, encompassing the ancestral one. This first intraspecific investigation of C4 evolutionary ecology shows that, in otherwise similar plants, C4 photosynthesis does not shift the ecological niche, but broadens it, allowing dispersal into diverse conditions and over long distances. Over macroevolutionary timescales, this immediate effect can be blurred by subsequent specialisation towards more extreme niches. 相似文献
11.
Gancho Slavov Paul Robson Elaine Jensen Edward Hodgson Kerrie Farrar Gordon Allison Sarah Hawkins Sian Thomas‐Jones Xue‐Feng Ma Lin Huang Timothy Swaller Richard Flavell John Clifton‐Brown Iain Donnison 《Global Change Biology Bioenergy》2013,5(5):562-571
Species and hybrids of Miscanthus are a promising energy crop, but their outcrossing mating systems and perennial life cycles are serious challenges for breeding programs. One approach to accelerating the domestication of Miscanthus is to harness the tremendous genetic variation that is present within this genus using phenotypic data from extensive field trials, high‐density genotyping and sequencing technologies, and rapidly developing statistical methods of relating phenotype to genotype. The success of this approach, however, hinges on detailed knowledge about the population genetic structure of the germplasm used in the breeding program. We therefore used data for 120 single‐nucleotide polymorphism and 52 simple sequence repeat markers to depict patterns of putatively neutral population structure among 244 Miscanthus genotypes grown in a field trial near Aberystwyth (UK) and delineate a population of 145 M . sinensis genotypes that will be used for association mapping and genomic selection. Comparative multivariate analyses of molecular marker and phenotypic data for 17 traits related to phenology, morphology/biomass, and cell wall composition revealed significant geographic patterns in this population. A longitudinal cline accounted for a substantial proportion of molecular marker variation (R2 = 0.60, P = 3.4 × 10?15). In contrast, genetic variation for phenotypic traits tended to follow latitudinal and altitudinal gradients, with several traits appearing to have been affected by divergent selection (i.e., QST >> FST). These contrasting geographic trends are unusual relative to other plants and provide opportunities for powerful studies of phenotype–genotype associations and the evolutionary history of M. sinensis. 相似文献
12.
Ji‐Hyun Park Sung‐Eun Cho Sun‐Hee Hong In‐Young Choi Hyeon‐Dong Shin 《Journal of Phytopathology》2015,163(11-12):1027-1030
In August 2013, sooty mould was observed on Chinese hibiscus (Hibiscus rosa‐sinensis) in a propagation nursery in Seoul, Korea. The sooty mould initially developed at the junction between the leaf blade and leaf petiole and then dispersed along the vein on the abaxial surface. The fungal growth pattern on the plants was quite different from general sooty moulds growing on honeydew secreted by insects on the plants. On the basis of the morphological characteristics and phylogenetic analysis using the internal transcribed spacer rDNA, this fungus was identified as Leptoxyphium kurandae. A pathogenicity test was carried out to fulfil Koch's postulates. Through field observation and a pathogenicity test, we found an association between the sooty mould and extrafloral nectaries. To our knowledge, this is the first report of sooty mould caused by L. kurandae on the extrafloral nectaries of H. rosa‐sinensis. 相似文献
13.
Samuel H. Taylor Brad S. Ripley Tarryn Martin Leigh‐Ann De‐Wet F. Ian Woodward Colin P. Osborne 《Global Change Biology》2014,20(6):1992-2003
Global climate change is expected to shift regional rainfall patterns, influencing species distributions where they depend on water availability. Comparative studies have demonstrated that C4 grasses inhabit drier habitats than C3 relatives, but that both C3 and C4 photosynthesis are susceptible to drought. However, C4 plants may show advantages in hydraulic performance in dry environments. We investigated the effects of seasonal variation in water availability on leaf physiology, using a common garden experiment in the Eastern Cape of South Africa to compare 12 locally occurring grass species from C4 and C3 sister lineages. Photosynthesis was always higher in the C4 than C3 grasses across every month, but the difference was not statistically significant during the wettest months. Surprisingly, stomatal conductance was typically lower in the C3 than C4 grasses, with the peak monthly average for C3 species being similar to that of C4 leaves. In water‐limited, rain‐fed plots, the photosynthesis of C4 leaves was between 2.0 and 7.4 μmol m?2 s?1 higher, stomatal conductance almost double, and transpiration 60% higher than for C3 plants. Although C4 average instantaneous water‐use efficiencies were higher (2.4–8.1 mmol mol?1) than C3 averages (0.7–6.8 mmol mol?1), differences were not as great as we expected and were statistically significant only as drought became established. Photosynthesis declined earlier during drought among C3 than C4 species, coincident with decreases in stomatal conductance and transpiration. Eventual decreases in photosynthesis among C4 plants were linked with declining midday leaf water potentials. However, during the same phase of drought, C3 species showed significant decreases in hydrodynamic gradients that suggested hydraulic failure. Thus, our results indicate that stomatal and hydraulic behaviour during drought enhances the differences in photosynthesis between C4 and C3 species. We suggest that these drought responses are important for understanding the advantages of C4 photosynthesis under field conditions. 相似文献
14.
Charles P. Pignon Idan Spitz Erik J. Sacks Uffe Jrgensen Kirsten Krup Stephen P. Long 《Global Change Biology Bioenergy》2019,11(7):883-894
Chilling temperatures (0–15°C) inhibit photosynthesis in most C4 grasses, yet photosynthesis is chilling tolerant in the ‘Illinois’ clone of the C4 grass Miscanthus x giganteus, a candidate cellulosic bioenergy crop. M. x giganteus is a hybrid between Miscanthus sacchariflorus and Miscanthus sinensis; therefore chilling‐tolerant parent lines might produce hybrids superior to the current clone. Recently a collection of M. sacchariflorus from Siberia, the apparent low temperature limit of natural distribution, became available, which may be a source for chilling tolerance. The collection was screened for chilling tolerance of photosynthesis by measuring dark‐adapted maximum quantum yield of PSII photochemistry (Fv/Fm) on plants in the field in cool weather. Superior accessions were selected for further phenotyping: plants were grown at 25°C, transferred to 10°C (chilling) for 15 days, and returned to 25°C for 7 days (recovery). Two experiments assessed: (a) light‐saturated net photosynthetic rate (Asat) and operating quantum yield of PSII photochemistry (ΦPSII), (b) response of net leaf CO2 uptake (A) to intercellular [CO2] (ci). Three accessions showed superior chilling tolerance: RU2012‐069 and RU2012‐114 achieved Asat up to double that of M. x giganteus prior to and during chilling, due to increased ci ‐ saturated photosynthesis (Vmax). RU2012‐069 and RU2012‐114 also maintained greater levels of ΦPSII during chilling, indicating reduced photodamage. Additionally, accession RU2012‐112 maintained a stable Asat throughout the 15‐day chilling period, while Asat continuously declined in other accessions; this suggests RU2012‐112 could outperform others in lengthy chilling periods. Plants were returned to 25°C after the chilling period; M. x giganteus showed the weakest recovery after 1 day, but a strong recovery after 1 week. This study has therefore identified important genetic resources for the synthesis of improved lines of M. x giganteus, which could facilitate the displacement of fossil fuels by cellulosic bioenergy. 相似文献
15.
The oldest species of bacteria capable of oxygenic photosynthesis today are the freshwater Cyanobacteria Gloeobacter spp., belonging to the class Oxyphotobacteria. Several modern molecular evolutionary studies support the freshwater origin of cyanobacteria during the Archaean and their subsequent acquisition of salt tolerance mechanisms necessary for their expansion into the marine environment. This study investigated the effect of a sudden washout event from a freshwater location into either a brackish or marine environment on the photosynthetic efficiency of two unicellular freshwater cyanobacteria: the salt‐tolerant Chroococcidiopsis thermalis PCC7203 and the cyanobacterial phylogenetic root species, Gloeobacter violaceus PCC7421. Strains were cultured under present atmospheric levels (PAL) of CO2 or an atmosphere containing elevated levels of CO2 and reduced O2 (eCO2rO2) in simulated shallow water or terrestrial environmental conditions. Both strains exhibited a reduction in growth rates and gross photosynthesis, accompanied by significant reductions in chlorophyll a content, in brackish water, with only C. thermalis able to grow at marine salinity levels. While the experimental atmosphere caused a significant increase in gross photosynthesis rates in both strains, it did not increase their growth rates, nor the amount of O2 released. The differences in growth responses to increasing salinities could be attributed to genetic differences, with C. thermalis carrying additional genes for trehalose synthesis. This study demonstrates that, if cyanobacteria did evolve in a freshwater environment, they would have been capable of withstanding a sudden washout into increasingly saline environments. Both C. thermalis and G. violaceus continued to grow and photosynthesise, albeit at diminished rates, in brackish water, thereby providing a route for the evolution of open ocean‐dwelling strains, necessary for the oxygenation of the Earth's atmosphere. 相似文献
16.
A. Moghbeli Gharaei M. Ziaaddini M. A. Jalali J. P. Michaud 《Journal of Applied Entomology》2014,138(7):500-509
Diaphorina citri Kuwayama (Hemiptera: Psyllidae) is the primary vector of Candidatus Liberibacter spp. bacteria that cause citrus greening, a disease of worldwide importance. Olfactometry was employed to test responses of D. citri to odours from intact citrus plants (Mexican lime, Citrus aurantifolia, sour orange, Citrus aurantium, Marsh grapefruit, Citrus paradisi and Valencia orange, Citrus sinensis), citrus plants previously infested with D. citri, and odours of conspecifics including nymphs, adult insects of same and opposite sex, and their products (honeydew), both alone and in combination. In contrast to other studies, psyllids of both sexes were attracted to volatiles of undamaged Mexican lime leaves, whereas undamaged grapefruit attracted only females, and leaves of Valencia and sour orange did not attract either sex. All four plant species attracted female psyllids when previously infested, but only Mexican lime and sour orange‐attracted males. Thus, Citrus species appear to vary in the production of both constituitive and induced volatiles that attract adult psyllids. Volatiles emitted by nymphs did not attract either sex, but psyllid honeydew was attractive to males, likely due to female pheromone residues. Males oriented to the odour of females, whereas the reverse was not true, and neither males nor females oriented to same‐sex volatiles. The addition of conspecific cues (adults, nymphs or honeydew) did not increase female attraction to previously infested leaves, but male response was increased by the presence of adults and honeydew, regardless of plant species. Thus, female psyllids appear to orient more strongly to volatiles of plant origin, whereas males respond more strongly to cues emanating from females and conspecific excretions. These results suggest that female psyllids drive the initial colonization of host plants, whereas males orient to females and infested plants. Identification of the specific volatiles involved may permit their use in monitoring and management of this pest. 相似文献
17.
Florian Dring Kumari Billakurthi Udo Gowik Stefanie Sultmanis Roxana Khoshravesh Shipan Das Gupta Tammy L. Sage Peter Westhoff 《The Plant journal : for cell and molecular biology》2019,97(5):984-995
The evolution of C4 photosynthesis proceeded stepwise with each small step increasing the fitness of the plant. An important pre‐condition for the introduction of a functional C4 cycle is the photosynthetic activation of the C3 bundle sheath by increasing its volume and organelle number. Therefore, to engineer C4 photosynthesis into existing C3 crops, information about genes that control the bundle sheath cell size and organelle content is needed. However, very little information is known about the genes that could be manipulated to create a more C4–like bundle sheath. To this end, an ethylmethanesulfonate (EMS)‐based forward genetic screen was established in the Brassicaceae C3 species Arabidopsis thaliana. To ensure a high‐throughput primary screen, the bundle sheath cells of A. thaliana were labeled using a luciferase (LUC68) or by a chloroplast‐targeted green fluorescent protein (sGFP) reporter using a bundle sheath specific promoter. The signal strengths of the reporter genes were used as a proxy to search for mutants with altered bundle sheath anatomy. Here, we show that our genetic screen predominantly identified mutants that were primarily affected in the architecture of the vascular bundle, and led to an increase in bundle sheath volume. By using a mapping‐by‐sequencing approach the genomic segments that contained mutated candidate genes were identified. 相似文献
18.
David Sanscartier Bill Deen Goretty Dias Heather L. MacLean Humaira Dadfar Ian McDonald Hilla Kludze 《Global Change Biology Bioenergy》2014,6(4):401-413
Replacement of fossil fuels with sustainably produced biomass crops for energy purposes has the potential to make progress in addressing climate change concerns, nonrenewable resource use, and energy security. The perennial grass Miscanthus is a dedicated energy crop candidate being field tested in Ontario, Canada, and elsewhere. Miscanthus could potentially be grown in areas of the province that differ substantially in terms of agricultural land class, environmental factors and current land use. These differences could significantly affect Miscanthus yields, input requirements, production practices, and the types of crops being displaced by Miscanthus establishment. This study assesses implications on life cycle greenhouse gas (GHG) emissions of these differences through evaluating five Miscanthus production scenarios within the Ontario context. Emissions associated with electricity generation with Miscanthus pellets in a hypothetically retrofitted coal generating station are examined. Indirect land use change impacts are not quantified but are discussed. The net life cycle emissions for Miscanthus production varied greatly among scenarios (?90–170 kg CO2eq per oven dry tonne of Miscanthus bales at the farm gate). In some cases, the carbon stock dynamics of the agricultural system offset the combined emissions of all other life cycle stages (i.e., production, harvest, transport, and processing of biomass). Yield and soil C of the displaced agricultural systems are key parameters affecting emissions. The systems with the highest potential to provide reductions in GHG emissions are those with high yields, or systems established on land with low soil carbon. All scenarios have substantially lower life cycle emissions (?20–190 g CO2eq kWh?1) compared with coal‐generated electricity (1130 g CO2eq kWh?1). Policy development should consider the implication of land class, environmental factors, and current land use on Miscanthus production. 相似文献
19.
Thomas M. Doherty‐Bone Alison M. Dunn Faye L. Jackson Lee E. Brown 《Freshwater Biology》2019,64(3):461-473
- Changes to species composition, such as biological invasions and extinctions, have the potential to alter ecosystems. Invaders often replace taxonomically similar species, resulting in potentially redundant impacts. For example, freshwater decapod crustaceans are pervasive invasive alien species but they often extirpate native decapods. This study addresses whether or not these compositional shifts lead to impacts on the structure of the macroinvertebrate community, key ecosystem functions such as decomposition rates and primary productivity, and freshwater properties such as turbidity.
- In a controlled outdoor mesocosm experiment that ran for 33 days, impacts on biodiversity, ecosystem functioning and properties were compared between a native, endangered crayfish (Austropotamobius pallipes) and two invasive alien decapods: the crayfish Pacifastacus leniusculus and crab Eriocheir sinensis. Equal densities of these decapod species were compared between mesocosms, with a replicated array of decapod free controls. Measurements included macroinvertebrate densities, decomposition of leaf litter, production of biofilms, plankton, macrophytes, gross primary productivity, turbidity, and dissolved nutrients.
- While taxonomic richness of non‐decapod macroinvertebrates was marginally higher in the invasive alien treatments, differences in Shannon diversity were negligible, and β‐diversity was higher for the invasive alien crab. Gastropod density was reduced in the benthos of invasive alien treatments. This was associated with increased primary productivity of periphyton, particularly in the presence of P. leniusculus. Increased turbidity was, however, inversely correlated with periphyton primary productivity in the E. sinensis treatment. Nitrate concentration was significantly lower in invasive compared to native crayfish mesocosms, but similar to decapod free controls. This reflects the potential for the invasive crayfish to act as a nitrogen sink, mediated through both enhanced periphyton and reduced nitrogen recycling. Other processes, such as decomposition rates, sediment respiration, community respiration, and gross primary productivity, did not differ between treatments.
- This study demonstrates impacts of both native and invasive alien decapod species on certain aspects of benthic biodiversity and ecosystem processes, but with many of these parameters unaffected. This assumes equal densities of each species in its environment. The enhanced gastropod predation and associated trophic cascade by invasive decapods are likely explained through higher consumption rates, metabolism and activity. These per‐capita impacts are likely to be exacerbated further in‐situ due to typically higher densities of invasive compared to native crayfish.