首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A detailed understanding of the anatomical and mechanical environment in the intervertebral disc at the scale of the cell is necessary for the design of tissue engineering repair strategies and to elucidate the role of mechanical factors in pathology. The objective of this study was to measure and compare the macroscale to microscale strains in the outer annulus fibrosus in various cellular regions of intact discs over a range of applied flexion. Macroscale strains were measured on the annulus fibrosus surface, and contrasted to in situ microscale strains using novel confocal microscopy techniques for dual labeling of the cell and the extracellular matrix. Fiber oriented surface strains were significantly higher than in situ fiber strains, which implies a mechanism of load redistribution that minimizes strain along the fibers. Non-uniformity of the strains and matrix distortion occurred immediately and most interestingly varied little with increase in flexion (3–16°), suggesting that inter-fiber shear is important in the initial stages of strain redistribution. Fiber oriented intercellular strains were significantly larger and compressive compared to in situ strains in other regions of the extracellular matrix indicating that the mechanical environment in this region may be unique. Further examination of the structural morphology in this pericellular region is needed to fully understand the pathway of strain transfer from the tissue to the cell. This study provides new knowledge on the complex in situ micro-mechanical environment of the annulus fibrosus that is essential to understanding the mechanobiological behavior of this tissue.  相似文献   

2.
We here describe intercellular calcium waves as a novel form of cellular communication among thymic epithelial cells. We first characterized the mechanical induction of intercellular calcium waves in different thymic epithelial cell preparations: cortical 1-4C18 and medullary 3-10 thymic epithelial cell lines and primary cultures of thymic "nurse" cells. All thymic epithelial preparations responded with intercellular calcium wave propagation after mechanical stimulation. In general, the propagation efficacy of intercellular calcium waves in these cells was high, reaching 80-100% of the cells within a given confocal microscopic field, with a mean velocity of 6-10 µm/s and mean amplitude of 1.4- to 1.7-fold the basal calcium level. As evaluated by heptanol and suramin treatment, our results suggest the participation of both gap junctions and P2 receptors in the propagation of intercellular calcium waves in thymic nurse cells and the more prominent participation of gap junctions in thymic epithelial cell lines. Finally, in cocultures, the transmission of intercellular calcium wave was not observed between the mechanically stimulated thymic epithelial cell and adherent thymocytes, suggesting that intercellular calcium wave propagation is limited to thymic epithelial cells and does not affect the neighboring thymocytes. In conclusion, these data describe for the first time intercellular calcium waves in thymic epithelial cells and the participation of both gap junctions and P2 receptors in their propagation. gap junctions; connexin43; P2 receptors; intercellular communication  相似文献   

3.
间隙连接广泛分布于各种组织细胞中,由其构成的通道允许小分子信号物质在相邻细胞间直接传递,在细胞间的通讯方面起着非常重要的作用。间隙连接由连接蛋白(Cx)组成,目前已经发现Cx家族有20多个成员[1],它们在相邻细胞间组成同种或异种间隙连接,调控着细胞的增殖和分化。在哺乳动物卵泡发育过程中,卵母细胞与周围的颗粒细胞之间形成的缝隙连接,介导胞间通讯,对生殖细胞迁移、卵母细胞减数分裂能力恢复、颗粒细胞分层、卵泡成腔、黄体形成、促性腺激素信号传递有非常重要的调节作用。本文根据近年来相关的研究报道,对卵泡发育过程中间隙连接的作用进行综述。  相似文献   

4.
Connexins and their channels in cell growth and cell death   总被引:7,自引:0,他引:7  
Direct communication between cells, mediated by gap junctions, is nowadays considered as an indispensable mechanism in the maintenance of cellular homeostasis. In fact, gap junctional intercellular communication is actively involved in virtually all aspects of the cellular life cycle, ranging from cell growth to cell death. For a long time, it was believed that this was merely a result of the capacity of gap junctions to control the direct intercellular exchange of essential cellular messengers. However, recent data show that the picture is more complicated than initially thought, as structural precursors of gap junctions, connexins and gap junction hemichannels, can affect the cellular homeostatic balance independently of gap junctional intercellular communication. In this paper, we summarize the current knowledge concerning the roles of connexins and their channels in the control of cellular homeostasis, with the emphasis on cell growth and cell death. We also briefly discuss the role of gap junctional intercellular communication in carcinogenesis and the potential use of connexins as tools for cancer therapy.  相似文献   

5.
6.
桥粒为细胞与细胞之间的一种连接结构,参与细胞间机械应力传导. 在心肌组织中,桥粒与粘着连接及缝隙连接共同构成闰盘,对于维护心肌闰盘结构和功能的完整性具有重要作用. 近年来,越来越多的研究表明,桥粒蛋白基因突变、表达的缺失或功能异常,可引起心肌细胞钠、钾离子通道、缝隙连接蛋白等心肌电活动相关结构的重塑,增加心肌电学异质性,进而促发心律失常. 本文将就桥粒蛋白与离子转运相关通道关系的最新研究进展进行综述.  相似文献   

7.
Intercellular communication via gap junctions plays a critical role in numerous cellular processes, including the control of cell growth and differentiation, maintenance of tissue homeostasis and embryonic development. Gap junctions are aggregates of intercellular channels that enable adjacent cells in solid tissues to directly exchange ions and small molecules. These channels are formed by a family of integral membrane proteins called connexins, of which the best studied is connexin43. Connexins have a high turnover rate in most tissue types, and degradation of connexins is considered to be a tightly regulated process. Post-translational modification of connexins by ubiquitin is emerging as an important event in the regulation of connexin degradation. Ubiquitination is involved in endoplasmic reticulum-associated degradation of connexins as well as in trafficking of connexins to lysosomes. At both the endoplasmic reticulum and the plasma membrane, ubiquitination of connexins is strongly affected by changes in the extracellular environment. There is increasing evidence that the regulation of connexin ubiquitination might be an important mechanism for rapidly modifying the level of functional gap junctions at the plasma membrane, under both normal and pathological conditions. This review discusses the current knowledge about the regulation of intercellular communication via gap junctions by ubiquitination of connexins.  相似文献   

8.
The connexins constitute a family of integral membrane proteins that form intercellular channels, enabling adjacent cells in solid tissues to directly exchange ions and small molecules. These channels assemble into distinct plasma membrane domains known as gap junctions. Gap junction intercellular communication plays critical roles in numerous cellular processes, including control of cell growth and differentiation, maintenance of tissue homeostasis and embryonic development. Gap junctions are dynamic plasma membrane domains, and there is increasing evidence that modulation of endocytosis and post-endocytic trafficking of connexins are important mechanisms for regulating the level of functional gap junctions at the plasma membrane. The emerging picture is that multiple pathways exist for endocytosis and sorting of connexins to lysosomes, and that these pathways are differentially regulated in response to physiological and pathophysiological stimuli. Recent studies suggest that endocytosis and lysosomal degradation of connexins is controlled by a complex interplay between phosphorylation and ubiquitination. This review summarizes recent progress in understanding the molecular mechanisms involved in endocytosis and post-endocytic sorting of connexins, and the relevance of these processes to the regulation of gap junction intercellular communication under normal and pathophysiological conditions. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.  相似文献   

9.
The high level of intercellular communication mediated by gap junctions between astrocytes indicates that, besides individual astrocytic domains, a second level of organization might exist for these glial cells as they form communicating networks. Therefore,the contribution of astrocytes to brain function should also be considered to result from coordinated groups of cells. To evaluate the shape and extent of these networks we have studied the expression of connexin 43, a major gap junction protein in astrocytes, and the intercellular diffusion of gap junction tracers in two structures of the developing brain, the hippocampus and the cerebral cortex. We report that the shape of astrocytic networks depends on their location within neuronal compartments ina defined brain structure. Interestingly, not all astrocytes are coupled, which indicates that connections within these networks are restricted. As gap junctional communication in astrocytes is reported to contribute to several glial functions, differences in the shape of astrocytic networks might have consequences on neuronal activity and survival.  相似文献   

10.
Telocytes (TCs) were previously shown by our group to form a tandem with stem/progenitor cells in cardiac stem cell (CSC) niches, fulfilling various roles in cardiac renewal. Among these, the ability to ‘nurse’ CSCs in situ, both through direct physical contact (junctions) as well as at a distance, by paracrine signalling or through extracellular vesicles containing mRNA. We employed electron microscopy to identify junctions (such as gap or adherens junctions) in a co‐culture of cardiac TCs and CSCs. Gap junctions were observed between TCs, which formed networks, however, not between TCs and CSCs. Instead, we show that TCs and CSCs interact in culture forming heterocellular adherens junctions, as well as non‐classical junctions such as puncta adherentia and stromal synapses. The stromal synapse formed between TCs and CSCs (both stromal cells) was frequently associated with the presence of electron‐dense nanostructures (on average about 15 nm in length) connecting the two opposing membranes. The average width of the synaptic cleft was 30 nm, whereas the average length of the intercellular contact was 5 μm. Recent studies have shown that stem cells fail to adequately engraft and survive in the hostile environment of the injured myocardium, possibly as a result of the absence of the pro‐regenerative components of the secretome (paracrine factors) and/or of neighbouring support cells. Herein, we emphasize the similarities between the junctions described in co‐culture and the junctions identified between TCs and CSCs in situ. Reproducing a CSC niche in culture may represent a viable alternative to mono‐cellular therapies.  相似文献   

11.
Gap junction communication is an essential component in the mechanosensitive response of tenocytes. However, little is known about direct mechanoregulation of gap junction turnover and permeability. The present study tests the hypothesis that mechanical loading alters gap junction communication between tenocyte within tendon fascicles. Viable tenocytes within rat tail tendon fasicles were labelled with calcein-AM and subjected to a fluorescent loss induced by photobleaching (FLIP) protocol. A designated target cell within a row of tenocytes was continuously photobleached at 100% laser power whilst recording the fluorescent intensity of neighbouring cells. A mathematical compartment model was developed to estimate the intercellular communication between tenocytes based upon the experimental FLIP data. This produced a permeability parameter, k, which quantifies the degree of functioning gap functions between cells as confirmed by the complete inhibition of FLIP by the inhibitor 18α-glycyrrhentic acid. The application of 1N static tensile load for 10?min had no effect on gap junction communication. However, when loading was increased to 1?h, there was a statistically significant reduction in gap junction permeability. This coincided with suppression of connexin 43 protein expression in loaded samples as determined by confocal immunofluorescence. However, there was an upregulation of connexin 43 mRNA. These findings demonstrate that tenocytes remodel their gap junctions in response to alterations in mechanical loading with a complex mechanosensitive mechanism of breakdown and remodelling. This is therefore the first study to show that tenocyte gap junctions are not only important in transmitting mechanically activated signals but that mechanical loading directly regulates gap junction permeability.  相似文献   

12.
The epithelium of upper respiratory tissues such as nasal mucosa forms a continuous barrier to a wide variety of exogenous antigens. The epithelial barrier function is regulated in large part by the intercellular junctions, referred to as gap and tight junctions. However, changes of gap and tight junctions during differentiation of human nasal epithelial (HNE) cells are still unclear. In the present study, to investigate changes of gap and tight junctions during differentiation of HNE cells in vitro, we used primary human HNE cells cocultured with primary human nasal fibroblast (HNF) cells in a noncontact system. In HNE cells cocultured with HNF cells for 2 weeks, numerous elongated cilia-like structures were observed compared to those without HNF cells. In the coculture, downregulation of Cx26 and upregulation of Cx30.3 and Cx31 were observed together with extensive gap junctional intercellular communication. Furthermore, expression of the tight junction proteins claudin-1, claudin-4, occludin and ZO-2 was increased. These results suggest that switching in expression of connexins and induction of tight junction proteins may be closely associated with differentiation of HNE cells in vitro and that differentiation of HNE cells requires unknown soluble factors secreted from HNF cells.  相似文献   

13.
Thin section electron microscopy reveals two different types of membrane interactions between the fiber cells of bovine lens. Monoclonal antibodies against lens membrane protein MP70 (Kistler et al., 1985, J. Cell Biol., 101:28-35) bound exclusively to the 16-17-nm intercellular junctions. MP70 localization was most dramatic in the lens outer cortex and strongly reduced deeper in the lens. In contrast, the 12-nm double membrane structures and single membranes were consistently unlabeled. In freeze-fracture replicas with adherent cortical fiber membranes, MP70 was immunolocalized in the junctional plaques which closely resemble the gap junctions in other tissues. MP70 is thus likely to be associated with intercellular communication in the lens.  相似文献   

14.
Gap junctional communication is a universal property of metazoan animals. Biochemical, immunological, molecular biological, ultrastructural, biophysical and physiological studies of gap junctions have permitted increasingly detailed modelling of gap junctional structure and function. In spite of this progress the questions to be addressed are whether the channel is a mixed oligomer and the stoichiometry for each tissue is fixed. Also the extent of homology among gap junction proteins in different tissues and their possible regulatory function have to be clarified. As long as the different channels are not cloned and expressed, the ultrastructural correlates of the physiological concepts such as channel gating, selectivity and regulation, as well as assembly and disassembly cannot be determined. The genetic approach is in full progress. The observed differences between gap junction proteins from different tissues and the multiplicity of subunits in even one channel implies a functional specialization for gap junctions. Correlative studies on the molecular and cellular level should help to clarify the physiological meaning of intercellular communication by gap junctions.  相似文献   

15.
Gap junctions, composed of proteins from the connexin family, allow for intercellular communication between cells in essentially all tissues. There are 21 connexin genes in the human genome and different tissues express different connexin genes. Most connexins are known to be phosphoproteins. Phosphorylation can regulate connexin assembly into gap junctions, gap junction turnover and channel gating. Given the importance of gap junctions in development, proliferation and carcinogenesis, regulation of gap junction phosphorylation in response to wounding, hypoxia and other tissue insults is proving to be critical for cellular response and return to homeostasis. Connexin43 (Cx43) is the most widely and highly expressed gap junction protein, both in cell culture models and in humans, thus more research has been done on it and more reagents to it are available. In particular, antibodies that can report Cx43 phosphorylation status have been created allowing temporal examination of specific phosphorylation events in vivo. This review is focused on the use of these antibodies in tissue in situ, predominantly looking at Cx43 phosphorylation in brain, heart, endothelium and epithelium with reference to other connexins where data is available. These data allow us to begin to correlate specific phosphorylation events with changes in cell and tissue function. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.  相似文献   

16.
Summary Cells ofChironomus salivary glands communicate through intercellular connections of high permeability. Electron micrographs of salivary glands show two kinds of junctions between the membranes of adjacent cells, which may be responsible for cell coupling: septate junctions and close membrane junctions.A large fraction of lateral cell surfaces is occupied by septate junctions, while the area of close membrane junctions appears to be very small. Consequently septate junctions have been considered as likely sites for intercellular coupling. There are however some indications that intercellular communication is provided by structures which seem to be unstable. As osmotic effects are among the factors which can disrupt cellular communications, we have tried to eliminate possible effects of the fixing solutions on the ultrastructure of intercellular connections by using isoosmotic fixatives. Under these conditions large regions of close membrane junctions of the nexus kind have been observed to occur between gland cells. They are of similar size as septate junctions. It seems to be possible that as in other communicating cell systems nexus could be the sites for intercellular coupling of salivary gland cells.The authors would like to thank Prof. Dr. H. Leonhardt, Institut für Anatomie I, Homburg, for the use of his electron microscope (Zeiss EM 9-DFG grant LE 69–8) during part of this work and Prof. Dr. H. Kroeger, Institut für Genetik, Saarbrücken for the supply withChironomus larvae.  相似文献   

17.
Summary Developmental changes in the distribution of gap junctions in early, mid and late third larval stage wing discs and in pupariation+6 h and pupariation+24 h stage wing discs fromDrosophila melanogaster were analyzed by quantitative electron microscopy. Gap junctions occur in all 12 intradisc regions examined in each of the five developmental stages. Their distribution is non-random and changes during development which suggests that they are developmentally regulated. The gap junctions are not static structures, rather they grow and regress during development. The changes tend to be gradual ones without sudden increases or decreases. Gap junctions continuously form and grow in size throughout the third larval stage and during the first 6 h following pupariation. Their surface density, number, percent of the lateral plasma membrane area, and absolute area as well as the lateral plasma membrane surface density all increase during this time. Between pupariation+ 6 h and pupariation+24 h all but one of these parameters decrease indicative of gap junctional breakdown. Gap junctions are most numerous and change least during development in the apical cell regions where intercellular contacts are close and stable. They change most in the basal cell regions where intercellular contacts tend to be looser and change during development. The most dramatic change is in the absolute area which increases by a factor of 23 between the early third larval stage and pupariation+24 h. At pupariation the rate of gap junction growth undergoes a transient increase before the phase of disassembly begins. Developmental changes in gap junction surface density are closely coupled with changes in the lateral plasma membrane surface density which suggests that these may be coregulated. Evidence from mutants suggests that when the number and density of gap junctions fail to increase in proportion to lateral plasma membrane growth, wing disc development will be abnormal. Our results support the idea that some minimum gap junction density is required for normal development and that this must increase as development proceeds. The results are consistent with the notion that gap junctions are involved in pattern formation and growth control and are discussed with respect to the acquisition of competence for metamorphosis, disc growth, disc morphogenesis and changes in the hormonal environment.  相似文献   

18.
Gap junction-mediated intercellular communications are thought to transduce the effects of mechanical strain from osteocytes to cells on the bone surface to initiate remodeling. To determine whether gap junctions may co-ordinate the effects of mechanical loading, osteocyte-like MLO-Y4 cells were exposed to fluid flow-imposed shear stress. After exposure of MLO-Y4 to fluid flow, intercellular coupling increased in direct proportion to shear stress level. Interestingly, this stimulation is further enhanced during the post-stress period, indicating that released factors) is likely to be involved. The conditioned medium obtained from the fluid flow treated MLO-Y4 cells induced an increase in the number of functional gap junctions and Cx43 protein when added to non-sheer-stressed cells. Fluid flow was found to induce prostaglandin E2 (PGE2) release and increase cyclooxygenase 2 (COX-2) expression. When PGE2 was depleted from the fluid flow conditioned medium, the stimulatory effect on gap junctions was significantly decreased. Addition of the COX inhibitor indomethacin partially blocked the stimulatory effects of mechanical strain on gap junctions. Together, these studies suggest that the stimulatory effect of fluid flow on gap junctions is mediated in part by de novo synthesis and release of PGE2. Gap junctions may serve as channels for the signals generated by osteocytes in response to mechanical loading.  相似文献   

19.
Migration of lymphocytes across the endothelium of central or peripheral tissues, a process occurring following activation or differentiation, involves cell to cell interactions featuring adhesion and heterotypic signalling 'cross-talk'. Since lymphocytes and endothelial cells express connexins, the subunit proteins of gap junction intercellular channels, we investigated whether these channels feature in heterotypic signalling during transendothelial migration of lymphocytes. We show, using FACS analysis, that calcein, a gap junction permeant fluorescent dye, was transferred from endothelial cell layers to lymphocytes. The gap junction involvement in intercellular dye transfer was reinforced by studies showing that the process was inhibited by connexin mimetic peptides, a new class of reagents shown to block gap junction communication. Further evidence for the involvement of lymphocyte gap junctions in intercellular communication during transendothelial migration was obtained by two-photon laser scanning microscopy. Although gap junctional communication was inhibited by connexin mimetic peptides, they had little influence on the transmigration process.  相似文献   

20.
In situ intercellular strains in the outer annulus fibrosus of bovine caudal discs were determined under two states of biaxial strain. Confocal microscopy was used to track and capture images of fluorescently labelled nuclei at applied Lagrangian strains in the axial direction (E(A)(S)) of 0%, 7.5% and 15% while the circumferential direction (E(C)(S)) was constrained to either 0% or -2.5%. The position of the nuclear centroids were calculated in each image and used to investigate the in situ intercellular mechanics of both lamellar and interlamellar cells. The intercellular Lagrangian strains measured in situ were non-uniform and did not correspond with the biaxial Lagrangian strains applied to the tissue. A row-oriented analysis of intercellular unit displacements within the lamellar layers found that the magnitudes of unit displacements between cells along a row (delta;(II)) were small (|delta;(IIavg)|=1.6% at E(C)(S)=0%, E(A)(S)=15%; |delta;(IIavg)|=3.0% at E(C)(S)=-2.5%, E(A)(S)=15%) with negative unit displacements occurring greater than one-third of the time. Evidence of interlamellar shear and increased intercellular Lagrangian strains among the cells within the interlamellar septa suggested that their in situ mechanical environment may be more complex. The in situ intercellular strains of annular cells were strongly dependent upon the local structure and behaviour of the extracellular matrix and did not correspond with applied tissue strains. This knowledge has immediate relevance for in vitro investigations of disc mechanobiology, and will also provide a base to investigate the mechanical implications of disc degeneration at the cellular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号