首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Normal Human Telomeres Are Not Late Replicating   总被引:9,自引:0,他引:9  
Telomeres in yeast are late replicating. Genes placed next to telomeres in yeast can be repressed (telomere positional effects), leading to the hypothesis that telomeres may be heterochromatic and may control the expression of subtelomeric genes. In addition, yeast telomeres are processed to have a transient long overhang at the end of S phase. The applicability of the yeast data to human biology was examined by determining the timing of telomere replication and processing in normal human diploid fibroblasts. Telomeres were purified from synchronized cells that had been labeled with 5-bromodeoxyuridine (BrdU) at hourly intervals, and the fraction of labeled telomeres was analyzed by retrieval with anti-BrdU antibodies. We determined that normal human telomeres replicate throughout S phase rather than being very late replicating. Furthermore, the overall timing of replication was unaffected by telomere length in young versus old cells or cells whose telomeres had been elongated following transfection with the catalytic subunit of telomerase. Finally, the asymmetry in the length of the G-rich overhang in daughter telomeres produced by leading versus lagging strand synthesis was shown to be established within 1 h of telomere replication, indicating there is no significant delay between synthesis and the processing events that contribute to the establishment of asymmetric overhangs. Therefore, the timings of replication and processing of human telomeres are very different from those of yeast.  相似文献   

2.
The nematode Caenorhabditis elegans, after completing its developmental stages and a brief reproductive period, spends the remainder of its adult life as an organism consisting exclusively of post-mitotic cells. Here we show that telomere length varies considerably in clonal populations of wild-type worms, and that these length differences are conserved over at least ten generations, suggesting a length regulation mechanism in cis. This observation is strengthened by the finding that the bulk telomere length in different worm strains varies considerably. Despite the close correlation of telomere length and clonal cellular senescence in mammalian cells, nematodes with long telomeres were neither long lived, nor did worm populations with comparably short telomeres exhibit a shorter life span. Conversely, long-lived daf-2 and short-lived daf-16 mutant animals can have either long or short telomeres. Telomere length of post-mitotic cells did not change during the aging process, and the response of animals to stress was found independent of telomere length. Collectively, our data indicate that telomere length and life span can be uncoupled in a post-mitotic setting, suggesting separate pathways for replication-dependent and -independent aging.  相似文献   

3.
Short telomeres have been shown to be preferentially elongated in both yeast and mouse models. We examined this in human cells, by utilising cells with large allelic telomere length differentials and observing the relative rates of elongation following the expression of hTERT. We observed that short telomeres are gradually elongated in the first 26 PDs of growth, whereas the longer telomeres displayed limited elongation in this period. Telomeres coalesced at similar lengths irrespective of their length prior to the expression of hTERT. These data indicate that short telomeres are marked for gradual elongation to a cell strain specific length threshold.  相似文献   

4.
端粒随细胞分裂进行性缩短不但防止了人类肿瘤的发展,而且与人类的衰老密切相关。另外,端粒中存在一种特殊的现象:端粒位置效应,它首先在酵母中发现,表现为靠近端粒序列附近的基因表达因端粒的位置效应而沉默。在人类细胞中也存在端粒位置效应,并且有多种因子参与此效应,它可能对细胞生长停止、肿瘤以及衰老发生时等许多随端粒缩短密切相关基因的程序性表达产生重要作用。  相似文献   

5.
6.
Progressive telomere shortening from cell division (replicative aging) provides a barrier for human tumor progression. This program is not conserved in laboratory mice, which have longer telomeres and constitutive telomerase. Wild species that do/do not use replicative aging have been reported, but the evolution of different phenotypes and a conceptual framework for understanding their uses of telomeres is lacking. We examined telomeres/telomerase in cultured cells from > 60 mammalian species to place different uses of telomeres in a broad mammalian context. Phylogeny‐based statistical analysis reconstructed ancestral states. Our analysis suggested that the ancestral mammalian phenotype included short telomeres (< 20 kb, as we now see in humans) and repressed telomerase. We argue that the repressed telomerase was a response to a higher mutation load brought on by the evolution of homeothermy. With telomerase repressed, we then see the evolution of replicative aging. Telomere length inversely correlated with lifespan, while telomerase expression co‐evolved with body size. Multiple independent times smaller, shorter‐lived species changed to having longer telomeres and expressing telomerase. Trade‐offs involving reducing the energetic/cellular costs of specific oxidative protection mechanisms (needed to protect < 20 kb telomeres in the absence of telomerase) could explain this abandonment of replicative aging. These observations provide a conceptual framework for understanding different uses of telomeres in mammals, support a role for human‐like telomeres in allowing longer lifespans to evolve, demonstrate the need to include telomere length in the analysis of comparative studies of oxidative protection in the biology of aging, and identify which mammals can be used as appropriate model organisms for the study of the role of telomeres in human cancer and aging.  相似文献   

7.
Although telomere length (TL) shortens with age in most tissues, an age‐related increase in length has been described in sperm through a mechanism that is not yet fully understood. Changes in TL with age in the same individual have not been explored. This longitudinal study examines TL dynamics in somatic tissue and gametes during an entire lifespan in an outbred mouse population (from 8 to up to 114 weeks of age). Our findings indicate a reduced life expectancy in males compared to females (84.75 ± 9.23 vs. 113.16 ± 0.20 weeks) and significant variability in TL dynamics between individuals. While with aging, a clear reduction in TL was produced in somatic cells and oocytes, telomeres in sperm cells significantly lengthened. Finally, we found evidence indicating that telomere elongation in sperm during aging may be dependent on different mechanisms, such as the survival of spermatogonia with longer telomeres and the alternative lengthening of telomeres mechanism in meiotic and postmeiotic spermatogenic cells.  相似文献   

8.
Telomere length, a highly heritable trait, is longer in offspring of older fathers. This perplexing feature has been attributed to the longer telomeres in sperm of older men and it might be an ‘epigenetic’ mechanism through which paternal age plays a role in telomere length regulation in humans. Based on two independent (discovery and replication) twin studies, comprising 889 twin pairs, we show an increase in the resemblance of leukocyte telomere length between dizygotic twins of older fathers, which is not seen in monozygotic twins. This phenomenon might result from a paternal age‐dependent germ stem cell selection process, whereby the selected stem cells have longer telomeres, are more homogenous with respect to telomere length, and share resistance to aging.  相似文献   

9.
10.
Short Telomeres Initiate Telomere Recombination in Primary and Tumor Cells   总被引:2,自引:0,他引:2  
Human tumors that lack telomerase maintain telomeres by alternative lengthening mechanisms. Tumors can also form in telomerase-deficient mice; however, the genetic mechanism responsible for tumor growth without telomerase is unknown. In yeast, several different recombination pathways maintain telomeres in the absence of telomerase—some result in telomere maintenance with minimal effects on telomere length. To examine non-telomerase mechanisms for telomere maintenance in mammalian cells, we used primary cells and lymphomas from telomerase-deficient mice (mTR−/− and Eμmyc+mTR−/−) and CAST/EiJ mouse embryonic fibroblast cells. These cells were analyzed using pq-ratio analysis, telomere length distribution outliers, CO-FISH, Q-FISH, and multicolor FISH to detect subtelomeric recombination. Telomere length was maintained during long-term growth in vivo and in vitro. Long telomeres, characteristic of human ALT cells, were not observed in either late passage or mTR−/− tumor cells; instead, we observed only minimal changes in telomere length. Telomere length variation and subtelomeric recombination were frequent in cells with short telomeres, indicating that length maintenance is due to telomeric recombination. We also detected telomere length changes in primary mTR−/− cells that had short telomeres. Using mouse mTR+/− and human hTERT+/− primary cells with short telomeres, we found frequent length changes indicative of recombination. We conclude that telomere maintenance by non-telomerase mechanisms, including recombination, occurs in primary cells and is initiated by short telomeres, even in the presence of telomerase. Most intriguing, our data indicate that some non-telomerase telomere maintenance mechanisms occur without a significant increase in telomere length.  相似文献   

11.
Telomeres protect the chromosome ends from degradation and play crucial roles in cellular aging and disease. Recent studies have additionally found a correlation between psychological stress, telomere length, and health outcome in humans. However, studies have not yet explored the causal relationship between stress and telomere length, or the molecular mechanisms underlying that relationship. Using yeast as a model organism, we show that stresses may have very different outcomes: alcohol and acetic acid elongate telomeres, whereas caffeine and high temperatures shorten telomeres. Additional treatments, such as oxidative stress, show no effect. By combining genome-wide expression measurements with a systematic genetic screen, we identify the Rap1/Rif1 pathway as the central mediator of the telomeric response to environmental signals. These results demonstrate that telomere length can be manipulated, and that a carefully regulated homeostasis may become markedly deregulated in opposing directions in response to different environmental cues.  相似文献   

12.
Telomerase function is critical for telomere maintenance. Mutations in telomerase components lead to telomere shortening and progressive bone marrow failure in the premature aging syndrome dyskeratosis congenita. Short telomeres are also acquired with aging, yet the role that they play in mediating age-related disease is not fully known. We generated wild-type mice that have short telomeres. In these mice, we identified hematopoietic and immune defects that resembled those present in dyskeratosis congenita patients. When mice with short telomeres were interbred, telomere length was only incrementally restored, and even several generations later, wild-type mice with short telomeres still displayed degenerative defects. Our findings implicate telomere length as a unique heritable trait that, when short, is sufficient to mediate the degenerative defects of aging, even when telomerase is wild-type.  相似文献   

13.
Telomere attrition is linked to cancer, diabetes, cardiovascular disease and aging. This is because telomere losses trigger further genomic modifications, culminating with loss of cell function and malignant transformation. However, factors regulating the transition from cells with short telomeres, to cells with profoundly altered genomes, are little understood. Here, we use budding yeast engineered to lack telomerase and other forms of telomere maintenance, to screen for such factors. We show that initially, different DNA damage checkpoint proteins act together with Exo1 and Mre11 nucleases, to inhibit proliferation of cells undergoing telomere attrition. However, this situation changes when survivors lacking telomeres emerge. Intriguingly, checkpoint pathways become tolerant to loss of telomeres in survivors, yet still alert to new DNA damage. We show that Rif1 is responsible for the checkpoint tolerance and proliferation of these survivors, and that is also important for proliferation of cells with a broken chromosome. In contrast, Exo1 drives extensive genomic modifications in survivors. Thus, the conserved proteins Rif1 and Exo1 are critical for survival and evolution of cells with lost telomeres.  相似文献   

14.
Telomere length and telomerase activity are important factors in the pathobiology of human diseases. Age-related diseases and premature aging syndromes are characterized by short telomeres, which can compromise cell viability, whereas tumour cells can prevent telomere loss by aberrantly upregulating telomerase. The zebrafish (Danio rerio) offers multiple experimental manipulation advantages over other vertebrate models and, therefore, it has been recently considered as a potential model for aging, cancer, and regeneration studies. However, it has only partially been exploited to shed light on these fundamental biological processes. The aim of this study was, therefore, to investigate telomere length and telomerase expression and activity in different strains of zebrafish obtained from different stock centres to determine whether they undergo any changes during aging and regeneration. We found that although both telomerase expression and telomere length increased from embryo to adulthood stages, they drastically declined in aged fish despite telomerase activity was detected in different tissues of old fish. In addition, we observed a weaker upregulation of telomerase expression in regenerating fins of old fish, which well correlates with their impaired regeneration capacity. Strikingly, telomeres were elongated or maintained during the fin regeneration process at all ages and after repeated amputations, likely to support high cell proliferation rates. We conclude that the expression of telomerase and telomere length are closely related during the entire life cycle of the fish and that these two parameters can be used as biomarkers of aging in zebrafish. Our results also reveal a direct relationship between the expression of telomerase, telomere length and the efficiency of tissue regeneration.  相似文献   

15.
16.
The conserved Rap1 protein is part of the shelterin complex that plays critical roles in chromosome end protection and telomere length regulation. Previous studies have addressed how fission yeast Rap1 contributes to telomere length maintenance, but the mechanism by which the protein inhibits end fusions has remained elusive. Here, we use a mutagenesis screen in combination with high‐throughput sequencing to identify several amino acid positions in Rap1 that have key roles in end protection. Interestingly, mutations at these sites render cells susceptible to genome instability in a conditional manner, whereby longer telomeres are prone to undergoing end fusions, while telomeres within the normal length range are sufficiently protected. The protection of long telomeres is in part dependent on their nuclear envelope attachment mediated by the Rap1–Bqt4 interaction. Our data demonstrate that long telomeres represent a challenge for the maintenance of genome integrity, thereby providing an explanation for species‐specific upper limits on telomere length.  相似文献   

17.
Identification of human Rap1: implications for telomere evolution   总被引:26,自引:0,他引:26  
Li B  Oestreich S  de Lange T 《Cell》2000,101(5):471-483
It has been puzzling that mammalian telomeric proteins, including TRF1, TRF2, tankyrase, and TIN2 have no recognized orthologs in budding yeast. Here, we describe a human protein, hRap1, that is an ortholog of the yeast telomeric protein, scRap1p. hRap1 has three conserved sequence motifs in common with scRap1, is located at telomeres, and affects telomere length. However, while scRap1 binds telomeric DNA directly, hRap1 is recruited to telomeres by TRF2. Extending the comparison of telomeric proteins to fission yeast, we identify S. pombe Taz1 as a TRF ortholog, indicating that TRFs are conserved at eukaryotic telomeres. The data suggest that ancestral telomeres, like those of vertebrates, contained a TRF-like protein as well as Rap1. We propose that budding yeast preserved Rap1 at telomeres but lost the TRF component, possibly concomitant with a change in the telomeric repeat sequence.  相似文献   

18.
Telomere biology in mammalian germ cells and during development   总被引:11,自引:0,他引:11  
The development of an organism is a strictly regulated program in which controlled gene expression guarantees the establishment of a specific phenotype. The chromosome termini or so-called telomeres preserve the integrity of the genome within developing cells. In the germline, during early development, and in highly proliferative organs, human telomeres are balanced between shortening processes with each cell division and elongation by telomerase, but once terminally differentiated or mature the equilibrium is shifted to gradual shortening by repression of the telomerase enzyme. Telomere length is to a large extent genetically determined and the neonatal telomere length equilibrium is, in fact, a matter of evolution. Gradual telomere shortening in normal human somatic cells during consecutive rounds of replication eventually leads to critically short telomeres that induce replicative senescence in vitro and probably in vivo. Hence, a molecular clock is set during development, which determines the replicative potential of cells during extrauterine life. Telomeres might be directly or indirectly implicated in longevity determination in vivo, and information on telomere length setting in utero and beyond should help elucidate presumed causal connections between early growth and aging disorders later in life. Only limited information exists concerning the mechanisms underlying overall telomere length regulation in the germline and during early development, especially in humans. The intent of this review is to focus on recent advances in our understanding of telomere biology in germline cells as well as during development (pre- and postimplantation periods) in an attempt to summarize our knowledge about telomere length determination and its importance for normal development in utero and the occurrence of the aging and abnormal phenotype later on.  相似文献   

19.
20.
Telomeres are capping structures at the ends of chromosomes, composed of a repetitive DNA sequence and associated proteins. Both a minimal length of telomeric repeats and telomere-associated binding proteins are necessary for proper telomere function. Functional telomeres are essential for maintaining the integrity and stability of eukaryotic genomes. The capping structure enables cells to distinguish chromosome ends from double strand breaks (DSBs) in the genome. Uncapped chromosome ends are at great risk for degradation, recombination, or chromosome fusion by cellular DNA repair systems. Dysfunctional telomeres have been proposed to contribute to tumorigenesis and some aging phenotypes. The analysis of mice deficient in telomerase activity and other telomere-associated proteins has allowed the roles of dysfunctional telomeres in tumorigenesis and aging to be directly tested. Here we will focus on the analysis of different mouse models disrupted for proteins that are important for telomere functions and discuss known and proposed consequences of telomere dysfunction in tumorigenesis and aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号