共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanisms of regulation of ovarian 7,12-dimethylbenz[a]anthracene (DMBA) hydroxylase were investigated with respect to hormonal requirements and effects of the antiestrogen tamoxifen and known inducers of cytochrome P-450. The DMBA hydroxylase is increased endogenously about 3-fold in the proestrus phase as compared to the metestrus/diestrus phases (M. Bengtsson and J. Rydstrom, Science, 219 (1983) 1437-1438). A similar effect was caused by the gonadotropins follicle-stimulating hormone (FSH) and luteinizing hormone (LH) whereas pregnant mare's serum gonadotropin (PMSG) brought about a 3-7-fold increase, suggesting that the estrus cycle-dependence of the DMBA hydroxylase was due directly or indirectly to gonadotropins. In contrast, differentiation of granulosa/theca cells to corpus luteum cells after ovulation, caused by administration of human chorionic gonadotropin (hCG), led to a marked decrease in activity. The activity was not specific for DMBA since substitution of this hydrocarbon for benzo[a]pyrene (BP) as substrate gave similar results. A possible role of estrogens in this context was investigated by the administration of tamoxifen simultaneous with gonadotropin treatment, which caused a partial inhibition of the hydroxylase activity. Both estradiol and 3-methyl-cholanthrene (MC) increased DMBA hydroxylase but the effects of these agents were not additive. In contrast, the effects of estradiol and MC were partially additive to that of gonadotropin. On the basis of these results, it is proposed that the rat ovary contains one or several aryl hydrocarbon hydroxylases located in the granulosa/theca cells which are regulated by estrogens, MC and beta-naphthoflavone (BNF) and that the role of gonadotropins is to proliferate granulosa/theca cells. 相似文献
2.
The principal products of the photooxidation of 7,12-dimethylbenz[a]-anthracene (DMBA) in aqueous solutions by photooxidation induced by laboratory lighting have been characterized by high performance liquid chromatograms (HPLC), ultraviolet and mass spectrograms and by comparisons with authentic samples. The products identified were the 7,12-epidioxy-7,12-dihydro-7-12-dimethyl-, 7,12-dione, 7-hydroxymethyl-12-methyl-, 12-hydroxymethyl-7-methyl-, 7-formyl-12-methyl-, 12-formyl-7-methyl-, and 12-hydroxy-12-methyl-7-one derivatives of benz[a]-anthracene. The HPLC profile of products is similar to that obtained from oxidation of DMBA by 'one-electron' reagents, singlet oxygen, or liver microsomal metabolism. The first points of attack are the 7- and 12- positions. The mechanism of photooxidation appears to be generation of singlet oxygen by photodynamic effect of DMBA. None of the products is photosensitizing, however. 相似文献
3.
R C Moschel W M Baird A Dipple 《Biochemical and biophysical research communications》1977,76(4):1092-1098
Isolation of hydrocarbon-deoxyribonucleoside products from the DNA of mouse embryo cells exposed to 7,12-dimethylbenz[a]anthracene permits both fluorescence excitation and emission spectra to be recorded. Comparison of these spectra with those of various model compounds indicates that 7,12-dimethylbenz[a]anthracene, one of the most potent of the hydrocarbon carcinogens, is metabolically activated for DNA binding through the generation of a diol-oxide in the 1,2,3,4-ring. 相似文献
4.
David C. McMillan Peter P. Fu James P. Freeman Dwight W. Miller Dr. Carl E. Cerniglia 《Journal of industrial microbiology & biotechnology》1988,3(4):211-225
Summary Six strains of fungi grown on Sabouraud dextrose broth in the presence of 7,12-dimethylbenz[a]anthracene (DMBA) were surveyed for their ability to metabolize DMBA. Experiments with [14C]DMBA indicated that the extent of formation of organic-soluble metabolites ranged from 6 to 28% after 5 days of incubation, depending on the organism tested. The yields of water-soluble metabolites also varied, and ranged from 1 to 33% after 5 days.Cunninghamella elegans ATCC 36112 andSyncephalastrum racemosum UT-70 exhibited the highest DMBA-metabolizing activity among the organisms surveyed.S. racemosum metabolized DMBA primarily to 7-hydroxymethyl-12-methylbenz[a]anthracene (7-OHM-12-MBA)_ and 7,12-dihydroxymethylbenz[a]anthracene (7,12-diOHMBA). Minor metabolites included 7-OHM-12-MBA-trans-5,6-, 8,9- and 10,11-dihydrodiols, and glucuronide and sulfate conjugates of phenolic derivatives of DMBA. In contrast, the major DMBA metabolites produced byC. elegans were water-soluble. The predominant organic-soluble metabolites produced byC. elegans included 7-OHM-12-MBA-trans-5,6-, 8,9- and 10,11-dihydrodiols. DMBA-trans-3,4-dihydrodiol was also detected. Circular dichroism spectral analysis revealed that the major enantiomer of the 7-OHM-12-MBA-trans-8,9-dihydrodiol formed by each organism has anS,S absolute configuration, while the major enantiomers of the 5,6-, 10,11- and 3,4-dihydrodiols had anR,R configuration. The mutagenic activity of extracts fromS. racemosum exposed to DMBA were determined inSalmonella typhimurium TA98. The mutagenicity of DMBA decreased by 36% over a period of 5 days as 33% of the compound was metabolized. Comparison of these results with previously reported results in mammalian systems suggests that there are similarities and differences between the fungal and mammalian oxidation of DMBA and that the overall balance of fungal metabolism is towards a detoxification rather than a bioactivation pathway. 相似文献
5.
The metabolites of 7,12-dimethylbenz[a]anthracene (DMBA), a carcinogenic polycyclic aromatic hydrocarbon, in cultures of Cunninghamella elegans were isolated by high-pressure liquid chromatography and characterized by UV spectroscopy and mass spectrometry. The major metabolites were DMBA-trans-8,9-dihydrodiol and DMBA-trans-3,4-dihydrodiol. The 7-hydroxymethyl and the 12-hydroxymethyl derivatives of these dihydrodiol metabolites were also formed. The metabolic profile described in this report contrasts with those obtained in our earlier experiments in which the incubation of DMBA with Pseudomonas aeruginosa and Penicillium notatum produced no dihydrodiol metabolites but only methyl-hydroxylated metabolites. 相似文献
6.
The metabolites of 7,12-dimethylbenz[a]anthracene (DMBA), a carcinogenic polycyclic aromatic hydrocarbon, in cultures of Cunninghamella elegans were isolated by high-pressure liquid chromatography and characterized by UV spectroscopy and mass spectrometry. The major metabolites were DMBA-trans-8,9-dihydrodiol and DMBA-trans-3,4-dihydrodiol. The 7-hydroxymethyl and the 12-hydroxymethyl derivatives of these dihydrodiol metabolites were also formed. The metabolic profile described in this report contrasts with those obtained in our earlier experiments in which the incubation of DMBA with Pseudomonas aeruginosa and Penicillium notatum produced no dihydrodiol metabolites but only methyl-hydroxylated metabolites. 相似文献
7.
Administration-route-related difference in the micronucleus test with 7,12-dimethylbenz[a]anthracene
F Mizuhashi K Murata T Kitagaki T Nishitomi A Hashimoto A Kido 《Mutation research》1989,223(4):357-360
The effect of route of administration on the outcome of the mouse micronucleus test was evaluated in 2 laboratories by administering a model chemical, 7,12-dimethylbenz[a]anthracene (DMBA) by intraperitoneal injection (i.p.) and oral gavage administration (p.o.) to males of 2 mouse strains, MS/Ae and CD-1. On the basis of a small-scale acute toxicity study and a pilot micronucleus test, a full-scale micronucleus test was performed with a 48-h sampling time at doses of 25, 50, 100, and 200 mg/kg by both administration routes in the 2 strains. At each dose level and in both strains, higher frequencies of micronucleated polychromatic erythrocytes (MNPCEs) were found after use of the i.p. route. In the MS/Ae strain, a linear, positive dose response was obtained by both routes. In the CD-1 strain, the maximum response was reached at 100 mg/kg and a downturn occurred at 200 mg/kg by both routes. The comparison of maximum responses indicated that MS/Ae was the higher responder for both routes of application. Although DMBA induced micronuclei more efficiently by the i.p. route than after oral administration on a mg/kg base, this route-related difference was reversed in both strains when the comparison was made on the basis of LD50 values and when the maximum responses were neglected. 相似文献
8.
T Suzuki K Tamai Y Kodama A O Asita A Matsuoka T Sofuni M Kurita H Ohtsuki T Hiwatashi M Hayashi 《Mutation research》1992,278(2-3):169-173
Micronucleus assays using mouse peripheral blood stained vitally on acridine orange (AO)-coated slides were evaluated at two laboratories with 7,12-dimethylbenz[a]anthracene (DMBA) and compared with the standard bone marrow assay. DMBA was administered by single intraperitoneal injection to CD-1 mice at doses ranging from 5 to 80 mg/kg, then 5 microliters of peripheral blood was sampled from a tail vein at 24, 48, 72, 96, and 120 h after treatment. Similar incidences of micronucleated young erythrocytes were observed in peripheral blood reticulocytes and bone marrow polychromatic erythrocytes. The dose response of micronucleated reticulocytes was delayed compared to that of micronucleated polychromatic erythrocytes. The dose-response curves after treatment with DMBA differed depending on the sampling times, which revealed the difficulty of obtaining accurate dose-response relations in the micronucleus assay. The present result demonstrated that the simple and rapid AO supravital staining method is a valuable and easier method for obtaining dose- and time-response data for quantification of micronucleus induction by chemicals. 相似文献
9.
C Forbes 《Mutation research》1980,79(3):231-237
One of the most potent carcinogens, 7,12-dimethylbenz[a]anthracene (DMBA), was tested for the induction of mutations in 2 strains of Drosophila melanogaster. Larvae were fed mixtures containing DMBA, peanut oil and solubilizing agents in darkness. After emergence the males were mated with Basc or FM7a females to test for sex-linked lethals. For Canton-S males, all DMBA treatments produced highly significant increases in mutation frequencies over controls. DMBA was slightly mutagenic for Oregon-R males. 相似文献
10.
Resolution and absolute configuration of 7,12-dimethylbenz[a]anthracene 5,6-epoxide enantiomers 总被引:1,自引:0,他引:1
M Mushtaq H B Weems S K Yang 《Biochemical and biophysical research communications》1984,125(2):539-545
The enantiomers of 7,12-dimethylbenz[a]anthracene (DMBA) 5,6-epoxide were directly resolved by normal-phase high-performance liquid chromatography with an ionically bonded chiral stationary phase. The absolute configurations of the resolved enantiomers were determined by comparison of circular dichroism spectra of the methanolysis products formed from the epoxide enantiomers with that of a DMBA trans-5,6-dihydrodiol enantiomer of known absolute stereochemistry. DMBA 5R,6S-epoxide is hydrated by rat liver microsomal epoxide hydrolase predominantly (95%) to a 5S,6S-dihydrodiol. The results indicate that the 5S,6S-dihydrodiol formed from the metabolism of DMBA by microsomes prepared from the livers of 3-methylcholanthrene-treated rats is predominantly derived from a 5R,6S-epoxide intermediate. 相似文献
11.
L M Thurmond A N Tucker D E Rickert L D Lauer J H Dean 《Chemico-biological interactions》1989,72(1-2):93-104
The metabolism of the polycyclic aromatic hydrocarbon (PAH) 7,12-dimethylbenz[a]anthracene (DMBA) was studied in murine lymphocytes. This carcinogen has previously been shown to be immunosuppressive to lymphocytes regardless of their ability to be induced via the Ah locus and receptor. Experiments were designed to quantify the generation of metabolites of DMBA by lymphocytes incubated with [14C]DMBA and to ascertain whether radioactivity was covalently bound to cellular macromolecules in DMBA-exposed lymphocytes. No significant metabolism of DMBA was detected in culture supernatants, except when cultures were incubated in the presence of Arochlor-induced rat liver 9000 x g supernatants (S9). Covalent binding of 14C to cellular macromolecules was enhanced approximately eightfold in the presence of S9. Inhibition of monooxygenase activity by alpha-naphthoflavone did not modulate the immunosuppressive character of DMBA. Furthermore, addition of S9 did not amplify or ablate DMBA-mediated suppression of lymphocyte proliferation to the mitogen concanavalin A (Con A). Selected metabolites of DMBA were evaluated for immunosuppressive effects in cultures stimulated with mitogens and cellular alloantigens. 7-Hydroxymethyl-12-methylbenz[a]anthracene (OHMe) and 5,6-dihydro-5,6-dihydroxybenz[a]anthracene (Diol) were found to cause only slightly greater suppression of lymphocyte responses than DMBA. Thus, it appears that metabolites of DMBA were not responsible for the immunosuppression observed in lymphocyte cultures and that lymphocytes were not equipped to metabolize any significant amount of DMBA. These data lend support to the hypothesis that parent compound alone is responsible for the immunosuppressive effects observed in murine lymphocyte culture. 相似文献
12.
W H Swallow K Pal D H Phillips P L Grover P Sims 《Chemico-biological interactions》1983,47(3):347-361
The metabolism of 3H-labelled 7,12-dimethylbenz[a]anthracene (DMBA) and of 7-hydroxymethyl-12-methylbenz[a]anthracene (7-OHM-12-MBA) into solvent- and water-soluble and protein-bound derivatives has been examined in rat liver and adrenal homogenates and in rat adrenocortical cells in culture. Although the overall extents of metabolism of the substrates by the two types of homogenate were similar, there was twice as much binding to protein in incubations with the 7-hydroxymethyl derivative. Rat adrenal cells in culture metabolized DMBA more extensively than 7-OHM-12-MBA and converted much more of the parent hydrocarbon into water-soluble derivatives. Both hydrocarbons were metabolized to yield dihydrodiols that were separated and identified by high performance liquid chromatography (HPLC). The 8,9-dihydrodiol was the major dihydrodiol formed from DMBA but, with 7-OHM-12-MBA as substrate, metabolism was diverted to the 10,11- and 3,4-positions in adrenal and hepatic preparations respectively. The viability of rat adrenocortical cells in culture, as measured by trypan blue exclusion, did not appear to be affected by treatment with DMBA, 7-OHM-12-MBA, the sulphate ester of 7-OHM-12-MBA or by 3,4-dihydro-3,4-dihydroxy-7-hydroxymethyl-12-methylbenz[a]anthracene. 相似文献
13.
Additional evidence for the involvement of the 3,4-diol 1,2-oxides in the metabolic activation of 7,12-dimethylbenz[a]anthracene in mouse skin 总被引:1,自引:0,他引:1
C S Cooper O Ribeiro A Hewer C Walsh P L Grover P Sims 《Chemico-biological interactions》1980,29(3):357-367
The role of vicinal diol-epoxides in the metabolic activation of 7,12-dimethylbenz[a]anthracene to intermediates that react with nucleic acids was investigated using Sephadex LH-20 column chromatography and high pressure liquid chromatography. The results show that some of the hydrocarbon-DNA products formed in mouse skin treated in vivo with 7,12-dimethylbenz[a]anthracene arise from the reaction of DNA with 3,4-dihydro-3,4-dihydroxy-7,12-dimethylbenz[a]anthracene 1,2-oxides which, on the basis of this and other evidence, appears to be a biologically-active metabolite of 7,12-dimethylbenz[a]anthracene. However, since other nucleic acid-hydrocarbon adducts were also present that have not been identified as resulting from the reaction of the 3,4-diol 1,2-oxides with DNA, other mechanisms may also be involved in the metabolic activation of 7,12-dimethylbenz[a]anthracene in mouse skin. 相似文献
14.
15.
16.
B Tierney A Hewer A D MacNicoll P Giovanni Gervasi H Rattle C Walsh P L Grover P Sims 《Chemico-biological interactions》1978,23(2):243-257
When benz[a] anthracene was oxidised in a reaction mixture containing ascorbic acid, ferrous sulphate and EDTA, the non-K-region dihydrodiols, trans-1,2-dihydro-1,2-dihydroxybenz[a] anthracene and trans-3,4-dihydro-3,4-dihydroxybenz[a] anthracene together with small amounts of the 8,9- and 10,11-dihydrodiols were formed. When oxidised in a similar system, 7,12-dimethylbenz[a] anthracene yielded the K-region dihydrodiol, trans-5,6-dihydro-5,6-dihydroxy-7,12-dimethylbenz[a] anthracene and the non-K-region dihydrodiols, trans-3,4-dihydro-3,4-dihydroxy-7,12-dimethylbenz[a] anthracene, trans-8,9-dihydro-8,9-dihydroxy-7,12-dimethylbenz[a] anthracene, trans-10,11-dihydro-10,11-dihydroxy-7,12-dimethylbenz[a] anthracene and a trace of the 1,2-dihydrodiol. The structures and sterochemistry of the dihydrodiols were established by comparisons of their UV spectra and chromatographic characteristics using HPLC with those of authentic compounds or, when no authentic compounds were available, by UV, NMR and mass spectral analysis. An examination by HPLC of the dihydrodiols formed in the metabolism, by rat-liver microsomal fractions, of benz[a] anthracene and 7,12-dimethylbenz[a] anthracene was carried out. The metabolic dihydriols were identified by comparisons of their chromatographic and UV or fluorescence spectral characteristics with compounds of known structures. The principle metabolic dihydriols formed from both benz[a] anthracene and 7,12-dimethylbenz[a] anthracene were the trans-5,6- and trans-8,9-dihydrodiols. The 1,2- and 10,11-dihydrodiols were identified as minor products of the metabolism of benz [a] anthracene and the tentative identification of the trans-3,4-dihydriol as a metabolite was made from fluorescence and chromatographic data. The minor metabolic dihydriols formed from 7,12-dimethylbenz[a] anthracene were the trans-3,4-dihydrodiol and the trans-10,11-dihydriol but the trans-1,2-dihydrodiol was not detected in the present study. 相似文献
17.
The DNA binding of nonreactive model compounds of metabolites of 7,12-dimethylbenz[a]-anthracene (DMBA)1 was studied in fluorescence quenching and fluorescence lifetime experiments. The model compounds examined were DMA and 8,9,10,11-tetrahydro-BA. DMA is a pi electron model of a highly carcinogenic bay region epoxide of DMBA, 8,9,10,11-tetrahydro-BA is a model compound of a less carcinogenic DMBA epoxide. The results indicate that the binding of DMA occurs primarily via intercalation. In 15% methanol the binding constant is 3.1 x 10(3) M-1. In 15% methanol and at DNA phosphate levels of 5.0 x 10(-4) M the intercalative binding of DMA is reduced by a factor of 6.2 when 5.0 x 10(-4) M Mg+2 is added. The DMA binding constant for intercalation is reduced by more than a factor of 4 when the methanol content of the solvent is increased from 0% to 20%. Finally DMA binding arising from pi interactions with the DNA bases is reduced more than 15 times when the DNA is denatured. For 8,9,10,11-tetrahydro-BA in 15% methanol the binding constant for intercalation is 6 times lower than that for DMA. These results along with previously reported binding data on other model compounds suggest that bay region metabolites of DMBA readily participate in physical pi stacking interactions with DNA. 相似文献
18.
The degradation of 7,12-dimethylbenz[a]anthracene (DMBA), a carcinogenic polycyclic aromatic hydrocarbon, by cultures of Mycobacterium vanbaalenii PYR-1 was studied. When M. vanbaalenii PYR-1 was grown in the presence of DMBA for 136 h, high-pressure liquid chromatography (HPLC) analysis showed the presence of four ethyl acetate-extractable compounds and unutilized substrate. Characterization of the metabolites by mass and nuclear magnetic resonance spectrometry indicated initial attack at the C-5 and C-6 positions and on the methyl group attached to C-7 of DMBA. The metabolites were identified as cis-5,6-dihydro-5,6-dihydroxy-7,12-dimethylbenz[a]anthracene (DMBA cis-5,6-dihydrodiol), trans-5,6-dihydro-5,6-dihydroxy-7,12-dimethylbenz[a]anthracene (DMBA trans-5,6-dihydrodiol), and 7-hydroxymethyl-12-methylbenz[a]anthracene, suggesting dioxygenation and monooxygenation reactions. Chiral stationary-phase HPLC analysis of the dihydrodiols showed that DMBA cis-5,6-dihydrodiol had 95% 5S,6R and 5% 5R,6S absolute stereochemistry. On the other hand, the DMBA trans-5,6-dihydrodiol was a 100% 5S,6S enantiomer. A minor photooxidation product, 7,12-epidioxy-7,12-dimethylbenz[a]anthracene, was also formed. The results demonstrate that M. vanbaalenii PYR-1 is highly regio- and stereoselective in the degradation of DMBA. 相似文献
19.
C Forbes 《Mutation research》1981,90(3):255-260
7,12-Dimethylbenz[a]anthracene (DMBA) was tested for the induction of mutations in 5 strains of Drosophila melanogaster. Larvae were fed mixtures containing either 1.0 or 4.0 mM DMBA in darkness. After emergence the males were mated to Basc females to test for sex-linked lethals. Canton-S males produced the highest frequency with no significant differences in the induction of lethals by the 2 concentrations. DMBA was slightly mutagenic in Oregon-R males over controls without significant differences between the 2 concentrations. Berlin-K, Lausanne-S and Urbana-S males all produced significantly more mutations at the 4.0-mM than the 1.0-mM concentrations. DMVA produced partial sterility in Canton-S and Urbana-S males. The DMBA mutation frequencies of all 5 wild strains are interpreted as being related to the levels of activating enzymes that metabolize DMBA. 相似文献
20.
1. The main products of the metabolism of 7,12-dimethylbenz[a]anthracene by rat-liver homogenates are the isomeric monohydroxymethyl derivatives. The syntheses of these compounds are described. 2. Two phenolic products and two dihydrodihydroxy compounds were formed, but none of these appeared to have been formed by hydroxylation at the `K region''. There was little evidence for the formation of a glutathione conjugate of the hydrocarbon. 3. The monohydroxymethyl derivatives are products of the hydroxylation of the hydrocarbon in the ascorbic acid–Fe2+–oxygen model hydroxylating system. 相似文献