首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of mechanical bending on tuning the hydrogen storage of titanium functionalised (4,0) carbon nanotube have been assessed using density functional theory calculations with reference to the ultimate targets of the US Department of Energy (DOE). The assessment has been carried out in terms of physisorption, gravimetric capacity, projected densities of states, statistical thermodynamic stability and reaction kinetics. The Ti atom binds at the hollow site of the hexagonal ring. The average adsorption energies (?0.54 eV) per hydrogen molecule meet the DOE target for physisorption (?0.20 to ?0.60 eV). The curvature attributed to the bending angle has no effect on the average adsorption energies per H2 molecule. With no metal clustering, the system gravimetric capacities are expected to be as large as 9.0 wt%. The reactions of the deformed (bent) carbon nanotube have higher probabilities of occurring than those of the un-deformed carbon nanotube. The Gibbs free energies, enthalpies and entropies meet the ultimate targets of the DOE for all temperatures and pressures. The closest reactions to zero free energy occur at (378.15 K/2.961 atm.) and reverse at (340 and 360 K/1 atm.). The translational component is found to exact a dominant effect on the total entropy change with temperature. Favourable kinetics of the reactions at the temperatures targeted by DOE are reported regardless of the applied pressure. The more preferable thermodynamic properties assigned to the bending nanotube imply that hydrogen storage can be improved compared to the nonbending nanotube.  相似文献   

2.
We studied the structural and dynamical properties of methane and ethane in montmorillonite (MMT) slit pore of sizes 10, 20 and 30 Å using grand canonical Monte Carlo and classical molecular dynamics (MD) simulations. The isotherm, at 298.15 K, is generated for pressures up to 60 bar. The molecules preferentially adsorb at the surface as indicated by the density profile. In case of methane, we observe only a single layer, at the pore wall, whose density increases with increasing pressure. However, ethane also displays a second layer, though of low density in case of pore widths 20 and 30 Å. In-plane self-diffusion coefficient, D, of methane and ethane is of the order of 10? 6 m2/s. At low pressure, D increases significantly with the pore size. However, D decreases rapidly with increasing pressure. Furthermore, the effect of pore size on D diminishes at high pressure. Ideal adsorbed solution theory is used to understand the adsorption behaviour of the binary mixture of methane (80%) and ethane (20%) at 298.15 K. Furthermore, we calculate the selectivity of the gases at various pressures of the mixture, and found high selectivity for ethane in MMT pores. However, selectivity of ethane decreases with increase in pressure or pore size.  相似文献   

3.
The dissociation processes of methane and carbon dioxide hydrates were investigated by molecular dynamics simulation. The simulations were performed with 368 water molecules and 64 gas molecules using NPT ensembles. The TraPPE (single-site) and 5-site models were adopted for methane molecules. The EPM2 (3-site) and SPC/E models were used for carbon dioxide and water molecules, respectively. The simulations were carried out at 270 K and 5.0 MPa for hydrate stabilisation. Then, temperature was increased up to 370 K. The temperature increasing rates were 0.1–20 TK/s. The gas hydrates dissociated during increasing temperature or at 370 K. The potential models of methane molecule did not much influence the dissociation process of methane hydrate. The mechanisms of dissociation process were analysed with the coordination numbers and mean square displacements. It was found that the water cages break down first, then the gas molecules escape from the water cages. The methane hydrate was more stable than the carbon dioxide hydrate at the calculated conditions.  相似文献   

4.
Molecular dynamics simulation was performed to analyse the phenomena of replacement of methane hydrate with carbon dioxide (CO2) at 270 K and 5.0 MPa for 5300 ps. The methane hydrate phase was constructed with 16 unit cells of hydrate. Every cage in the hydrate was occupied by one methane molecule. The methane hydrate phase was sandwiched between two CO2 phases. During the simulation the hydrate partially melted and liquid water phase appeared, and CO2 dissolved in the liquid water phase. The replacements were observed three times at the hydrate–liquid water interface during the simulation. In the first case, the replacement occurred at a S-cage without changing the structure. In the second case, an M-cage of methane hydrate partially collapsed, and methane and CO2 molecules exchanged. After the exchange, the cage occupied by CO2 remained in the M-cage structure. In the third case, a S-cage of methane hydrate partially collapsed, and methane and CO2 molecules exchanged. After the exchange, the cage occupied by CO2 changed to an M-cage-like structure.  相似文献   

5.
This study reports an improved method for activating asphalt to produce ultra‐high surface area porous carbons. Pretreatment of asphalt (untreated Gilsonite, uGil ) at 400 °C for 3 h removes the more volatile organic compounds to form pretreated asphalt ( uGil‐P ) material with a larger fraction of higher molecular weight π‐conjugated asphaltenes. Subsequent activation of uGil‐P at 900 °C gives an ultra‐high surface area (4200 m2 g?1) porous carbon material ( uGil‐900 ) with a mixed micro and mesoporous structure. uGil‐900 shows enhanced room temperature CO2 uptake capacity at 54 bar of 154 wt% (35 mmol g?1). The CH4 uptake capacity is 37.5 wt% (24 mmol g?1) at 300 bar. These are relevant pressures in natural gas production. The room temperature working CO2 uptake capacity for uGil‐900 is 19.1 mmol g?1 (84 wt%) at 20 bar and 32.6 mmol g?1 (143 wt%) at 50 bar. In order to further assess the reliability of uGil‐900 for CO2 capture at elevated pressures, the authors study competitive sorption of CO2 and CH4 on uGil‐900 at pressures from 1 to 20 bar at 25 °C. CO2/CH4 displacement constants are measured at 2 to 40 bar, and found to increase significantly with pressure and surface area.  相似文献   

6.
Using the grand canonical ensemble Monte Carlo method, two similar metal organic frameworks (isoreticular MOFs [IRMOF]-12 and -14) and their modified structures by doping lithium (Li) atoms above the organic units and/or impregnating with fullerenes in their cavities have been employed to investigate the capacities of H2 storage. Our simulations show that the H2 uptakes of Li-C60@Li-IRMOF-12 and Li-C60@Li-IRMOF-14 achieve the U.S. Department of Energy targets before 2017 both in gravimetric density and in volumetric density at 243 K and 100 bar. Combining the results of IRMOF-10-based structures, we further study the relationships between the H2 uptakes and the physical properties of the materials to identify the influence factors on the H2 storage at room temperature.  相似文献   

7.
Extraction of brown seaweed (Undaria pinnatifida) oil was carried out by using supercritical carbon dioxide (SCO2) and ethanol as co-solvent. The flow rate of ethanol was 3.0% (v/v) as compared to that of SCO2. Experiments were performed in a semi-batch flow apparatus on dried samples at temperatures from 303 to 333 K and pressures from 80 to 300 bar. Fucoxanthin and polyphenol were quantitatively analyzed by using HPLC and UV-spectrometer. The highest yields of fucoxanthin and polyphenol were shown at 200 bar, 323 K and 250 bar, 333 K, respectively. The solubility of fucoxanthin in SCO2 agreed well with the Chrastil model.  相似文献   

8.
Despite the sizeable and growing body of research on polymers of intrinsic microporosity (PIMs), a greater understanding of the relationship between the monomer, polymer–polymer and polymer–gas interaction is of significant interest. Methane (CH4), carbon dioxide (CO2), oxygen (O2) and nitrogen (N2) adsorption isotherms at 20°C and up to 20 bar obtained from grand canonical Monte Carlo simulations are presented for PIM-1, PIM-1c, PIM-1n and PIM-1f. The new proposed structure, PIM-1f, is presented and characterised by geometric accessible surface area, pore size distribution, radial distribution function, X-ray scattering and gas adsorption isotherms. PIM-1f increased the geometric surface area when compared with PIM-1; however, the higher system density in combination with the lack of strong adsorption sites yielded the least effective adsorbent for the gases analysed in this study. The gas solubility and ideal solubility selectivity values are also presented and compared with available experimental data for all gases and several gas mixtures illustrating that PIM-1c is the most effective functionality studied for adsorbing these four gases. The conclusions made here are projected to facilitate the design of a material that combines the higher surface area of PIM-1f with the high adsorption capacity of PIM-1c, which will improve the performance of future PIMs.  相似文献   

9.
This study investigated the effect of carbon nanotubes (CNTs) and titanium dioxide (TiO2) incorporated in PDMS on biofilm formation and plantigrade settlement of Mytilus coruscus. TiO2 increased bacterial density, and CNTs also increased bacterial density but reduced diatom density in biofilms after 28 days. Further analysis was conducted between bacterial communities on glass, PDMS, CNTs (0.5 wt%) and TiO2 (7.5 wt%). ANOSIM analysis revealed significant differences (R > 0.9) between seven, 14, 21 and 28 day-old bacterial communities. MiSeq sequencing showed that CNTs and TiO2 impacted the composition of 28 day-old bacterial communities by increasing the abundance of Proteobacteria and decreasing the abundance of Bacteroidetes. The maximum decreased settlement rate in 28 day-old biofilms on CNTs and TiO2 was > 50% in comparison to those on glass and PDMS. Thus, CNTs and TiO2 incorporated in PDMS altered the biomass and community composition of biofilms, and subsequently decreased mussel settlement.  相似文献   

10.
Trinitromethyl-substituted aminotetrazoles with –NH2, –NO2, –N3, and –NHC(NO2)3 groups were investigated at the B3LYP/6-31G(d) level of density functional theory. Their sublimation enthalpies, thermodynamic properties, and heats of formation were calculated. The thermodynamic properties of these compounds increase with temperature as well as with the number of nitro groups attached to the tetrazole ring. In addition, the detonation velocities and detonation pressures of these compounds were successfully predicted using the Kamlet–Jacobs equations. It was found that these compounds exhibit good detonation properties, and that compound G (D = 9.2 km/s, P = 38.8 GPa) has the most powerful detonation properties, which are similar to those of the well-known explosive HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocine). Finally, the electronic structures and bond dissociation energies of these compounds were calculated. The BDEs of their C–NO2 bonds were found to range from 101.9 to 125.8 kJ/mol-1. All of these results should provide useful fundamental information for the design of novel HEDMs.  相似文献   

11.
Sorption affinity of copper flotation waste from KGHM toward Cd(II), Cr(III), Cu(II), and Pb(II) ions was investigated in this work. Batch sorption studies, using single-element synthetic aqueous solutions at various pH (2–12), contact time (10–300 min), initial concentration (100–5000 mg dm?3; 1–100 mg dm?3 for Cd(II)) and adsorbent dose (25–200 g dm?3), were performed. Bonding strength of adsorbed metals was tested from the degree of desorption. The maximum metal removal was observed at pH 5–8, ≥120 min reaction time, and 25 g dm?3 adsorbent dose. Maximum sorption capacities of studied material were 41.6, 58.8, and 83.8 mg g?1 for Cr(III), Cu(II), and Pb(II), respectively, for 5000 mg dm?3 initial concentration, and 0.86 mg g?1 for Cd(II) for initial concentration of 50 mg dm?3. Sorption isotherms were very well fitted to Langmuir (Cd, Cr, Pb) and Freundlich (Cu) models. Sorption kinetics was nearly ideally fitted to pseudo-second-order kinetic model. Desorption studies showed that most of Cr(III) (98.5%) and Pb(II) (67.3%) ions remained bound to the surface, indicating that the chemisorption dominated as a controlling process. On the other hand, mostly desorbed were Cd(II) (98.5%) and Cu(II) (90.3%) ions, which indicated that processes like physisorption or precipitation were prevailing.  相似文献   

12.
To compare the OH-initiated reaction mechanisms of five chlorophenoxy herbicides, density functional theory (DFT) calculations of reactions in which ·OH attacks one of three active positions on each herbicide were carried out at the MPWB1K/6-311 + G(3df,2p)//MPWB1K/6-31 + G(d,p) level. For each herbicide, the calculation results show that ·OH addition to the C1 atom, which is the nexus between the benzene ring and the side group, possesses the lowest energy barrier among the three kinds of reactions, indicating that ·OH addition–substitution of the side chain is the most energetically and kinetically favorable reaction mechanism. Comparisons among the herbicides show that the mechanisms are affected by the steric hindrance and the electronegativities of the –CH3 and –Cl groups. When comparing the addition of ·OH to the C1 site among the five herbicides, the activation energy for the reaction of ·OH with DCPP reaction is the lowest (3.61 kcal mol?1), while that for the ·OH and 4-CPA reaction was the highest (5.91 kcal mol?1). ·OH addition to the C4 site presents the highest energy barriers among the three kinds of reactions, indicating that the para Cl is difficult to break down. When comparing the H-atom abstraction reactions of the five herbicides, the H atoms in the –CH2– group of 2,4-D are the easiest for ·OH to abstract, whereas those of DCPP and MCPP are more difficult to abstract, due to the steric hindrance of the –CH3 group. Additionally, the results obtained from the PCM calculations reveal that most of the reactions occur more easily in water than in gas, though the mechanisms involved are the same as those discussed above.  相似文献   

13.
Nanoporous carbons (NPCs) with engineered specific pore sizes and sufficiently high porosities (both specific surface area and pore volume) are necessary for storing energy in the form of electric charges and molecules. Herein, NPCs, derived from biomass pine‐cones, coffee‐grounds, graphene‐oxide and metal‐organic frameworks, with systematically increased pore width (<1.0 nm to a few nm), micropore volume (0.2–0.9 cm3 g?1) and specific surface area (800–2800 m2 g?1) are presented. Superior CO2, H2, and H2O uptakes of 35.0 wt% (≈7.9 mmol g?1 at 273 K), 3.0 wt% (at 77 K) and 85.0 wt% (at 298 K), respectively at 1 bar, are achieved. At controlled microporosity, supercapacitors deliver impressive performance with a capacity of 320 and 230 F g?1 at 500 mA g?1, in aqueous and organic electrolytes, respectively. Excellent areal capacitance and energy density (>50 Wh kg?1 at high power density, 1000 W kg?1) are achieved to form the highest reported values among the range of carbons in the literature. The noteworthy energy storage performance of the NPCs for all five cases (CO2, H2, H2O, and capacitance in aqueous and organic electrolytes) is highlighted by direct comparison to numerous existing porous solids. A further analysis on the specific pore type governed physisorption capacities is presented.  相似文献   

14.
The potentials of Adansonia digitata root powders (ADRP) for adsorption of Pb2+, Cd2+ and Cu2+ from aqueous solutions was investigated. Physico-chemical analysis of the adsorbent (ADRP) shows that hydroxyl, carbonyl and amino groups were predominant on the surface of the adsorbent. Scanning Electron Microscope (SEM) image revealed its high porosity and irregular pores in the adsorbent while the Energy Dispersive X-ray Spectrum showed the major element with 53.0% Nitrogen, 23.8% carbon, 9.1% calcium, 7.5% potassium and 6.6% magnesium present. The found optimal conditions were: initial concentration of the metal ions = 0.5 mg/L, pH = 5, contact time = 90 min, adsorbent dose = 0.4 g and particle size = 32 µm. Freundlich isotherm showed good fit for the adsorption of Pb2+, Cd2+ and Cu2+. Dubinin-Radushkevich isotherm revealed that the adsorption processes were physisorption Cd(II) and Cu(II) but chemisorption with respect to Pb(II) ions. The kinetics and thermodynamic studies showed that Pseudo-second order and chemisorptions provided the best fit to the experimental data of Pb (II) ions only. Batch desorption result show that desorption in the acidic media for the metal ions were more rapid and over 90% of the metal ions were recovered from the biomass.  相似文献   

15.
Calcium borohydride is a potential candidate for onboard hydrogen storage because it has a high gravimetric capacity (11.5 wt.%) and a high volumetric hydrogen content (~130 kg m?3). Unfortunately, calcium borohydride suffers from the drawback of having very strongly bound hydrogen. In this study, Ca(BH4)2 was predicted to form a destabilized system when it was mixed with LiBH4, NaBH4, or KBH4. The release of hydrogen from Ca(BH4)2 was predicted to proceed via two competing reaction pathways (leading to CaB6 and CaH2 or CaB12H12 and CaH2) that were found to have almost equal free energies. Using a set of recently developed theoretical methods derived from first principles, we predicted five new hydrogen storage reactions that are among the most attractive of those presently known. These combine high gravimetric densities (>6.0 wt.% H2) with have low enthalpies [approximately 35 kJ/(mol?1 H2)] and are thermodynamically reversible at low pressure within the target window for onboard storage that is actively being considered for hydrogen storage applications. Thus, the first-principles theoretical design of new materials for energy storage in future research appears to be possible.
Figure
Calculated van’t Hoff plot for reactions (10-24*) listed in the Ca-M(Li, Na, K)-B-H system (Tables 24). The region within the rectangular box corresponds to desirable temperatures and pressures for on-board hydrogen storage PH2 = 1-700 bar and T = 233 to +355 K  相似文献   

16.
The compatibility of chitosan (CS) and poly(vinyl pyrrolidone) was investigated by molecular dynamic (MD) simulations using the Flory–Huggins theory. The specific interactions in blends were studied by the radial distribution function (RDF). The Flory–Huggins interaction parameter, χ, was calculated at 298 K to assess the blend compatibility at different component ratios in the polymers. Miscibility was observed for blends with more than 50% of CS in the molar fraction, while immiscibility was prevalent at the molar fraction of CS between 10 and 50% of CS. Miscibility between poly(N-vinyl-2-pyrrolidone) (PVP) and CS polymers is attributed to the hydrogen bond formation of the –C = O group of PVP and the –CH2OH groups of CS. This was further confirmed by MD simulations of RDFs for groups or atoms that are involved in interactions. These results are correlated well to obtain more realistic information on interactions involved as a function of blend composition.  相似文献   

17.
Properties of a new class of hypothetical high-surface-area porous carbons (open carbon frameworks) have been discussed. The limits of hydrogen adsorption in these carbon porous structures have been analyzed in terms of competition between increasing surface accessible for adsorption and the lowering energy of adsorption. From an analysis of an analytical model and simulations of adsorption the physical limits of hydrogen adsorption have been defined: (i) higher storage capacities in slit-shaped pores can be obtained by fragmentation/truncation of graphene sheets into nano-metric elements which creates surface areas in excess of 2600 m2/g, the surface area for infinite graphene sheets; (ii) the positive influence of increasing surface area is compensated by the decreasing energy of adsorption in the carbon scaffolds of nano-metric sizes; (iii) for open carbon frameworks (OCF) built from coronene and benzene molecules with surface areas 6500 m2 g-1, we find an impressive excess adsorption of 75–110 g?H2/kg C at 77 K, and high storage capacity of 110–150 g?H2/kg C at 77 K and 100 bar; (iv) the new OCF, if synthesized and optimized, could lead to required hydrogen storage capacity for mobile applications.  相似文献   

18.
A robust, naturally evolving methanotrophic community in landfill cover soil (LFCS) can be the simplest way to mitigate landfill methane emission. In this study, bacterial community composition in LFCS and methane oxidation potential of enriched methanotrophic consortium, in comparison to that of axenic Methylosinus sporium, was investigated. Growth and methane oxidation of the consortium was studied in liquid phase batch experiments under varying temperature (20–40°C), pH (5–10), headspace CO2, and in presence of porous adsorbent (1.3 cm3 sponge cubes). The 16S rRNA gene analysis revealed presence of both type-I and type-II methanotrophs along with few obligate methylotroph in LFCS. Though the optimal growth condition of the consortium was at 30°C and pH 7, it was more resilient in comparison to M. sporium. With increasing availability of porous adsorbent, methane consumption by the consortium was significantly improved (p < 0.001) reaching a maximum specific methane oxidation rate of 11.4 μmol mg?1 biomass h?1. Thus, inducing naturally thriving methanotrophs in LFCS is a better alternative to axenic methanotrophic culture in methane emission management.  相似文献   

19.
Oxidation of methane by methanotrophs, Methylomicrobium album and Methylocystis sp., was measured at several initial concentrations of H2S and NH3 in the headspace of stoppered flasks, at the same initial concentration of methane as sole carbon and energy source: 15 % (v/v). No effect was observed at 0.01 % (v/v) H2S and 0.025 % (v/v) NH3 in gas phase but over 0.05 and 0.025 % (v/v), respectively, they inhibited the oxidation of methane. The effect of H2S was stronger in Methylocystis sp. and both microorganisms were similarly affected by NH3. Depending on their concentrations in gas phase, H2S and NH3 can thus affect the rate of oxidation of methane and biomass growth of both methanotrophs.  相似文献   

20.
Escherichia coli pfl ldhA ptsG (AFP111) was studied for succinate production in defined medium using trace gases typically found in flue gas; i.e. oxygen (O2), nitrogen dioxide (NO2), sulfur dioxide (SO2) and carbon monoxide (CO). Following aerobic cell growth, cells were exposed to 50% CO2 and 3–10% O2, or 50–300 ppm NO2, SO2 or CO during the succinate production phase. Although 3% O2 did not significantly affect succinate formation, 10% O2 reduced the final succinate concentration from 33 to 17 g/L, specific productivity from 1.90 to 1.13 mmol/g h and yield from 1.15 to 0.81 mol/mol glucose. The effect of O2 correlated with the culture redox potential (ORP) with more reducing conditions favoring succinate production. The trace gases NO2 and SO2 also reduced the rate of succinate formation by as much as 50%, and led to a greater than twofold increase in pyruvate formation. Similar concentrations of CO showed no effect on succinate production rate or yield. Using synthetic flue gas AFP111 generated 12 g/L succinate with a specific productivity of 0.73 mmol/g h and a yield of 0.65 mol/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号