首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Seeds with a water‐impermeable seed coat and a physiologically dormant embryo are classified as having combinational dormancy. Seeds of Sicyos angulatus (burcucumber) have been clearly shown to have a water‐impermeable seed coat (physical dormancy [PY]). The primary aim of the present study was to confirm (or not) that physiological dormancy (PD) is also present in seeds of S. angulatus. The highest germination of scarified fresh (38%) and 3‐month dry‐stored (36%) seeds occurred at 35/20°C. The rate (speed) of germination was faster in scarified dry‐stored seeds than in scarified fresh seeds. Removal of the seed coat, but leaving the membrane surrounding the embryo intact, increased germination of both fresh and dry‐stored seeds to > 85% at 35/20°C. Germination (80–100%) of excised embryos (both seed coat and membrane removed) occurred at 15/6, 25/15 and 35/20°C and reached 95–100% after 4 days of incubation at 25/15 and 35/20°C. Dry storage (after‐ripening) caused an increase in the germination percentage of scarified and of decoated seeds at 25/15°C and in both germination percentage and rate of excised embryos at 15/6°C. Eight weeks of cold stratification resulted in a significant increase in the germination of scarified seeds at 25/15 and 35/20°C and of decoated seeds at 15/6 and 25/15°C. Based on the results of our study and on information reported in the literature, we conclude that seeds of S. angulatus not only have PY, but also non‐deep PD, that is, combinational dormancy (PY + PD).  相似文献   

2.
  • Fruiting season of many Sri Lankan tropical montane species is not synchronised and may not occur when conditions are favourable for seedling establishment. We hypothesised that species with different fruiting seasons have different seed dormancy mechanisms to synchronise timing of germination with a favourable season for establishment. Using six species with different fruiting seasons, we tested this hypothesis.
  • Germination and imbibition of intact and manually scarified seeds were studied. Effect of GA3 on germination was examined. Embryo length:seed length (E:S) ratio of freshly matured seeds and of those with a split seed coat was determined. Time taken for radicle and plumule emergence and morphological changes of the embryos were recorded.
  • The radicle emerged from Ardisia missionis, Bheza nitidissima and Gaetnera walkeri seeds within 30 days, whereas it took >30 days in other species. Embryos grew in seeds of B. nitidissima and G. walkeri prior to radicle emergence but not in Microtropis wallichiana, Nothapodytes nimmoniana and Symplocos cochinchinensis. A considerable delay was observed between radicle and plumule emergence in all six species. Warm stratification and/or GA3 promoted germination of all species.
  • All the tested species have epicotyl dormancy. Seeds of B. nitidissima and G. walkeri have non‐deep simple morphophysiological epicotyl dormancy, and the other four species have non‐deep physiological epicotyl dormancy. Differences in radicle and epicotyl dormancy promote synchronisation of germination to a favourable time for seedling development. Therefore, information on dormancy‐breaking and germination requirements of both radicle and epicotyl are needed to determine the kind of dormancy of a particular species.
  相似文献   

3.
  • Cycling of sensitivity to physical dormancy (PY) break has been documented in herbaceous species. However, it has not been reported in tree seeds, nor has the effect of seed size on sensitivity to PY‐breaking been evaluated in any species. Thus, the aims of this study were to investigate how PY is broken in seeds of the tropical legume tree Senna multijuga, if seeds exhibit sensitivity cycling and if seed size affects induction into sensitivity.
  • Dormancy and germination were evaluated in intact and scarified seeds from two collections of S. multijuga. The effects of temperature, moisture and seed size on induction of sensitivity to dormancy‐breaking were assessed, and seasonal changes in germination and persistence of buried seeds were determined. Reversal of sensitivity was also investigated.
  • Fresh seeds were insensitive to dormancy break at wet–high temperatures, and an increase in sensitivity occurred in buried seeds after they experienced low temperatures during winter (dry season). Temperatures ≤20 °C increased sensitivity, whereas temperatures ≥30 °C decreased it regardless of moisture conditions. Dormancy was broken in sensitive seeds by incubating them at 35 °C. Sensitivity could be reversed, and large seeds were more sensitive than small seeds to sensitivity induction.
  • Seeds of S. multijuga exhibit sensitivity cycling to PY‐breaking. Seeds become sensitive during winter and can germinate with the onset of the spring–summer rainy season in Brazil. Small seeds are slower to become sensitive than large ones, and this may be a mechanism by which germination is spread over time. Sensitive seeds that fail to germinate become insensitive during exposure to drought during summer. This is the first report of sensitivity cycling in a tree species.
  相似文献   

4.
  • Agricultural burning is used in farm management operations; however, information about the impact of fire cues on the release and/or induction of secondary dormancy in crop seeds is scarce.
  • Seeds from two oilseed rape cultivars were induced for high (HD) or low (LD) secondary dormancy using polyethyleneglycol (PEG) pre‐treatment, and their germination after exposure to various fire cues was compared to control PEG pre‐treated and non‐dormant seeds.
  • Non‐dormant seed germination was unaffected by various fire cues. Low doses of aerosol smoke released secondary dormancy in HD seeds, while higher doses increased dormancy of LD seeds. Dilute smoke water also released HD seed secondary dormancy, but concentrated smke water enhanced dormancy in both LD and HD seeds. The concentrated aqueous extracts from charred oilseed rape straw only promoted germination of HD seeds, while dilution inhibited LD seed germination. Heat shock (80 °C, 5 min) released secondary dormancy in HD seeds; however, higher temperatures and/or increased exposure time was associated with seed death. GC‐MS analyses of smoke water revealed two butenolides and an array of monoaromatic hydroxybenzene compounds with potential germination inhibitor or promoter activity.
  • The extent of secondary dormancy induction in seeds affects their subsequent responses to fire cues. Both aerosol smoke and smoke water have both germination promoter and inhibitor activity. Lacking any butenolides, aqueous extracts of charred straw contain a potential germination stimulating steroid, i.e. ergosterol. The significance of fire‐derived cues on behaviour of oilseed rape seeds in the soil seed bank is discussed.
  相似文献   

5.
  • The dormancy of seeds of upland cotton can be broken during dry after‐ripening, but the mechanism of its dormancy release remains unclear.
  • Freshly harvested cotton seeds were subjected to after‐ripening for 180 days. Cotton seeds from different days of after‐ripening (DAR) were sampled for dynamic physiological determination and germination tests. The intact seeds and isolated embryos were germinated to assess effects of the seed coat on embryo germination. Content of H2O2 and phytohormones and activities of antioxidant enzymes and glucose‐6‐phosphate dehydrogenase were measured during after‐ripening and germination.
  • Germination of intact seeds increased from 7% upon harvest to 96% at 30 DAR, while embryo germination improved from an initial rate of 82% to 100% after 14 DAR. Based on T50 (time when 50% of seeds germinate) and germination index, the intact seed and isolated embryo needed 30 and 21 DAR, respectively, to acquire relatively stable germination. The content of H2O2 increased during after‐ripening and continued to increase within the first few hours of imbibition, along with a decrease in abscisic acid (ABA) content. A noticeable increase was observed in gibberellic acid content during germination when ABA content decreased to a lower level. Coat removal treatment accelerated embryo absorption of water, which further improved the accumulation of H2O2 and changed peroxidase content during germination.
  • For cotton seed, the alleviation of coat‐imposed dormancy required 30 days of after‐ripening, accompanied by rapid dormancy release (within 21 DAR) in naked embryos. H2O2 acted as a core link between the response to environmental changes and induction of other physiological changes for breaking seed dormancy.
  相似文献   

6.
Identifying plant traits that promote invasiveness has been a major goal in invasion ecology. Germination plays a central role in the life cycle of plants and therefore could be a key trait in determining species invasiveness. In this study, seed germination of two confamilial, co‐occurring species that share ecological characteristics, the exotic invasive Gleditsia triacanthos L and the native Acacia aroma Gillies ex. Hook. & Arn., was compared. Seeds were obtained from individuals of three localities in the Chaco Serrano region of Córdoba, Argentina. Percent of seed germination and mean germination time were recorded in chemically and mechanically scarified seeds, and the former variable was also recorded in seeds subjected to: passage through the digestive tract of dispersers, fire simulations, fire simulation plus mechanical scarification, seed longevity, and dormancy break over time. In general, both species showed similar germination percentage. However, non‐scarified seeds of the exotic species lost physical dormancy when subjected to experiments of dormancy break over time, whereas, the native species had shorter mean germination time. The greater percentage of seed germination over time of the exotic species than of the native one might be triggering the spread of the former, whereas the shorter mean germination time might be hindering its expansion to more arid regions. The study of different mechanisms for achieving seed germination, particularly in hard seed species, could provide important information on the expansion of invasive species as well as useful knowledge for their management.  相似文献   

7.
Ecological restoration of disturbed areas requires substantial knowledge of the germination of native plants and the creation of novel methods to increase seedling establishment in the field. We studied the effects of soil matrix priming on the germination of Dodonaea viscosa seeds, which exhibit physical dormancy. To this end, we buried both pre‐scarified (in H2SO4, 3 min) and non‐pre‐scarified seeds in the Parque Ecológico de la Ciudad de México. After seeds were unearthed, they were post‐scarified for 0, 2, 6 and 10 min and their germination percentages compared to the germination of a control batch of laboratory‐stored seeds. For both control and unearthed seeds, the protein pattern was determined in the enriched storage protein fraction in SDS‐PAGE gels stained with Coomassie blue. Percentage germination increased as the scarification time increased. Pre‐scarification significantly increased percentage germination of post‐scarified seeds in relation to the control and non‐pre‐scarified seeds. In seeds unearthed from the forest site, the buried pre‐scarified seeds had relatively high percentage germination, even in the absence of post‐scarification treatment. A 48‐kDa protein was not found in unearthed, pre‐scarified seeds nor in the control germinated seeds, indicating that mobilisation of this protein occurred during soil priming. Burying seeds for a short period, including the beginning of the rainy season, promoted natural priming, which increased protein mobilisation. Functionally, priming effects were reflected in high percentage seedling survival in both the shade house and the field. Seed burial also reduced the requirement for acidic post‐scarification.  相似文献   

8.
9.
  • Dormancy cycling is a key mechanism that contributes to the maintenance of long‐term persistent soil seed banks, but has not been recorded in long‐lived woody shrub species from fire‐prone environments. Such species rely on seed banks and dormancy break as important processes for post‐fire recruitment and recovery.
  • We used germination experiments with smoke treatments on fresh seeds and those buried for 1 year (retrieved in spring) and 1.5 years (retrieved the following late autumn) to investigate whether Asterolasia buxifolia, a shrub from fire‐prone south‐eastern Australia with physiologically dormant seeds, exhibited dormancy cycling.
  • All seeds had an obligation for winter seasonal temperatures and smoke to promote germination, even after ageing in the soil. A high proportion of germination was recorded from fresh seeds. but germination after the first retrieval was significantly lower, despite high seed viability. After the second retrieval, germination returned to the initial level. This indicates a pattern of annual dormancy cycling; one of the few observations, to our knowledge, for a perennial species. Additionally, A. buxifolia’s winter temperature and smoke requirements did not change over time, highlighting the potential for seeds to remain conditionally dormant (i.e. restricted to a narrow range of germination conditions) for long periods.
  • For physiologically dormant species, such as A. buxifolia, we conclude that dormancy cycling is an important driver of successful regeneration, allowing seed bank persistence, sometimes for decades, during fire‐free periods unsuitable for successful recruitment, while ensuring that a large proportion of seeds are available for recruitment when a fire occurs.
  相似文献   

10.
  • Seed germination responsiveness to environmental cues is crucial for plant species living in changeable habitats and can vary among populations within the same species as a result of adaptation or modulation to local climates. Here, we investigate the germination response to environmental cues of Sisymbrella dentata (L.) O.E. Schulz, an annual endemic to Sicily living in Mediterranean Temporary Ponds (MTP), a vulnerable ecosystem.
  • Germination of the only two known populations, Gurrida and Pantano, was assessed over a broad range of conditions to understand the role of temperatures, nitrate, hormones (abscisic acid – ABA and gibberellins – GA) and after‐ripening in dormancy release in this species.
  • Seed germination responsiveness varied between the two populations, with seeds from Gurrida germinating under a narrower range of conditions. Overall, this process in S. dentata consisted of testa and endosperm rupture as two sequential events, influenced by ABA and GA biosynthesis. Nitrate addition caused an earlier testa rupture, after‐ripening broadened the thermal conditions that allow germination, and alternating temperatures significantly promoted germination of non‐after‐ripened seeds.
  • Primary dormancy in S. dentata seeds likely allows this plant to form a persistent seed bank that is responsive to specific environmental cues characteristic of MTP habitats.
  相似文献   

11.
  • Hypoxic floodwaters can seriously damage seedlings. Seed dormancy could be an effective trait to avoid lethal underwater germination. This research aimed to discover novel adaptive dormancy responses to hypoxic floodwaters in seeds of Echinochloa crus‐galli, a noxious weed from rice fields and lowland croplands.
  • Echinochloa crus‐galli dormant seeds were subjected to a series of sequential treatments. Seeds were: (i) submerged under hypoxic floodwater (simulated with hypoxic flasks) at different temperatures for 15 or 30 days, and germination tested under drained conditions while exposing seeds to dormancy‐breaking signals (alternating temperatures, nitrate (KNO3), light); or (ii) exposed to dormancy‐breaking signals during hypoxic submergence, and germination monitored during incubation and after transfer to drained conditions.
  • Echinochloa crus‐galli seed primary dormancy was attenuated under hypoxic submergence but to a lesser extent than under drained conditions. Hypoxic floodwater did not reinforced dormancy but hindered secondary dormancy induction in warm temperatures. Seeds did not germinate under hypoxic submergence even when subjected to dormancy‐breaking signals; however, these signals broke dormancy in seeds submerged under normoxic water. Seeds submerged in hypoxic water could sense light through phytochrome signals and germinated when normoxic conditions were regained.
  • Hypoxic floodwaters interfere with E. crus‐galli seed seasonal dormancy changes. Dormancy‐breaking signals are overridden during hypoxic floods, drastically decreasing underwater germination. In addition, results indicate that a fraction of E. crus‐galli seeds perceive dormancy‐breaking signals under hypoxic water and germinate immediately after aerobic conditions are regained, a hazardous yet less competitive environment for establishment.
  相似文献   

12.
We present a new seed dormancy classification scheme for the non‐deep level of the class physiological dormancy (PD), which contains six types. Non‐deep PD is divided into two sublevels: one for seeds that exhibit a dormancy continuum (types 1, 2 and 3) and the other for those that do not exhibit a dormancy continuum (types 4, 5 and 6). Analysis of previous studies showed that different types of non‐deep PD also can be identified using a graphical method. Seeds with a dormancy (D) ? conditional dormancy (CD) ? non‐dormancy (ND) cycle have a low germination percentage in the early stages of CD, and during dormancy loss the germination capacity increases. However, seeds with a CD/ND (i.e. D→CD?ND) cycle germinate to a high percentage at a narrow range of temperatures in the early stages of CD. Cardinal temperatures for seeds with either a D/ND or a CD/ND cycle change during dormancy loss: the ceiling temperature increases in seeds with Type 1, the base temperature decreases in seeds with Type 2 and the base and ceiling temperatures decrease and increase, respectively, in seeds with Type 3. Criteria for distinguishing the six types of non‐deep PD and models of the temperature functions of seeds with types 1, 2 and 3 with both types of dormancy cycles are presented. The relevancy of our results to modelling the timing of weed seedling emergence is briefly discussed.  相似文献   

13.
After‐ripening is a common method used for dormancy release in rice. In this study, the rice variety Jiucaiqing (Oryza sativa L. subsp. japonica) was used to determine dormancy release following different after‐ripening times (1, 2 and 3 months). Germination speed, germination percentage and seedling emergence increased with after‐ripening; more than 95% germination and 85% seedling emergence were observed following 1 month of after‐ripening within 10 days of imbibition, compared with <45% germination and 20% seedling emergence in freshly harvested seed. Hence, 3 months of after‐ripening could be considered a suitable treatment period for rice dormancy release. Dormancy release by after‐ripening is mainly correlated with a rapid decline in ABA content and increase in IAA content during imbibition. Subsequently, GA1/ABA, GA7/ABA, GA12/ABA, GA20/ABA and IAA/ABA ratios significantly increased, while GA3/ABA, GA4/ABA and GAs/IAA ratio significantly decreased in imbibed seeds following 3 months of after‐ripening, thereby altering α‐amylase activity during seed germination. Peak α‐amylase activity occurred at an earlier germination stage in after‐ripened seeds than in freshly harvested seeds. Expression of ABA, GA and IAA metabolism genes and dormancy‐related genes was regulated by after‐ripening time upon imbibition. Expression of OsCYP707A5, OsGA2ox1, OsGA2ox2, OsGA2ox3, OsILR1, OsGH3‐2, qLTG3‐1 and OsVP1 increased, while expression of Sdr4 decreased in imbibed seeds following 3 months of after‐ripening. Dormancy release through after‐ripening might be involved in weakening tissues covering the embryo via qLTG3‐1 and decreased ABA signalling and sensitivity via Sdr4 and OsVP1.  相似文献   

14.
The germination ecology of Sideritis serrata was investigated in order to improve ex‐situ propagation techniques and management of their habitat. Specifically, we analysed: (i) influence of temperature, light conditions and seed age on germination patterns; (ii) phenology of germination; (iii) germinative response of buried seeds to seasonal temperature changes; (iv) temperature requirements for induction and breaking of secondary dormancy; (v) ability to form persistent soil seed banks; and (vi) seed bank dynamics. Freshly matured seeds showed conditional physiological dormancy, germinating at low and cool temperatures but not at high ones (28/14 and 32/18 °C). Germination ability increased with time of dry storage, suggesting the existence of non‐deep physiological dormancy. Under unheated shade‐house conditions, germination was concentrated in the first autumn. S. serrata seeds buried and exposed to natural seasonal temperature variations in the shade‐house, exhibited an annual conditional dormancy/non‐dormancy cycle, coming out of conditional dormancy in summer and re‐entering it in winter. Non‐dormant seeds were clearly induced into dormancy when stratified at 5 or 15/4 °C for 8 weeks. Dormant seeds, stratified at 28/14 or 32/18 °C for 16 weeks, became non‐dormant if they were subsequently incubated over a temperature range from 15/4 to 32/18 °C. S. serrata is able to form small persistent soil seed banks. The maximum seed life span in the soil was 4 years, decreasing with burial depth. This is the second report of an annual conditional dormancy/non‐dormancy cycle in seeds of shrub species.  相似文献   

15.
  • Threshold‐based thermal time models provide insight into the physiological switch from the dormant to the non‐dormant germinating seed.
  • This approach was used to quantify the different growth responses of the embryo of seeds purported to have morphophysiological dormancy (MPD) through the complex phases of dormancy release and germination. Aquilegia barbaricina seeds were incubated at constant temperatures (10–25 °C) and 25/10 °C, without pre‐treatment, after warm+cold stratification (W+C) and GA3 treatment. Embryo growth was assessed and the time of testa and endosperm rupture scored. Base temperatures (Tb) and thermal times for 50% (θ50) of embryo growth and seed germination were calculated.
  • W+C enabled slow embryo growth. W+C and GA3 promoted rapid embryo growth and subsequent radicle emergence. The embryo internal growth base temperature (Tbe) was ca. 5 °C for W+C and GA3‐treated seeds. GA3 treatment also resulted in similar Tb estimates for radicle emergence. The thermal times for embryo growth (θe50) and germination (θg50) were four‐ to six‐fold longer in the presence of GA3 compared to W+C.
  • A. barbaricina is characterised by a multi‐step seed germination. The slow embryo growth during W+C reflects continuation of the maternal programme of development, whilst the thermal kinetics of both embryo and radicle growth after the removal of physiological dormancy are distinctly different. The effects of W+C on the multiphasic germination response in MPD seeds are only partially mimicked by 250 mg·l?1 GA3. The thermal time approach could be a valid tool to model thermal kinetics of embryo growth and radicle protrusion.
  相似文献   

16.
  • Information on the optimal conditions to promote the germination of Lamprocapnos spectabilis (L.) Fukuhara seeds is limited; consequently, this study was conducted to establish the requirements to break seed dormancy and promote germination.
  • The selected seeds had morphophysiological dormancy and had not begun embryo development. To study the dormancy breaking and embryo development processes, seeds were subjected to constant or changing temperature treatments during moist stratification.
  • High temperature and humidity resulted in vigorous embryo growth, with the longest embryos occurring after 1 month of incubation at 20 °C. At 4 °C, the seeds required incubation period of at least 3 months to germinate. Embryo growth and germination were higher with changing high and low temperatures than under a constant temperature, and changing temperatures also considerably changed the endogenous hormone levels, embryo development and germination. Bioactive gibberellin (GA) content was higher in seeds incubated at 20 °C for 1 month, then at 4 °C for 2 months. The content of endogenous abscisic acid in seeds subjected to the same treatment decreased by 97.6% compared with that of the untreated seeds.
  • Embryo growth and seed germination require changing high and low temperatures; however, exogenous GA3 could substitute for high temperatures, as it also causes accelerated germination. In this study, the seeds of L. spectabilis were identified as an intermediate simple type, a sub‐level of morphophysiologically dormant seeds.
  相似文献   

17.
Grappin P  Bouinot D  Sotta B  Miginiac E  Jullien M 《Planta》2000,210(2):279-285
The physiological characteristics of seed dormancy in Nicotiana plumbaginifolia Viv. are described. The level of seed dormancy is defined by the delay in seed germination (i.e the time required prior to germination) under favourable environmental conditions. A wild-type line shows a clear primary dormancy, which is suppressed by afterripening, whereas an abscisic acid (ABA)-deficient mutant shows a non-dormant phenotype. We have investigated the role of ABA and gibberellic acid (GA3) in the control of dormancy maintenance or breakage during imbibition in suitable conditions. It was found that fluridone, a carotenoid biosynthesis inhibitor, is almost as efficient as GA3 in breaking dormancy. Dry dormant seeds contained more ABA than dry afterripened seeds and, during early imbibition, there was an accumulation of ABA in dormant seeds, but not in afterripened seeds. In addition, fluridone and exogenous GA3 inhibited the accumulation of ABA in imbibed dormant seeds. This reveals an important role for ABA synthesis in dormancy maintenance in imbibed seeds. Received: 31 December 1998 / Accepted: 9 July 1999  相似文献   

18.
Mimosa bimucronata is a pioneering tree that occurs predominantly in moist lowlands, floodplains and on margins of rivers and lakes in Latin America. The effect of submergence on seed germination in M. bimucronata was firstly studied. Patterns of water absorption by M. bimucronata seeds were investigated thereafter to assess the imbibition phases of scarified and unscarified seeds. The germination percentage was significantly higher in scarified than in unscarified seeds, and the velocity of seed germination also increased considerably in scarified seeds. Submergence duration did not significantly affect germination percentages of scarified and unscarified seeds. Therefore, seed viability after submersion suggests that M. bimucronata may display hydrochorous dispersal and also that seeds are able to germinate successfully in areas with frequent seasonal flooding. With respect to imbibition phases, phase II was very short or even absent for scarified and unscarified seeds; therefore, a plateau, where water absorption by seeds is established, was not observed. Finally, we verified that the passage from phase I to III was very tenuous and took a long time in seeds without scarification.  相似文献   

19.
  • Dormancy cycles are an important mechanism for avoiding seed germination under unfavourable periods for seedling establishment. This mechanism has been scarcely studied in tropical species. Here, we studied three tropical and perennial species of Xyris, X. asperula, X. subsetigera and X. trachyphylla, to investigate in situ longevity and the existence of seasonal seed dormancy cycles.
  • Seeds of three species of Xyris were buried in their natural habitat, with samples exhumed bimonthly for 18 months. Germination of exhumed seeds was assessed under a 12‐h photoperiod over a broad range of temperatures. Seeds of X. trachyphylla were also subjected to treatments to overcome secondary dormancy.
  • Seeds of all species are able to form a persistent seed bank and exhibit seasonal changes in germinability. Secondary dormancy was acquired during the rainy summer and was overcome during the subsequent dry season (autumn/winter). Desiccation partially overcomes secondary dormancy in X. trachyphylla seeds.
  • Soil seed bank persistence and synchronisation of seed germination under favourable conditions for seedling establishment contribute to the persistence and regeneration of X. asperula, X. subsetigera and X. trachyphylla in their natural environment.
  相似文献   

20.
Morphophysiological dormancy was investigated in seeds of Ribes multiflorum Kit ex Roem et Schult. ssp. sandalioticum Arrigoni, a rare mountain species endemic to Sardinia (Italy). There were no differences in imbibition rates between intact and scarified seeds, suggesting a lack of physical dormancy, while methylene blue solution (0.5%) highlighted a preferential pathway for solution entrance through the raphe. Embryos were small at seed dispersal, with an initial embryo:seed ratio (E:S) of ca. 0.2 (embryo length, ca. 0.5 mm), whereas the critical E:S ratio for germination was three times longer (ca. 0.6). Gibberellic acid (GA(3), 250 mg · l(-1)) and warm stratification (25 °C for 3 months) followed by low temperature (<15 °C) enhanced embryo growth rate (maximum of ca. 0.04 mm · day(-1) at 10 °C) and subsequent seed germination (radicle emergence; ca. 80% at 10 °C). Low germination occurred at warmer temperatures, and cold stratification (5 °C for 3 months) induced secondary dormancy. After radicle emergence, epicotyl emergence was delayed for ca. 2 months for seeds from three different populations. Mean time of epicotyl emergence was affected by GA(3) . Seeds of this species showed non-deep simple (root) - non-deep simple (epicotyl) morphophysiological dormancy, highlighting a high synchronisation with Mediterranean seasonality in all the investigated populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号