共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
耐荫性是植物在低光环境下的生存和生长能力,对森林植物群落演替起重要作用,植物对遮荫的适应机制已成为生态学的研究热点.本文综述了森林植物的耐荫性及其在形态和生理方面的适应性,分析了森林植物在生长性状、生物量分配、树冠结构、叶片形态生理、叶片解剖结构、光合参数、碳水化合物分配、水分和养分的利用等方面对遮荫产生的可塑性响应,最后对目前研究存在的问题进行了分析,展望了未来的研究内容和方向. 相似文献
4.
5.
Seed germination and seedling establishment patterns have been used to classify species as shade tolerant or intolerant. The main objective of this research was to investigate, under controlled conditions, seed germination of species from different successional positions as well as to follow seed germination and seedling survival under natural shade in the field. The species studied were Solarium granuloso‐leprosum, Trema micrantha, Cecropia pachystachya, Croton piptocalyx, Bauhinia forficata subsp. pruinosa. Senna macranthera, Schizolobium parahyba, Piptadenia gonoacantha, Chorisia speciosa, Pseudobombax grandiflorum, Ficus guaranitica, Esenbeckia leiocarpa, Pachystroma longifolium, Myroxylon peruiferum, and Hymenaea courbaril. Field trials were carried out at Santa Genebra Municipal Reserve, Campinas, SP, Brazil, at the forest edge and in the understory. No significant correlations were detected between successional status and seed size or seed water content. Light‐regulated germination was present only in small‐seeded species. In field experiments, most species, including the light‐sensitive ones, were able to germinate under the canopy, where a low red/far‐red ratio predominates. Most species, mainly those of early‐ and intermediate successional positions, presented low seedling survival rates under shade. Myroxylon peruiferum was the most shade tolerant species, while 5. granuloso‐leprosum, C. speciosa, P. gonoacantha, F. guaranitica, T. micrantha, and 5. parahyba were the most shade intolerant. These latter species showed little or no survival under the shade conditions. 相似文献
6.
7.
Ana Filipa Palmeirim Maíra Benchimol José Carlos Morante‐Filho Marcus Vinícius Vieira Carlos A. Peres 《Diversity & distributions》2018,24(8):1109-1120
Aim
Mega hydroelectric dams have become one of the main drivers of biodiversity loss in the lowland tropics. In these reservoirs, vertebrate studies have focused on local (α) diversity measures, whereas between‐site (β) diversity remains poorly assessed despite its pivotal importance in understanding how species diversity is structured and maintained. Here, we unravel the patterns and ecological correlates of mammal β‐diversity, including both small (SM) and midsized to large mammal species (LM) across 23 islands and two continuous forest sites within a mega hydroelectric reservoir.Location
Balbina Hydroelectric Dam, Central Brazilian Amazonia.Methods
Small mammals were sampled using live and pitfall traps (48,350 trap‐nights), and larger mammals using camera traps (8,160 trap‐nights). β‐diversity was examined for each group using multiplicative diversity decomposition of Hill numbers, which considers the importance of rare, common and dominant species, and tested to what extent those were related to a set of environmental characteristics measured at different spatial scales.Results
β‐diversity for both mammal groups was higher when considering species presence–absence. When considering species abundance, β‐diversity was significantly higher for SM than for LM assemblages. Habitat variables, such as differences in tree species richness and percentage of old‐growth trees, were strong correlates of β‐diversity for both SMs and LMs. Conversely, β‐diversity was weakly related to patch and landscape characteristics, except for LMs, for which β‐diversity was correlated with differences in island sizes.Main conclusions
The lower β‐diversity of LMs between smaller islands suggests subtractive homogenization of this group. Although island size plays a major role in structuring mammal α‐diversity in several land‐bridge islands, local vegetation characteristics were additional key factors determining β‐diversity for both mammal groups. Maintaining the integrity of vegetation characteristics and preventing the formation of a large set of small islands within reservoirs should be considered in long‐term management plans in both existing and planned hydropower development in lowland tropical forests.8.
Factors promoting the evolution of specialists versus generalists have been little studied in ecological context. In a large-scale comparative field experiment, we studied genotypes from naturally evolved populations of a closely related generalist/specialist species pair (Polygonum persicaria and P. hydropiper), reciprocally transplanting replicates of multiple lines into open and partially shaded sites where the species naturally co-occur. We measured relative fitness, individual plasticity, herbivory, and genetic variance expressed in the contrasting light habitats at both low and high densities. Fitness data confirmed that the putative specialist out-performed the generalist in only one environment, the favorable full sun/low-density environment to which it is largely restricted in nature, while the generalist had higher lifetime reproduction in both canopy and dense neighbor shade. The generalist, P. persicaria, also expressed greater adaptive plasticity for biomass allocation and leaf size in shaded conditions than the specialist. We found no evidence that the ecological specialization of P. hydropiper reflects either genetically based fitness trade-offs or maintenance costs of plasticity, two types of genetic constraint often invoked to prevent the evolution of broadly adaptive genotypes. However, the patterns of fitness variance and herbivore damage revealed how release from herbivory in a new range can cause an introduced species to evolve as a specialist in that range, a surprising finding with important implications for invasion biology. Patterns of fitness variance between and within sites are also consistent with a possible role for the process of mutation accumulation (in this case, mutations affecting shade-expressed phenotypes) in the evolution and/or maintenance of specialization in P. hydropiper. 相似文献
9.
Architecture and leaf display were compared in saplings of six rain forest tree species differing in shade tolerance. Saplings were selected along the whole light range encountered in a forest environment. Species differed largely in realized height and crown expansion per unit support biomass, but this could not be related to differences in shade tolerance. The results demonstrate that there exist various solutions to an effective expansion of plant height and crown area. It is argued that choice of the study species and the ontogenetic trajectory regarded determine to a large extent the outcome of interspecific comparisons. No evidence was found that pioneers were characterized by a multilayered and shade tolerants by a monolayered leaf distribution. Yet, sun plants had a similar crown area, a deeper crown, and a higher leaf area index compared to shade plants and their leaves were more evenly distributed along the stem. This suggests that differences in leaf layering are found between plants growing in different light environments, rather than between species differing in shade tolerance. 相似文献
10.
Calvin Dytham 《Proceedings. Biological sciences / The Royal Society》2009,276(1661):1407-1413
Dispersal is a key component of a species''s ecology and will be under different selection pressures in different parts of the range. For example, a long-distance dispersal strategy suitable for continuous habitat at the range core might not be favoured at the margin, where the habitat is sparse. Using a spatially explicit, individual-based, evolutionary simulation model, the dispersal strategies of an organism that has only one dispersal event in its lifetime, such as a plant or sessile animal, are considered. Within the model, removing habitat, increasing habitat turnover, increasing the cost of dispersal, reducing habitat quality or altering vital rates imposes range limits. In most cases, there is a clear change in the dispersal strategies across the range, although increasing death rate towards the margin has little impact on evolved dispersal strategy across the range. Habitat turnover, reduced birth rate and reduced habitat quality all increase evolved dispersal distances at the margin, while increased cost of dispersal and reduced habitat density lead to lower evolved dispersal distances at the margins. As climate change shifts suitable habitat poleward, species ranges will also start to shift, and it will be the dispersal capabilities of marginal populations, rather than core populations, that will influence the rate of range shifting. 相似文献
11.
12.
13.
Frans Bongers Lourens Poorter William D. Hawthorne Douglas Sheil 《Ecology letters》2009,12(8):798-805
The intermediate disturbance hypothesis (IDH) predicts local species diversity to be maximal at an intermediate level of disturbance. Developed to explain species maintenance and diversity patterns in species-rich ecosystems such as tropical forests, tests of IDH in tropical forest remain scarce, small-scale and contentious. We use an unprecedented large-scale dataset (2504 one-hectare plots and 331 567 trees) to examine whether IDH explains tree diversity variation within wet, moist and dry tropical forests, and we analyse the underlying mechanism by determining responses within functional species groups. We find that disturbance explains more variation in diversity of dry than wet tropical forests. Pioneer species numbers increase with disturbance, shade-tolerant species decrease and intermediate species are indifferent. While diversity indeed peaks at intermediate disturbance levels little variation is explained outside dry forests, and disturbance is less important for species richness patterns in wet tropical rain forests than previously thought. 相似文献
14.
15.
一直以来黄波罗(Phellodendron amurense)被认为是不耐阴树种, 然而引入美国纽约后, 发现它具有一定的耐阴性, 在全光和林下均能更新, 在纽约已经成为生物入侵种。为了探讨黄波罗的耐阴性问题, 通过设置自然光与遮阴(15%自然光)两种光环境, 观测了三年生黄波罗幼苗(遮阴1 a后)光合生理参数、光能利用效率、叶绿素和比叶重的变化。结果表明, 与自然光处理相比, 遮阴处理的黄波罗幼苗最大光合速率、表观量子效率和暗呼吸速率略有下降, 但差异不显著(p>0.05), 光补偿点下降显著(p<0.05); 同时, 单位面积叶绿素含量无显著差异(p>0.05), 而单位干重叶绿素含量显著升高, 比叶重显著下降, 叶面积显著增大(p<0.05)。上述结果说明: 遮阴的黄波罗幼苗通过降低光补偿点和暗呼吸速率利用环境中的弱光, 同时通过减小比叶重、增大叶面积和提高叶绿素b相对含量来增强对光的捕获, 使其在弱光时的光能利用效率提高。由此推断, 黄波罗幼苗能适应一定程度的遮阴。 相似文献
16.
Insect herbivory is thought to favour carbon allocation to storage in juveniles of shade‐tolerant trees. This argument assumes that insect herbivory in the understorey is sufficiently intense as to select for storage; however, understoreys might be less attractive to insect herbivores than canopy gaps, because of low resource availability and – at temperate latitudes – low temperatures. Although empirical studies show that shade‐tolerant species in tropical forests do allocate more photosynthate to storage than their light‐demanding associates, the same pattern has not been consistently observed in temperate forests. Does this reflect a latitudinal trend in the relative activity of insect herbivory in gap versus understorey environments? To date there has been no global review of the effect of light environment on insect herbivory in forests. We postulated that if temperature is the primary factor limiting insect herbivory, the effect of gaps on rates of insect herbivory should be more evident in temperate than in tropical forests; due to low growing season temperatures in the oceanic temperate forests of the Southern Hemisphere, the effect of gaps on insect herbivory rates should in turn be stronger there than in the more continental temperate climates of the Northern Hemisphere. We examined global patterns of insect herbivory in gaps versus understories through meta‐analysis of 87 conspecific comparisons of leaf damage in contrasting light environments. Overall, insect herbivory in gaps was significantly higher than in the understorey; insect herbivory was 50% higher in gaps than in understoreys of tropical forests but did not differ significantly between gaps and understories in temperate forests of either hemisphere. Results are consistent with the idea that low resource availability – and not temperature – limits insect herbivore activity in forest understoreys, especially in the tropics, and suggest the selective influence of insect herbivory on late‐successional tree species may have been over‐estimated. 相似文献
17.
Are tree trunks habitats or highways? A comparison of oribatid mite assemblages from hoop-pine bark and litter 总被引:2,自引:0,他引:2
Heather C Proctor † Kay M Montgomery Kate E Rosen Roger L Kitching 《Australian Journal of Entomology》2002,41(4):294-299
Abstract Oribatid mites (Acari: Oribatida) are among the most diverse and abundant inhabitants of forest soil and litter, but also have species-rich assemblages on bark and in the canopies of trees. It is unclear whether the trunk of a tree acts simply as a 'highway' for movement of mites into and out of the canopy, or whether the trunk has a distinctive acarofauna. We compare oribatid assemblages from the trunk bark of hoop pine ( Araucaria cunninghamii ) with those from litter collected beneath the same trees. A 1.0 by 0.5 m area of bark was sampled from three trees at each of five sites using a knockdown insecticide. A 1-L sample of leaf litter was collected as close as possible to the base of each sampled tree. Mites were extracted using Tullgren funnels, identified to genus and morphospecies, and counted. Assemblages were almost 100% distinct, with only one oribatid morphospecies ( Pseudotocepheus sp.) collected from both litter and bark. Litter had a higher taxon richness than bark in total and per sample, but oribatids made up a greater percentage of the acarofauna in the bark samples. We had expected that the more consistent physical substrate of bark would be reflected in greater similarity of oribatid faunas on trunks than in litter; however, the opposite proved to be the case. We conclude that hoop-pine trunks are habitats rather than highways for oribatid mites. Based on the observed higher turnover among bark faunas, tree trunks may represent habitat islands whose colonisation by particular oribatid species is more stochastic than that of the more continuous 'sea' of litter. 相似文献
18.
19.
The rodents predation intensity and discrimination ability toward the predispersal beechnuts (Fagus crenata) were investigated using a tree tower in a beech forest, central Japan in 1999 and 2000. In this stand, using seed traps, the densities of fallen viable nuts were 35.1m–2 in 1999 and 8.4m–2 in 2000. The vertebrate-damaged nuts had fallen 5.6 and 2.2m–2 in 1999 and 2000, respectively. Yet, the crop of viable nuts in 1999 was not so rich as that in a mast year. In 1999, predispersal predation by rodents was recognized at 16–19m above ground through the bagging experiment. In 2000, there were no predispersal predation and yet we captured Apodemus argenteus three times and Glirulus japonicus frequently on the tree. Judging from the facts of their feeding behaviors and the tooth scars left on the cupules and nuts, Apodemus argenteus might have been more responsible for predation to the predispersal beechnuts rather than Glirulus japonicus. Apodemus argenteus population seemed to be abundant on the ground in both years. If the main agent of predispersal predator were Apodemus argenteus, their number shifted to the canopy would be much larger in 1999 than in 2000 according as the crop of viable nuts. In an additional experiment, rodents preferred intact cupules to insect-damaged cupules on the tree, suggesting that they discriminated the quality of the predispersal nuts, even in the cupule stage, through olfactory and/or visual senses. Thus, predispersal nut predation by rodents was prevalent during the limited period in autumn. 相似文献