首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is an ongoing discussion on how bone strength could be explained from its internal structure and composition. Reviewing recent experimental and molecular dynamics studies, we here propose a new vision on bone material failure: mutual ductile sliding of hydroxyapatite mineral crystals along layered water films is followed by rupture of collagen crosslinks. In order to cast this vision into a mathematical form, a multiscale continuum micromechanics theory for upscaling of elastoplastic properties is developed, based on the concept of concentration and influence tensors for eigenstressed microheterogeneous materials. The model reflects bone's hierarchical organization, in terms of representative volume elements for cortical bone, for extravascular and extracellular bone material, for mineralized fibrils and the extrafibrillar space, and for wet collagen. In order to get access to the stress states at the interfaces between crystals, the extrafibrillar mineral is resolved into an infinite amount of cylindrical material phases oriented in all directions in space. The multiscale micromechanics model is shown to be able to satisfactorily predict the strength characteristics of different bones from different species, on the basis of their mineral/collagen content, their intercrystalline, intermolecular, lacunar, and vascular porosities, and the elastic and strength properties of hydroxyapatite and (molecular) collagen.  相似文献   

2.
Nikolov S  Raabe D 《Biophysical journal》2008,94(11):4220-4232
We model the elastic properties of bone at the level of mineralized collagen fibrils via step-by-step homogenization from the staggered arrangement of collagen molecules up to an array of parallel mineralized fibrils. A new model for extrafibrillar mineralization is proposed, assuming that the extrafibrillar minerals are mechanically equivalent to reinforcing rings coating each individual fibril. Our modeling suggests that no more than 30% of the total mineral content is extrafibrillar and the fraction of extrafibrillar minerals grows linearly with the overall degree of mineralization. It is shown that the extrafibrillar mineralization considerably reinforces the fibrils’ mechanical properties in the transverse directions and the fibrils’ shear moduli. The model predictions for the elastic moduli and constants are found to be in a good agreement with the experimental data reported in the literature.  相似文献   

3.
Neutron diffraction studies of mineralized tissue show a close relationship between the wet state equatorial diffraction spacing and wet tissue density expressable as a second-order polynomial. The molecular fractional shrinkage when the tissue is dried shows a straight line dependence on wet tissue density with a correlation of 0.98. Since the dry state equatorial diffraction spacing is much less than for the corresponding wet state, even in fully mineralized bone, the collagen molecules must be displaced through a mineral-free volume while drying. The mineral can only be located within the available volume of the dried tissue whether intra- or extrafibrillar. The dimension of the dry state equatorial spacing for each of the tissues examined is close to that of dried tendon collagen. It appears unlikely that hydroxyapatite crystallites can be accommodated radially between collagen molecules in bone if the packing is like that of dried tail tendon collagen. The only mineral within the fibrils must be in the intermolecular gaps. It is estimated on the basis of the volume of the axial intermolecular gaps and the minimum extrafibrillar volume that the intrafibrillar mineral can be no more than 20% of the total mineral and may be less than 10%.  相似文献   

4.
Extracellular matrix organization and the spatial relationship between collagen fibrils, vesicular structures, and the first deposits of mineral in the calcifying leg tendon from the domestic turkey, Meleagris gallopavo, have been investigated by high voltage electron microscopy and three-dimensional computer graphic imaging of serial thick tissue sections. The work demonstrates that the tendon extracellular matrix is a complex assembly of somewhat flexible, highly aligned collagen fibrils with different diameters and occasionally opposite directionality. Smaller collagen fibrils appear to branch from larger fibrils or to aggregate to form those of greater size. While the matrices are dominated by fibrils, space exists between adjacent packed fibrils. The three-dimensional perspective indicates that approximately 60% of the total tendon volume is extrafibrillar over the regions examined. The first observable mineral in this tissue is extrafibrillar and appears to derive from vesicles. This view of three-dimensional matrix-mineral spatial relations supports earlier two-dimensional results that mineral is initially associated with membrane-invested vesicles and is deposited between collagen fibrils, but it is distinct in showing the mineral at different depths in the matrix rather than at a single depth as deduced from two-dimensional conventional electron microscopy. These results are important in the onset and development of tendon calcification in that they suggest, first, that collagen fibrils appear to be aligned three-dimensionally such that their hole zones are in contiguous arrangement. This situation may create channels or grooves within the collagen volume to accommodate extensive mineral deposition in association with the fibrils. Second, the results indicate that there are widely dispersed sites of vesicle-mediated mineralization in the tendon matrix, that the bulk of mineralization in this tissue is collagen-mediated, and that, while vesicles may possibly exert some local influence temporally on mineralization of neighboring collagen, vesicle- and collagen-mediated mineralization arise at spatially and structurally distinct sites by independent nucleation phenomena. Such concepts are fundamental in considerations of possible mechanisms of mineralization of tendon and potentially of other normally calcifying vertebrate tissues in general.  相似文献   

5.
High-voltage (1.0 MV) electron microscopy and stereomicroscopy, electron probe microanalysis, electron diffraction and three-dimensional computer reconstruction, have been used to examine the spatial relationship between the inorganic crystals of calcium phosphate and the collagen fibrils of pickerel and herring bone. High-voltage stereo electron-micrographs were obtained of cross-sections of the cylinder-shaped intramuscular bones in uncalcified regions, in regions where only one or only several crystals had been deposited in some of the fibrils, and in successive sections containing progressively more mineral crystals until the stage of full mineralization was reached. High-resolution electron probe microanalysis confirmed that the electron-dense particles contained calcium and phosphorus. In the earliest stages of mineralization and progressing throughout the mineralization process, the crystals are located only within the collagen fibrils; crystals are not observed free in the extracellular spaces between collagen fibrils. The progressive increase in the mass of mineral deposited in the bone tissue with time occurs, essentially, completely within the collagen fibrils including the stage of full mineralization. At this stage, cross-sectional profiles of collagen fibrils are completely obliterated by mineral. A small number of crystals that are located on or close to the surface of the fibrils appear to extend a very short distance into the spaces between the fibrils. These ultrastructural observations of the very onset of calcification in which nucleation of the calcium phosphate crystals is clearly shown to begin within specific volumes of collagen fibrils, and of the subsequent temporal and spatial sequences of this phenomenon, which shows that calcification continues wholly within the collagen fibrils until maximum calcification is achieved, add important information on the basic physical chemical mechanism of the calcification and the structural elements that are involved. The spatial and temporal independence of the sites where mineralization is initiated establishes that such ultrastructural locations within individual collagen fibrils represent independent, physical chemical nucleation loci. The findings are totally inconsistent with the proposal that crystals must first be deposited in matrix vesicles, or other components such as mitochondria, and subsequently released and propagated in the interfibrillar space, until they eventually reach and impregnate the hole zone regions of the collagen fibrils. Three-dimensional computer reconstruction of serial transverse and longitudinal sections demonstrates periodic swellings along the collagen fibrils, corresponding to the hole zone region of their axial period as mineralization proceeds.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Ultrastructural data from x-ray diffraction studies of the cornea were used to estimate the refractive indices of the collagen fibrils and extrafibrillar material of human, ox, trout, and rabbit corneas. X-ray diffraction measurements of the size and spacing of the collagen fibrils and the separation between the constituent molecules of the fibrils were taken from a previous species study. The tissue volume fractions occupied by the stromal components were estimated and their refractive indices were calculated using the Gladstone-Dale law of mixtures. For the fibrils and extrafibrillar material, the refractive indices in the human cornea were 1.411 and 1.365; for the ox 1.413 and 1.357; for the rabbit 1.416 and 1.357; and for the trout 1.418 and 1.364, respectively. An alternative estimate based on the physical properties and chemical composition of bovine cornea, accounting for interfibrillar type VI collagen and cellular water, produced similar estimates of 1.416 and 1.356 for the fibrils and extrafibrillar material, respectively.  相似文献   

7.
Dentin and bone derive their mechanical properties from a complex arrangement of collagen type-I fibrils reinforced with nanocrystalline apatite mineral in extra- and intrafibrillar compartments. While mechanical properties have been determined for the bulk of the mineralized tissue, information on the mechanics of the individual fibril is limited. Here, atomic force microscopy was used on individual collagen fibrils to study structural and mechanical changes during acid etching. The characteristic 67 nm periodicity of gap zones was not observed on the mineralized fibril, but became apparent and increasingly pronounced with continuous demineralization. AFM-nanoindentation showed a decrease in modulus from 1.5 GPa to 50 MPa during acid etching of individual collagen fibrils and revealed that the modulus profile followed the axial periodicity. The nanomechanical data, Raman spectroscopy and SAXS support the hypothesis that intrafibrillar mineral etches at a substantially slower rate than the extrafibrillar mineral. These findings are relevant for understanding the biomechanics and design principles of calcified tissues derived from collagen matrices.  相似文献   

8.
Bone materials are characterized by an astonishing variability and diversity. Still, because of 'architectural constraints' due to once chosen material constituents and their physical interaction, the fundamental hierarchical organization or basic building plans of bone materials remain largely unchanged during biological evolution. Such universal patterns of microstructural organization govern the mechanical interaction of the elementary components of bone (hydroxyapatite, collagen, water; with directly measurable tissue-independent elastic properties), which are here quantified through a multiscale homogenization scheme delivering effective elastic properties of bone materials: at a scale of 10nm, long cylindrical collagen molecules, attached to each other at their ends by approximately 1.5nm long crosslinks and hosting intermolecular water inbetween, form a contiguous matrix called wet collagen. At a scale of several hundred nanometers, wet collagen and mineral crystal agglomerations interpenetrate each other, forming the mineralized fibril. At a scale of 5-10microm, the extracellular solid bone matrix is represented as collagen fibril inclusions embedded in a foam of largely disordered (extrafibrillar) mineral crystals. At a scale above the ultrastructure, where lacunae are embedded in extracellular bone matrix, the extravascular bone material is observed. Model estimates predicted from tissue-specific composition data gained from a multitude of chemical and physical tests agree remarkably well with corresponding acoustic stiffness experiments across a variety of cortical and trabecular, extracellular and extravascular materials. Besides from reconciling the well-documented, seemingly opposed concepts of 'mineral-reinforced collagen matrix' and 'collagen-reinforced mineral matrix' for bone ultrastructure, this approach opens new possibilities in the exploitation of computer tomographic data for nano-to-macro mechanics of bone organs.  相似文献   

9.
Ideal biomaterials for bone grafts must be biocompatible, osteoconductive, osteoinductive and have appropriate mechanical properties. For this, the development of synthetic bone substitutes mimicking natural bone is desirable, but this requires controllable mineralization of the collagen matrix. In this study, densified collagen films (up to 100 μm thick) were fabricated by a plastic compression technique and cross-linked using carbodiimide. Then, collagen-hydroxyapatite composites were prepared by using a polymer-induced liquid-precursor (PILP) mineralization process. Compared to traditional methods that produce only extrafibrillar hydroxyapatite (HA) clusters on the surface of collagen scaffolds, by using the PILP mineralization process, homogeneous intra- and extrafibrillar minerals were achieved on densified collagen films, leading to a similar nanostructure as bone, and a woven microstructure analogous to woven bone. The role of collagen cross-links on mineralization was examined and it was found that the cross-linked collagen films stimulated the mineralization reaction, which in turn enhanced the mechanical properties (hardness and modulus). The highest value of hardness and elastic modulus was 0.7 ± 0.1 and 9.1 ± 1.4 GPa in the dry state, respectively, which is comparable to that of woven bone. In the wet state, the values were much lower (177 ± 31 and 8 ± 3 MPa) due to inherent microporosity in the films, but still comparable to those of woven bone in the same conditions. Mineralization of collagen films with controllable mineral content and good mechanical properties provide a biomimetic route toward the development of bone substitutes for the next generation of biomaterials. This work also provides insight into understanding the role of collagen fibrils on mineralization.  相似文献   

10.
At the ultrastructural observation scale of fully mineralized tissues (l=1-10 mum), transmission electron micrographs (TEM) reveal that hydroxyapatite (HA) is situated both within the fibrils and extrafibrillarly, and that the majority of HA lies outside the fibrils. The extrafibrillar amount of HA varies from tissue to tissue. By means of mathematical modeling, we here provide strong indications that there exists a physical quantity that is the same inside and outside the fibrils, for all different fully mineralized tissues. This quantity is the average mineral concentration in the non-collagenous space. This space is the sum of the extrafibrillar volume and of the volume of the fibrils that is not occupied by collagen molecules. Two independent sets of experimental observations covering a large range of tissue mass densities establish the relevance of our proposition: (i) mass density measurements and diffraction spacing measurements, re-analyzed through a dimensionally consistent packing model; (ii) optical density measurements of TEMs. The aforementioned average uniform HA-concentration in the extracollagenous space of the ultrastructure may emphasize the putative role played by a number of non-collagenous organic molecules in providing the chemical boundary conditions for mineralization of HA in the extracollagenous space. The probable existence of an average uniform extracollagenous HA concentration has far-reaching consequences for the mechanical behavior of mineralized tissues.  相似文献   

11.
The ultrastructural response to applied loads governs the post-yield deformation and failure behavior of bone, and is correlated with bone fragility fractures. Combining a novel progressive loading protocol and synchrotron X-ray scattering techniques, this study investigated the correlation of the local deformation (i.e., internal strains of the mineral and collagen phases) with the bulk mechanical behavior of bone. The results indicated that the internal strains of the longitudinally oriented collagen fibrils and mineral crystals increased almost linearly with respect to the macroscopic strain prior to yielding, but markedly decreased first and then gradually leveled off after yielding. Similar changes were also observed in the applied stress before and after yielding of bone. However, the collagen to mineral strain ratio remained nearly constant throughout the loading process. In addition, the internal strains of longitudinal mineral and collagen phases did not exhibit a linear relationship with either the modulus loss or the plastic deformation of bulk bone tissue. Finally, the time-dependent response of local deformation in the mineral phase was observed after yielding. Based on the results, we speculate that the mineral crystals and collagen fibrils aligned with the loading axis only partially explain the post-yield deformation, suggesting that shear deformation involving obliquely oriented crystals and fibrils (off axis) is dominant mechanism of yielding for human cortical bone in compression.  相似文献   

12.
Mineralized collagen fibrils are the basic building blocks of bone tissue at the supramolecular level. Several disease states, manipulation of the expression of specific proteins involved in biomineralization, and treatment with different agents alter the extent of mineralization as well as the morphology of mineral crystals which in turn affect the mechanical function of bone tissue. An experimental assessment of mineralized fibers' mechanical properties is challenged by their small size, leaving analytical and computational models as a viable alternative for investigation of the fibril-level mechanical properties. In the current study the variation of the elastic stiffness tensor of mineralized collagen fibrils with changing mineral volume fraction and mineral aspect ratios was predicted via a micromechanical model. The partitioning of applied stresses between mineral and collagen phases is also predicted for normal and shear loading of fibrils. Model predictions resulted in transversely isotropic collagen fibrils in which the modulus along the longer axis of the fibril was the greatest. All the elastic moduli increased with increasing mineral volume fraction whereas Poisson's ratios decreased with the exception of v12 (=v21). The partitioning of applied stresses were such that the stresses acting on mineral crystals were about 1.5, 15, and 3 times greater than collagen stresses when fibrils were loaded transversely, longitudinally, and in shear, respectively. In the overall the predictions were such that: (a) greatest modulus along longer axis; (b) the greatest mineral/collagen stress ratio along the longer axis of collagen fibers (i.e., greatest relief of stresses acting on collagen); and (c) minimal lateral contraction when fibers are loaded along the longer axis. Overall, the pattern of mineralization as put forth in this model predicts a superior mechanical function along the longer axis of collagen fibers, the direction which is more likely to experience greater stresses.  相似文献   

13.
Lees S 《Biophysical journal》2003,85(1):204-207
It was previously found that the lateral spacing of the collagen molecules in wet mineralized tissues is exactly proportional to the inverse wet density. Several properties were investigated and the same type of relationship was observed each time. A possible explanation is offered. It is hypothesized that mineral is deposited initially in the extrafibrillar space so as to isolate the fibrils. Further deposition reduces the net free fibril volume thereby decreasing the spacing between collagen molecules. The linear relationship is derived from density considerations together with limitations on the collagen packing structure described as the generalized packing model. Three experimental situations were studied: lateral spacing wet tissue versus density; lateral spacing dry tissue versus density; and lateral spacing versus water content. The observed variations of the spacing can be attributed to a structure where the mass of the tissue remains constant but the volume decreases linearly with increasing mineral content.  相似文献   

14.
Structure and function of bone collagen fibrils   总被引:4,自引:0,他引:4  
The intermolecular volume of fully hydrated collagen fibrils from a number of mineralized and non-mineralized tissues of adult rats has been determined both by an exclusion technique and by a method which involves the monitoring of specific X-ray diffraction parameters. The intermolecular volume of either bone or dentinal fibrils is approximately twice that of either tail or achilles tendon, and the most frequent intermolecular distance in bone or dentine fibrils is approximately 3 Å larger than of the tendons.A number of fibrillar structures are most compatible with the intermolecular volume of rat tail tendon. These include hexagonal molecular packing and orthogonal arrays of microfibrils comprising seven parallel molecular strands. The intermolecular volume of bone or dentinal collagen fibrils, on the other hand, appears to arise from structures having a disordered or pseudo-hexagonal molecular packing, in which the most frequent intermolecular distance is about 19 Å.The space associated with collagen fibrils in adult bone is such that 70 to 80% of the mineral is located within the intermolecular space of the fibrils—approximately equal amounts of mineral being in spaces having lateral dimensions of 25 to 75 Å and 6 to 12 Å, respectively. Particles located in the latter kind of intermolecular space probably constitute, to a large extent, the non-crystalline mineral phase of adult bone.The stereo-chemical constraints on the transport of mineral ions into and within collagen fibrils of bone and tendon support the postulate that bone collagen is an in vivo catalyst for mineral deposition and further suggests that its catalytic activity may be partially regulated through its molecular packing.  相似文献   

15.
Meek KM  Dennis S  Khan S 《Biophysical journal》2003,85(4):2205-2212
The transparency of the corneal stroma is critically dependent on the hydration of the tissue; if the cornea swells, light scattering increases. Although this scattering has been ascribed to the disruption caused to the arrangement of the collagen fibrils, theory predicts that light scattering could increase if there is an increased mismatch in the refractive indices of the collagen fibrils and the material between them. The purpose of this article is to use Gladstone and Dale's law of mixtures to calculate volume fractions for a number of different constituents in the stroma, and use these to show how the refractive indices of the stroma and its constituent extrafibrillar material would be expected to change as more solvent enters the tissue. Our calculations predict that solvent entering the extrafibrillar space causes a reduction in its refractive index, and hence a reduction in the overall refractive index of the bovine stroma according to the equation n'(s) = 1.335 + 0.04/(0.22 + 0.24 H'), where n'(s) is the refractive index and H' is the hydration of the swollen stroma. This expression is in reasonable agreement with our experimental measurements of refractive index versus hydration in bovine corneas. When the hydration of the stroma increases from H = 3.2 to H = 8.0, we predict that the ratio of the refractive index of the collagen fibrils to that of the material between them increases from 1.041 to 1.052. This change would be expected to make only a small contribution to the large increase in light scattering observed when the cornea swells to H = 8.  相似文献   

16.
Since their discovery, matrix vesicles (MVs) containing minerals have received considerable attention for their role in the mineralization of bone, dentin and calcified cartilage. Additionally, MVs' association with collagen fibrils, which serve as the scaffold for calcification in the organic matrix, has been repeatedly highlighted. The primary purpose of the present study was to establish a MVs–mimicking model (PEG-S-ACP/micelle) in vitro for studying the exact mechanism of MVs-mediated extra/intra fibrillar mineralization of collagen in vivo. In this study, high-concentration serine was used to stabilize the amorphous calcium phosphate (S-ACP), which was subsequently mixed with polyethylene glycol (PEG) to form PEG-S-ACP nanoparticles. The nanoparticles were loaded in the polysorbate 80 micelle through a micelle self-assembly process in an aqueous environment. This MVs–mimicking model is referred to as the PEG-S-ACP/micelle model. By adjusting the pH and surface tension of the PEG-S-ACP/micelle, two forms of minerals (crystalline mineral nodules and ACP nanoparticles) were released to achieve the extrafibrillar and intrafibrillar mineralization, respectively. This in vitro mineralization process reproduced the mineral nodules mediating in vivo extrafibrillar mineralization and provided key insights into a possible mechanism of biomineralization by which in vivo intrafibrillar mineralization could be induced by ACP nanoparticles released from MVs. Also, the PEG-S-ACP/micelle model provides a promising methodology to prepare mineralized collagen scaffolds for repairing bone defects in bone tissue engineering.  相似文献   

17.
Time-lapse motion picture studies were carried out on isolated fowl embryo osteoclasts in vitro, the cells have an extremely active ruffled border, and show vigorous pinocytotic activity. Electron microscope studies on osmium-fixed cells showed that the pinocytotic vacuoles contained bone salt crystals (as well as material which could not be identified on morphological grounds), and that the folds of the ruffled border enclosed crystals and collagen fibrils. Changes were seen in the matrix beneath the ruffled border. Initially, the collagen fibres became separated from each other and at the same time bone salt crystals became detached from them. Later, as crystals and ground substance disappeared, the outline and cross-striation of the collagen became distinct. The implications of these findings are discussed with respect to the mechanism of bone erosion.  相似文献   

18.
Woven bone is a type of tissue that forms mainly during fracture healing or fetal bone development. Its microstructure can be modeled as a composite with a matrix of mineral (hydroxyapatite) and inclusions of collagen fibrils with a more or less random orientation. In the present study, its elastic properties were estimated as a function of composition (degree of mineralization) and fibril orientation. A self-consistent homogenization scheme considering randomness of inclusions’ orientation was used for this purpose. Lacuno-canalicular porosity in the form of periodically distributed void inclusions was also considered. Assuming collagen fibrils to be uniformly oriented in all directions led to an isotropic tissue with a Young’s modulus \(E = 1.90\) GPa, which is of the same order of magnitude as that of woven bone in fracture calluses. By contrast, assuming fibrils to have a preferential orientation resulted in a Young’s modulus in the preferential direction of 9–16 GPa depending on the mineral content of the tissue. These results are consistent with experimental evidence for woven bone in foetuses, where collagen fibrils are aligned to a certain extent.  相似文献   

19.
Neutron diffraction studies of collagen in fully mineralized bone   总被引:6,自引:0,他引:6  
Neutron diffraction measurements have been made of the equatorial and meridional spacings of collagen in fully mineralized mature bovine bone and demineralized bone collagen, in both wet and dry conditions. The collagen equatorial spacing in wet mineralized bovine bone is 1.24 nm, substantially lower than the 1.53 nm value observed in wet demineralized bovine bone collagen. Corresponding spacings for dry bone and demineralized bone collagen are 1.16 nm and 1.12 nm, respectively. The collagen meridional long spacing in mineralized bovine bone is 63.6 nm wet and 63.4 nm dry. These data indicate that collagen in fully mineralized bovine bone is considerably more closely packed than had been assumed previously, with a packing density similar to that of the relatively crystalline collagens such as wet rat tail tendon. The data also suggest that less space is available for mineral within the collagen fibrils in bovine bone than had previously been assumed, and that the major portion of the mineral in this bone must be located outside the fibrils.  相似文献   

20.
It has been reported that the Mg-insufficient bone is fragile upon mechanical loading, despite its high bone mineral density, while vitamin K2 (MK-4: menatetrenone) improved the mechanical strength of Mg-insufficient bone. Therefore, we aimed to elucidate the ultrastructural properties of bone in rats with dietary Mg insufficiency with and without MK-4 supplementation. Morphological examinations including histochemistry, transmission electron microscopy, electron probe microanalysis (EPMA) and X-ray diffraction were conducted on the femora and tibiae of 4-week-old Wistar male rats fed with 1) a normal diet (control group, 0.09% Mg), 2) a Mg-insufficient diet (low Mg group, 0.006% Mg), or 3) a Mg-insufficient diet supplemented with MK-4 (MK-4 group, 0.006% Mg, 0.03% MK-4). MK-4 appeared to inhibit the osteoclastic bone resorption that is stimulated by Mg insufficiency. EPMA analysis, however, revealed an increased concentration of Ca paralleling Mg reduction in the low Mg group. Assessment by X-ray diffraction revealed an abundance of a particular synthetic form of hydroxyapatite in the low Mg group, while control bones featured a variety of mineralized crystals. In addition, Mg-deficient bones featured larger mineral crystals, i.e., crystal overgrowth. This crystalline aberration in Mg-insufficient bones induced collagen fibrils to mineralize easily, even in the absence of mineralized nodules, which therefore led to an early collapse of the fibrils. MK-4 prevented premature collagen mineralization by normalizing the association of collagen fibrils with mineralized nodules. Thus, MK-4 appears to rescue the impaired collagen mineralization caused by Mg insufficiency by promoting a re-association of the process of collagen mineralization with mineralized nodules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号