首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
ABSTRACT

Antimetabolites are incorporated into DNA and RNA, affecting their function. Liquid-chromatography-mass-spectrometry (LC-MS-MS) permits the sensitive, selective analysis of normal nucleosides. The method was adapted to measure the incorporation of deoxyuridine, gemcitabine (difluorodeoxycytidine), its metabolite difluorodeoxyuridine (dFdU), and the novel compound fluorocyclopentenylcytosine (RX3117). DNA was degraded to its deoxynucleotides for quantification by LC-MS-MS, gradient chromatography on a Phenomenex prodigy-3-ODS with positive ionization. The range of deoxyuridine DNA-mis-incorporation varied nine-fold in 27 cell lines (leukemia, colon, ovarian, lung cancer). At low-folate conditions a 2.1-fold increase in deoxyuridine was observed. Global methylation (given as % 5-methyl-deoxycytidine) was comparable between the cell lines (4.6–6.5%). Exposure of A2780 cells to 1 μM gemcitabine (4 hours) resulted in 3.6 pmol gemcitabine/μg DNA, but in AG6000 cells (deoxycytidine-kinase-deficient) no incorporation was found. However, when A2780, AG6000, or CCRF-CEM cells were exposed to 100 μM dFdU we found it as gemcitabine, 20.5, 19.6, and 0.51 pmol gemcitabine/μg DNA, respectively. Preincubation of CCRF-CEM cells with cyclopentenyl-cytosine (a CTP-synthetase inhibitor) increased dFdU incorporation four-fold. Apparently dFdU is activated independently of deoxycytidine-kinase and possibly converted in-situ to dFdCMP. RX3117 was incorporated into both DNA and RNA (0.0037 and 0.00515 pmol/μg, respectively). In summary, a sensitive method to quantify the incorporation of gemcitabine, deoxyuridine, and RX-3117 was developed, which revealed that dFdU was incorporated into DNA as the parent compound gemcitabine.  相似文献   

2.
The bioactivity of a CpG-containing phosphorothioate DNA oligonucleotide with thermolytic 2-(N-formyl-N-methylamino)ethyl (fma) thiophosphate groups in mice led us to investigate the parameters affecting the internalization of these thermosensitive DNA prodrugs in various cell lines. Flow cytometry and confocal microscopy analyses indicate that 5′-fluoresceinated fma-phosphorothioate DNA sequences are poorly internalized in Vero, HeLa and GC-2 cells. However, when four fma-thiophosphate groups of a 15-nucleotide long oligothymidylate prodrug are replaced with 3-(N,N-dimethylamino)prop-1-yl thiophosphate functions, internalization of the positively charged prodrug, under physiological conditions, increased fourfold in HeLa and 40-fold in Vero or GC-2 cells. No cytotoxic effects are observed in Vero cells even at an extracellular prodrug concentration of 50 μM over a period of 72 h. Confocal microscopy studies show that internalization of the positively charged oligothymidylate prodrug in Vero cells is time-dependent with early trafficking of the DNA sequence through endosomal vesicles and, eventually, to the nucleus of the cells. Thus, the incorporation of four 3-(N,N-dimethylamino)prop-1-yl thiophosphate groups into thermosentive fma-phosphorothioate DNA prodrugs is an attractive strategy for efficient cellular internalization of these nucleic acid-based drugs for potential therapeutic indications.  相似文献   

3.
Gmeiner WH 《Biopolymers》2002,65(3):180-189
Antimetabolites are a class of effective anticancer drugs that structurally resemble naturally occurring biochemicals and interfere in essential biochemical processes. In this review, the recent literature describing investigations of the structural and thermodynamic basis for the anticancer activity of three antipyrimidines [1-beta-D-arabinofuranosyl cytidine (AraC). 2',2'-difluoro deoxycytidine (dFdC), and 5-fluoro-2'-deoxyuridine (FdUrd)] is summarized. Our laboratory, and others, have shown that misincorporation of any of these three antipyrimidines into DNA perturbs the structure and decreases the stability of duplex DNA. These data are useful for rationalizing the effects of antipyrimidine misincorporation on the activities of proteins required for DNA replication and repair such as DNA topoisomerase 1 and DNA polymerases. The studies completed to date and summarized in this review demonstrate the utility of investigations into the structure-function relationships between antipyrimidine-substituted DNA complexed with DNA-modifying proteins for the purpose of understanding the basis for effective antipyrimidine cancer chemotherapy and the future design of novel anticancer drugs.  相似文献   

4.
Two pyridine analogues of the metal complexing region of the anticancer drug bleomycin and two related but deactivated prodrugs have been linked to a 2,6-diphenylpyridine derivative as a DNA binding unit. The 2,6-diphenylpyridine system is structurally related to known amplifiers of the cytotoxicity of bleomycin. The conjugates were found to bind to DNA more strongly than bleomycin-A2 and were more cytotoxic than the corresponding compounds lacking the DNA binding unit. On exposure of a mixture of cells and prodrugs to hypoxia and then air, the prodrug containing the nitrohistidine unit was not bioreductively activated but the prodrug having an N-oxide group was bioreductively activated. This result represents a novel approach to the improvement of the therapeutic ratio of bleomycin analogues.  相似文献   

5.
Gemcitabine (dFdC) is a cytidine analog remarkably active against a wide range of solid tumors. Inside a cell, gemcitabine is phosphorylated by deoxycytidine kinase to yield gemcitabine monophosphate, further converted to gemcitabine di- and triphosphate. The most frequent form of acquired resistance to gemcitabine in vitro is the deoxycytidine kinase deficiency. Thus, proper prodrugs carrying the 5′-pdFdC moiety may help to overcome this problem. A series of new derivatives of gemcitabine possessing N-acyl(thio)phosphoramidate moieties were prepared and their cytotoxic properties were determined. N-Acyl-phosphoramidate derivatives of gemcitabine have similar cytotoxicity as gemcitabine itself, and have been found accessible to the cellular enzymes. The nicotinic carboxamide derivative of gemcitabine 5′-O-phosphorothioate occurred to be the best inhibitor of bacterial DNA polymerase I and human DNA polymerase α.  相似文献   

6.
BACKGROUND: The most extensively investigated strategy of suicide gene therapy for treatment of cancer is the transfer of the herpes simplex virus thymidine kinase (HSV-TK) gene followed by administration of antiviral prodrugs such as acyclovir (ACV) and ganciclovir (GCV). The choice of the agent that can stimulate HSV-TK enzymatic activity is one of the determinants of the usefulness of this strategy. Previously, we found that a diterpenoid, scopadulciol (SDC), produced a significant increase in the active metabolite of ACV. This suggests that SDC may play a role in the HSV-TK/prodrug administration system. METHODS: The anticancer effect of SDC was evaluated in HSV-TK-expressing (TK+) cancer cells and nude mice bearing TK+ tumors. In vitro and in vivo enzyme assays were performed using TK+ cells and tumors. The phosphorylation of ACV monophosphate (ACV-MP) was measured in TK- cell lysates. The pharmacokinetics of prodrugs was evaluated by calculating area-under-the-concentration-time-curve values. RESULTS: SDC stimulated HSV-TK activity in TK+ cells and tumors, and increased GCV-TP levels, while no effect of SDC was observed on the phosphorylation of ACV-MP to ACV-TP by cellular kinases. The SDC/prodrug combination altered the pharmacokinetics of the prodrugs. In accord with these findings, SDC enhanced significantly the cell-killing activity of prodrugs. The bystander effect was also significantly augmented by the combined treatment of ACV/GCV and SDC. CONCLUSIONS: SDC was shown to be effective in the HSV-TK/prodrug administration system and improved the efficiency of the bystander effect of ACV and GCV. The findings will be considerably valuable with respect to the use of GCV in lower doses and less toxic ACV. This novel strategy of drug combination could provide benefit to HSV-TK/prodrug gene therapy.  相似文献   

7.
Four novel water-soluble peptide-paclitaxel conjugates were designed and synthesized as prostate-specific antigen (PSA)-activated prodrugs for prostate cancer therapy. These prodrugs were composed of a peptide, HSSKLQ or SSKYQ, each of which is selectively cleavable by PSA; a self-immolative linker, either para-aminobenzyl alcohol (PABS) or ethylene diamine (EDA); and the parent drug, paclitaxel. Introduction of a PABA or EDA linker between the peptide and paclitaxel in prodrugs 2-5 resulted in products with an increased rate of hydrolysis by PSA. The stability of prodrugs 2 and 3, with the PABA linker, was poor in the serum-containing medium because of the weak carbonate bond between the PABA and paclitaxel; however, this disadvantage was overcome by introducing a carbamate bond using an EDA linker in prodrugs 4 and 5. Thus, the incorporation of an EDA linker increased both the stability and PSA-mediated activation of these prodrugs. The cytotoxicity of each prodrug, as compared to paclitaxel, was determined against a variety of cell lines, including the PSA-secreting CWR22Rv1 prostate cancer cell line. The EDA-derived prodrug of paclitaxel 5 was stable and capable of being efficiently converted to an active drug that killed cells specifically in the presence of PSA, suggesting that this prodrug and similarly designed PSA-cleavable prodrugs may have potential as prostate cancer-specific therapeutic agents.  相似文献   

8.
The anticancer activity of cytarabine (AraC) and gemcitabine (dFdC) is thought to result from chain termination after incorporation into DNA. To investigate their incorporation into DNA at atomic level resolution, we present crystal structures of human DNA polymerase λ (Pol λ) bound to gapped DNA and containing either AraC or dFdC paired opposite template dG. These structures reveal that AraC and dFdC can bind within the nascent base pair binding pocket of Pol λ. Although the conformation of the ribose of AraCTP is similar to that of normal dCTP, the conformation of dFdCTP is significantly different. Consistent with these structures, Pol λ efficiently incorporates AraCTP but not dFdCTP. The data are consistent with the possibility that Pol λ could modulate the cytotoxic effect of AraC.  相似文献   

9.
10.
TAS-103 is a novel anticancer drug that kills cells by increasing levels of DNA cleavage mediated by topoisomerase II. While most drugs that stimulate topoisomerase II-mediated DNA scission (i.e., topoisomerase II poisons) also inhibit the catalytic activity of the enzyme, they typically do so only at concentrations above the clinical range. TAS-103 is unusual in that it reportedly inhibits the catalytic activity of both topoisomerase I and II and does so at physiologically relevant concentrations [Utsugi, T., et al. (1997) Jpn. J. Cancer Res. 88, 992-1002]. Without a topoisomerase activity to relieve accumulating torsional stress, the DNA tracking systems that promote the action of TAS-103 as a topoisomerase II poison would be undermined. Therefore, the effects of TAS-103 on the catalytic activity of topoisomerase I and II were characterized. DNA binding and unwinding assays indicate that the drug intercalates into DNA with an apparent dissociation constant of approximately 2.2 microM. Furthermore, DNA strand passage assays with mammalian topoisomerase I indicate that TAS-103 does not inhibit the catalytic activity of the type I enzyme. Rather, the previously reported inhibition of topoisomerase I-catalyzed DNA relaxation results from a drug-induced alteration in the apparent topology of the nucleic acid substrate. TAS-103 does inhibit the catalytic activity of human topoisomerase IIalpha, apparently by blocking the DNA religation reaction of the enzyme. The lack of inhibition of topoisomerase I catalytic activity by TAS-103 explains how the drug is able to function as a topoisomerase II poison in treated cells.  相似文献   

11.
Several attempts have been made over the past decade to explore the concept of prodrug strategies that exploit PSA as a molecular target for the release of anticancer drugs in prostate tumors using various prostate specific antigen (PSA)-cleavable peptide linkers, but the desired antitumor and antimetastatic efficacy has not yet been fully achieved. We set out to look for new PSA-cleavable peptide substrates that could be cleaved more rapidly and efficiently than the previously used peptides. To look for the most susceptible PSA-cleavable peptide substrates, we used the so-called spot technology. With the following general formula, we designed 25 different fluorogenic heptapeptides; Cellulose-P5-P4-P3-P2-P1-P1′-P2’ (Fluorophore). The increase of the fluorescence in the supernatant of the reaction mixture was monitored using a 96-well fluorometric plate reader with excitation of λex 485 nm and λem 535 nm. Three sequences showed a high fluorogenic liberation after incubation with PSA, i.e., Arg-Arg-Leu-His-Tyr-Ser-Leu (7), Arg-Arg-Leu-Asn-Tyr-Ser-Leu (8) and Arg-Ser-Ser-Tyr-Arg-Ser-Leu (23). Future incorporation of these optimized substrates in the PSA-cleavable prodrug formulations could further optimize the cleavage pattern and so the release characteristics of these prodrugs to rapidly and efficiently liberate the free cytotoxic agents inside the tumor tissues.  相似文献   

12.
5'-Phosphorylation, catalyzed by human deoxycytidine kinase (dCK), is a crucial step in the metabolic activation of anticancer and antiviral nucleoside antimetabolites, such as cytarabine (AraC), gemcitabine, cladribine (CdA), and lamivudine. Recently, crystal structures of dCK (dCKc) with various pyrimidine nucleosides as substrates have been reported. However, there is no crystal structure of dCK with a bound purine nucleoside, although purines are good substrates for dCK. We have developed a model of dCK (dCKm) specific for purine nucleosides based on the crystal structure of purine nucleoside bound deoxyguanosine kinase (dGKc) as the template. dCKm is essential for computer aided molecular design (CAMD) of novel anticancer and antiviral drugs that are based on purine nucleosides since these did not bind to dCKc in our docking experiments. The active site of dCKm was larger than that of dCKc and the amino acid (aa) residues of dCKm and dCKc, in particular Y86, Q97, D133, R104, R128, and E197, were not in identical positions. Comparative docking simulations of deoxycytidine (dC), cytidine (Cyd), AraC, CdA, deoxyadenosine (dA), and deoxyguanosine (dG) with dCKm and dCKc were carried out using the FlexX docking program. Only dC (pyrimidine nucleoside) docked into the active site of dCKc but not the purine nucleosides dG and dA. As expected, the active site of dCKm appeared to be more adapted to bind purine nucleosides than the pyrimidine nucleosides. While water molecules were essential for docking experiments using dCKc, the absence of water molecules in dCKm did not affect the ability to correctly dock various purine nucleosides.  相似文献   

13.
The escape of encapsulated anticancer drugs from liposomes by passive diffusion often leads to suboptimal drug concentrations in the cancer tissue, therefore calling for effective trigger mechanisms to release the drug at the target. We investigated mixtures of lipid components that not only form stable liposomes, but also can be turned into active drugs by secretory phospholipase A? (sPLA?), an enzyme that is upregulated in various cancer cells, without the necessity for conventional liposome drug loading. The liposomes are composed of a novel lipid-based retinoid prodrug premixed with saturated phospholipids. The prodrug is found to be miscible with phospholipids, and the lipid mixtures are shown to form liposomes with the desired size distribution. The preparation procedure, phase behavior, and physicochemical properties of the formed liposomes are described as a function of lipid composition. We show that the premixing of the prodrug with phospholipids can be used to modify the physicochemical properties of liposomal formulations. The results should prove useful for further exploration of the potential for using these novel lipid prodrugs in liposomal formulations for cancer treatment.  相似文献   

14.
The enzyme deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase) is responsible for the control of intracellular levels of dUTP thus controlling the incorporation of uracil into DNA during replication. Trypanosomes and certain eubacteria contain a dimeric dUTP-dUDPase belonging to the recently described superfamily of all-alpha NTP pyrophosphatases which bears no resemblance with typical eukaryotic trimeric dUTPases and presents unique properties regarding substrate specificity and product inhibition. While the biological trimeric enzymes have been studied in detail and the human enzyme has been proposed as a promising novel target for anticancer chemotherapeutic strategies, little is known regarding the biological function of dimeric proteins. Here, we show that in Trypanosoma brucei, the dimeric dUTPase is a nuclear enzyme and that down-regulation of activity by RNAi greatly reduces cell proliferation and increases the intracellular levels of dUTP. Defects in growth could be partially reverted by the addition of exogenous thymidine. dUTPase-depleted cells presented hypersensitivity to methotrexate, a drug that increases the intracellular pools of dUTP, and enhanced uracil-DNA glycosylase activity, the first step in base excision repair. The knockdown of activity produces numerous DNA strand breaks and defects in both S and G2/M progression. Multiple parasites with a single enlarged nucleus were visualized together with an enhanced population of anucleated cells. We conclude that dimeric dUTPases are strongly involved in the control of dUTP incorporation and that adequate levels of enzyme are indispensable for efficient cell cycle progression and DNA replication.  相似文献   

15.
The in vitro modulating effect of Cyclopentenyl cytosine (CPEC) on the metabolism of gemcitabine was studied in lymphocytic and myeloid leukemic cell‐lines. In MOLT‐3 cells, that were pretreated with CPEC, the incorporation of 2′,2′‐difluoro‐2′‐deoxycytidine triphosphate (dFdCTP) into DNA was significantly increased by 57–99% in comparison with cells that were only treated with gemcitabine. The increased incorporation of dFdCTP into DNA in CPEC pretreated cells was paralleled by an increase in apoptotic and necrotic cells of 17–34%. In HL‐60 cells that were preincubated with CPEC, increased concentrations of the mono‐/di‐ and triphosphate form of gemcitabine were observed, as well as an increased incorporation of dFdCTP into DNA (+ 773%). This increased incorporation was paralleled by a significant increase in apoptosis and necrosis. We conclude that CPEC enhances the incorporation of dFdCTP into DNA and thus increases the cytotoxicity of gemcitabine in lymphocytic and myeloid leukemic cell‐lines.  相似文献   

16.
Antibody-directed enzyme prodrug therapy (ADEPT) utilizing β-glucuronidase is a promising method to enhance the therapeutic index of cancer chemotherapy. In this approach, an immunoenzyme (antibody-β-glucuronidase fusion protein) is employed to selectively activate anticancer glucuronide prodrugs in the tumor microenvironment. A major roadblock to the clinical translation of this therapeutic strategy, however, is the low enzymatic activity and strong immunogenicity of the current generation of immunoenzymes. To overcome this problem, we fused a humanized single-chain antibody (scFv) of mAb CC49 to S2, a human β-glucuronidase (hβG) variant that displays enhanced catalytic activity for prodrug hydrolysis. Here, we show that hcc49-S2 displayed 100-fold greater binding avidity than hcc49 scFv, possessed greater enzymatic activity than wild-type hβG, and more effectively killed antigen-positive cancer cells exposed to an anticancer glucuronide prodrug as compared to an analogous hβG immunoenzyme. Treatment of tumor-bearing mice with hcc49-S2 followed by prodrug significantly delayed tumor growth as compared to hcc49-hβG. Our study shows that hcc49-S2 is a promising targeted enzyme for cancer treatment and demonstrates that enhancement of human enzyme catalytic activity is a powerful approach to improve immunoenzyme efficacy.  相似文献   

17.
Deoxyuridine triphosphate nucleotidohydrolase (dUTPase), a ubiquitous enzyme preventing a deleterious incorporation of uracil into DNA, has been thought of as a novel target for anticancer and antiviral drug design. The interaction of Plasmodium falciparum dUTPase (PfdUTPase) with deoxyuridine derivatives (dU, dUMP, dUDP and dUpNHpp) has been studied thermodynamically by both isothermal titration and differential scanning calorimetry. ITC shows no cooperativity for the binding of these derivatives. Dependencies in the binding thermodynamic parameters (enthalpy, entropy and Gibbs energy changes) with the number of phosphate groups in the nucleotide are obtained, and from the heat capacity changes no significant conformational changes upon binding are inferred. DSC shows PfdUTPase trimer is very stable but denatures irreversibly, with a more complex denaturation profile than other homologous trimeric dUTPases. The presence of magnesium ions does not influence the denaturation profile, while the presence of deoxyuridine derivatives increases the stability. The increase depends upon nucleotide concentration and type, with dUDP having the greater effect.  相似文献   

18.
The clinical application of Pt-based anticancer drugs has inspired the development of novel chemotherapeutic metallodrugs with improved efficacies. Pt(IV) prodrugs are one of the most promising successors of Pt(II) drugs and have displayed great anticancer performance. In particular, judicious modification of axial ligands endows Pt(IV) complexes with unique properties that enable them to overcome the limitations of conventional Pt(II) drugs. Herein, we summarize recent developments in Pt(IV) anticancer complexes, with a focus on their axial functionalization with other anticancer agents, immunotherapeutic agents, photosensitive ligands, peptides, and theranostic agents. We hope that this concise view of recently reported Pt(IV) coordination complexes will help researchers to design next-generation multi-functional anticancer agents based on a comprehensive Pt(IV) platform.  相似文献   

19.
Self-immolative dendritic prodrugs, activated through a single catalytic reaction by a specific enzyme, could offer significant advantages in inhibition of tumor growth relative to monomeric prodrug, especially if the targeted or secreted enzyme exists at relatively low levels in the malignant tissue. We have designed and synthesized new AB(3) self-immolative dendritic prodrug system that releases three active drugs by a single cleavage of the enzyme penicillin-G-amidase. The cleavage signal is transferred from the dendron focal point to its periphery through fast elimination reactions and the design leads to three-fold signal amplification. In cell-growth inhibition assays, the elimination-based AB(3) self-immolative dendritic prodrug was significantly more effective than a cyclization-based AB(3) dendritic prodrug.  相似文献   

20.
Human deoxycytidine kinase (dCK) phosphorylates the natural deoxyribonucleosides deoxycytidine (dC), deoxyguanosine (dG) and deoxyadenosine (dA) and is an essential enzyme for the phosphorylation of numerous nucleoside analog prodrugs routinely used in cancer and antiviral chemotherapy. For many of these compounds, the phosphorylation step catalyzed by dCK is the rate-limiting step in their overall activation pathway. To determine the factors that limit the phosphorylation efficiency of the prodrug, we solved the crystal structure of dCK to a resolution of 1.6 A in complex with its physiological substrate deoxycytidine and with the prodrugs AraC and gemcitabine. The structures reveal the determinants of dCK substrate specificity. Especially relevant to new prodrug development is the interaction between Arg128 and the hydrogen-bond acceptor at the sugar 2'-arabinosyl position of AraC and gemcitabine. On the basis of the structures, we designed a catalytically superior dCK variant that could be used in suicide gene-therapy applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号