首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Exocellular electron transfer in anaerobic microbial communities   总被引:5,自引:0,他引:5  
Exocellular electron transfer plays an important role in anaerobic microbial communities that degrade organic matter. Interspecies hydrogen transfer between microorganisms is the driving force for complete biodegradation in methanogenic environments. Many organic compounds are degraded by obligatory syntrophic consortia of proton-reducing acetogenic bacteria and hydrogen-consuming methanogenic archaea. Anaerobic microorganisms that use insoluble electron acceptors for growth, such as iron- and manganese-oxide as well as inert graphite electrodes in microbial fuel cells, also transfer electrons exocellularly. Soluble compounds, like humic substances, quinones, phenazines and riboflavin, can function as exocellular electron mediators enhancing this type of anaerobic respiration. However, direct electron transfer by cell-cell contact is important as well. This review addresses the mechanisms of exocellular electron transfer in anaerobic microbial communities. There are fundamental differences but also similarities between electron transfer to another microorganism or to an insoluble electron acceptor. The physical separation of the electron donor and electron acceptor metabolism allows energy conservation in compounds as methane and hydrogen or as electricity. Furthermore, this separation is essential in the donation or acceptance of electrons in some environmental technological processes, e.g. soil remediation, wastewater purification and corrosion.  相似文献   

2.
Aims:  To investigate the factors affecting benzene biodegradation and microbial community composition in a contaminated aquifer.
Methods and Results:  We identified the microbial community in groundwater samples from a benzene-contaminated aquifer situated below a petrochemical plant. Eleven out of twelve groundwater samples with in situ dissolved oxygen concentrations between 0 and 2·57 mg l−1 showed benzene degradation in aerobic microcosm experiments, whereas no degradation in anaerobic microcosms was observed. The lack of aerobic degradation in the remaining microcosm could be attributed to a pH of 12·1. Three groundwaters, examined by 16S rRNA gene clone libraries, with low in situ oxygen concentrations and high benzene levels, each had a different dominant aerobic (or denitrifying) population, either Pseudomonas , Polaromonas or Acidovorax species. These groundwaters also had syntrophic organisms, and aceticlastic methanogens were detected in two samples. The alkaline groundwater was dominated by organisms closely related to Hydrogenophaga .
Conclusions:  Results show that pH 12·1 is inimical to benzene biodegradation, and that oxygen concentrations below 0·03 mg l−1 can support aerobic benzene-degrading communities.
Significance and Impact of the Study:  These findings will help to guide the treatment of contaminated groundwaters, and raise questions about the extent to which aerobes and anaerobes may interact to effect benzene degradation.  相似文献   

3.
  1. Download : Download high-res image (121KB)
  2. Download : Download full-size image
  相似文献   

4.
Direct interspecies electron transfer (DIET) via electrically conductive minerals can play a role in the anaerobic oxidation of petroleum hydrocarbons in contaminated sites and can be exploited for the development of new, more effective bioremediation approaches.  相似文献   

5.
The microbial community structure of twenty-one single-phase and one two-phase full-scale anaerobic sewage sludge digesters was evaluated using oligonucleotide probes complementary to conserved tracts of the 16S rRNAs of phylogenetically defined groups of methanogens and sulfate-reducing bacteria. These probe results were interpreted in combination with results from traditional chemical analyses and metabolic activity assays. It was determined that methanogens in healthy mesophilic, single-phase sewage sludge digesters accounted for approximately 8–12% of the total community and thatMethanosarcinales andMethanomicrobiales constituted the majority of the total methanogen population.Methanobacteriales andMethanococcales played a relatively minor role in the digesters. Phylogenetic groups of mesophilic, Gram-negative sulfate-reducing bacteria were consistently present at significant levels:Desulfovibrio andDesulfobulbus spp. were the dominant sulfate-reducing populations,Desulfobacter andDesulfobacterium spp. were present at lower levels, andDesulfosarcina, Desulfococcus, andDesulfobotulus spp. were absent. Sulfate reduction by one or more of these populations played a significant role in all digesters evaluated in this study. In addition, sulfate-reducing bacteria played a role in favoring methanogenesis by providing their substrates. The analysis of the two-phase digester indicated that true phase separation was not accomplished: significant levels of active methanogens were present in the first phase. It was determined that the dominant populations in the second phase were different from those in the single-phase digesters.  相似文献   

6.
We present the results of an investigation into the special traits of conversion of azo dyes Acid Orange 6, Acid Orange 7, Methyl Orange, and Methyl Red under anaerobic conditions in comparison to aerobic conditions. In the presence of oxygen, only Methyl Red underwent decomposition, while under oxygen-free conditions, all remaining substances were fully decolourised under the action of a methanogenous consortium of microorganisms. The products of reduction of the azo bond are determined in the case of each dye. Introduction of additional acceptors of electrons (sulfate and nitrate) had a negative influence on the discoloration of azo dyes. Addition of ethanol as an available organic cosubstrate accelerated decomposition of azo dyes both under methanogenous and sulfate- and nitrate-reducing conditions. There is no direct correlation between the rates of conversion of azo dyes under anaerobic conditions or their toxicity to acetoclastic methanogens. Changes in the morphological composition of the community decolouring an azo dye depended on the duration of its impact on microorganisms. The mechanism of the reduction of the azo bond under the action of substances acting as mediators is explained. These substances are products of the metabolism of the microbial community in anaerobic conditions. It is shown that the supposed mediators NADH and sulfide efficiently decolourise azo dyes in a cell-free system, while riboflavin significantly increased the rate of conversion of substrates in recurrent cycles of discoloration only in the presence of an anaerobic microbial consortium.  相似文献   

7.
Biodegradation of anthropogenic pollutants in shallow aquifers is an important microbial ecosystem service which is mainly brought about by indigenous anaerobic microorganisms. For the management of contaminated sites, risk assessment and control of natural attenuation, the assessment of in situ biodegradation and the underlying microbial processes is essential. The development of novel molecular methods, “omics” approaches, and high-throughput techniques has revealed new insight into complex microbial communities and their functions in anoxic environmental systems. This review summarizes recent advances in the application of molecular methods to study anaerobic microbial communities in contaminated terrestrial subsurface ecosystems. We focus on current approaches to analyze composition, dynamics, and functional diversity of subsurface communities, to link identity to activity and metabolic function, and to identify the ecophysiological role of not yet cultured microbes and syntrophic consortia. We discuss recent molecular surveys of contaminated sites from an ecological viewpoint regarding degrader ecotypes, abiotic factors shaping anaerobic communities, and biotic interactions underpinning the importance of microbial cooperation for microbial ecosystem services such as contaminant degradation.  相似文献   

8.
Time-series DNA-stable isotope probing (SIP) was used to identify the microbes assimilating carbon from [(13)C]toluene under nitrate- or sulfate-amended conditions in a range of inoculum sources, including uncontaminated and contaminated soil and wastewater treatment samples. In all, five different phylotypes were found to be responsible for toluene degradation, and these included previously identified toluene degraders as well as novel toluene-degrading microorganisms. In microcosms constructed from granular sludge and amended with nitrate, the putative toluene degraders were classified in the genus Thauera, whereas in nitrate-amended microcosms constructed from a different source (agricultural soil), microorganisms in the family Comamonadaceae (genus unclassified) were the key putative degraders. In one set of sulfate-amended microcosms (agricultural soil), the putative toluene degraders were identified as belonging to the class Clostridia (genus Desulfosporosinus), while in other sulfate-amended microcosms, the putative degraders were in the class Deltaproteobacteria, within the family Syntrophobacteraceae (digester sludge) or Desulfobulbaceae (contaminated soil) (genus unclassified for both). Partial benzylsuccinate synthase gene (bssA, the functional gene for anaerobic toluene degradation) sequences were obtained for some samples, and quantitative PCR targeting this gene, along with SIP, was further used to confirm anaerobic toluene degradation by the identified species. The study illustrates the diversity of toluene degraders across different environments and highlights the utility of ribosomal and functional gene-based SIP for linking function with identity in microbial communities.  相似文献   

9.
Anaerobic benzene degradation was confirmed in microbial communities enriched from Baltimore Harbor (Baltimore, MD) sediments under methanogenic conditions. Molecular characterization based on 16S rDNA gene sequences revealed that the strains in the communities were diversely affiliated with such phylogenetic branches as the Bacteroidetes, Euryarchaeota, Firmicutes, and Thermotogae phyla. Of interest was that the majority of the microbial populations detected in these cultures were closely related to the members of dechlorinating microbial communities. Further, some of those species were previously found in naphthalene- or phenanthrene-degrading methanogenic communities. Finally, this result could be used to design targeted isolation strategies for anaerobic benzene-degrading strains under methanogenic conditions.  相似文献   

10.
degradation of a range of aromatic substrates by anaerobic microbial communities was studied. Active methanogenic microbial communities decomposing aminoaromatic acids and azo dyes into CH4 and CO2 were isolated. Products of primary conversion were found to be 2-hydroxybenzyl and benzyl alcohols gradually transforming into benzoate. It was shown that isolated microbial communities are capable of converting the initial substrates—benzyl alcohol, benzoate, salicylic acid, and azo dye Acid Orange 6—into biogas without a lag-phase but with different velocities. Aromatic and linear intermediates of biodegradation of aromatic amines by obtained enrichment cultures were determined for the first time. Selective effect of aromatic substrates on a microbial community that was expressed in decrease in diversity and gradual change of dominant morphotypes was revealed.  相似文献   

11.
Destruction of a number of aromatic substrates by anaerobic microbial communities was studied. Active methanogenic microbial communities decomposing aminoaromatic acids and azo dyes into CH4 and CO2 were isolated. Products of primary conversion were found to be 2-hydroxybenzyl and benzyl alcohols gradually transforming into benzoate. It was shown that isolated microbial communities are capable of converting the initial substrates--benzyl alcohol, benzoate, salicylic acid, and golden yellow azo dye--into biogas without a lag-phase but with different velocities. Aromatic and linear intermediates of biodestruction of aromatic amines by obtained enrichment cultures were determined for the first time. Selective effect of aromatic substrates on a microbial community that was expressed in decrease in diversity and gradual change of dominant morphotypes was revealed.  相似文献   

12.
Performance stability is a key issue when managing anaerobic digesters. However it can be affected by external disturbances caused by micropollutants. In this study the influence of phenol on the methanization of cellulose was evaluated through batch toxicity assays. Special attention was given to the dynamics of microbial communities by means of automated ribosomal intergenic spacer analysis. We observed that, as phenol concentrations increased, the different steps of anaerobic cellulose digestion were unevenly and progressively affected, methanogenesis being the most sensitive: specific methanogenic activity was half-inhibited at 1.40 g/L of phenol, whereas hydrolysis of cellulose and its fermentation to VFA were observed at up to 2.00 g/L. Depending on the level of phenol, microbial communities resisted either through physiological or structural adaptation. Thus, performances at 0.50 g/L were maintained in spite of the microbial community’s shift. However, the communities’ ability to adapt was limited and performances decreased drastically beyond 2.00 g/L of phenol.  相似文献   

13.
The project is devoted to the screening of active anaerobic microbial communities which produce biogas via the decomposition of cellulose in thermophilic conditions (+55°C). Twenty-four samples were isolated from different natural and anthropogenic sources that contain desired microbial organisms. Growth medium was chosen to optimize the conditions for proliferation and selection of cellulolytic and methanogenic microorganisms. During the study of biogas formation dynamics, the most productive communities that remain active during five passages were selected. The biogas composition (methane, carbon dioxide, hydrogen) was investigated by gas chromatography. On average, the methane content in the gas mixture reached 60%. Microscopic studies revealed the presence of various morphotypes of microbial cells; their ratio varied during the stabilization of communities. The significance of the research on the transformation of cellulose into biogas is discussed.  相似文献   

14.
The spatial successions of bacterial and archaeal communities in anaerobic digestion were investigated in a glucose-degrading five-compartment anaerobic baffled reactor (ABR). The distributions of H2-producing acetogens, H2-utilizing acetogens and methanogens in different anaerobic-digestion stages were quantitatively analyzed using functional probes. The results show that the acidogenesis stage and acetogenesis stage were located in the first two compartments, while the methanogenesis were located in the last two compartments. In acidogenesis/acetogenesis stage of anaerobic digestion, H2-producing acetogens (19.7%) and H2-utilizing acetogens (8.3%) were the dominant bacterial community. While in methanogenesis stage, methanogens became the dominant (40.2%) with H2-producing acetogens and H2-utilizing acetogens only accounting for 6.6% and 4.8%, respectively. With the bacterial population decreasing from 7.2 ± 0.5 × 1012 cells mL−1 to 0.6 ± 0.3 × 1012 cells mL−1 along water flowing direction, their diversity increased from 2.79 to 299. The acidogenic bacteria, such as Lactococcus sp., Uncultured Firmicutes bacterium, and Uncultured Clostridium sp., etc., dominated in the acidogenesis/acetogenesis stage, while Uncultured Desulfobacterales bacterium became dominant in the methanogenesis stage. A two-stage anaerobic process may be suitable for easily degradable organic matters removal.  相似文献   

15.
Lengthy adaptation periods in laboratory studies evaluating the potential for contaminant biodegradation in natural or engineered environments may indicate that the native microbial communities are not metabolizing the contaminants in situ. In this study, we characterized the adaptation period preceding the biodegradation of 3-chlorobenzoate in anaerobic communities derived from lake sediment and wastewater sludge digesters. The importance of alternative mechanisms of adaptation of the anaerobic communities to 3-chlorobenzoate was evaluated by monitoring the concentrations of metabolic substrates and products as well as the levels of total small subunit (SSU) rRNA and SSU rRNA from populations thought to be important in 3-chlorobenzoate mineralization. The anaerobic environments from which the 3-chlorobenzoate-degrading communities were derived contained different levels of endogenous substrates. Increasing methane levels in the digester and sediment communities and decreasing chemical oxygen demand concentrations in the sediment community during the adaptation periods revealed that endogenous substrates were preferentially utilized relative to 3-chlorobenzoate. Methane and chemical oxygen demand concentrations leveled off concomitantly with the onset of 3-chlorobenzoate biodegradation, suggesting that depletion of the preferentially degraded endogenous substrates stimulated 3-chlorobenzoate metabolism. Consistent with these observations, adaptation to 3-chlorobenzoate occurred more rapidly in digester samples that were depleted of endogenous substrates compared to samples that contained high levels of these biodegradable compounds. Other potential adaptation mechanisms, e.g., genetic change or selective population enrichment, appeared to be less important based on the reproducibility and relative lengths of the adaptation events, trends in the SSU rRNA levels, and/or amplification of SSU rRNA genes from key populations.  相似文献   

16.
In this study a microbial community suitable for anaerobic digestion of carrot pomace was developed from inocula obtained from natural environmental sources. The changes along the process were monitored using pyrosequencing of the 16S rRNA gene. As the community adapted from a diverse natural community to a community with a definite function, diversity decreased drastically. Major bacterial groups remaining after enrichment were Bacilli (31-45.3%), Porphyromonadaceae (12.1-24.8%) and Spirochaetes (12.5-18.5%). The archaeal population was even less diverse and mainly represented by a single OTU that was 99.7% similar to Methanosarcina mazei. One enrichment which failed to produce large amounts of methane had shifts in the bacterial populations and loss of methanogenic archaea.  相似文献   

17.
The anaerobic oxidation of methane (AOM) is a major sink for methane on Earth and is performed by consortia of methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Here we present a comparative study using in vitro stable isotope probing to examine methane and carbon dioxide assimilation into microbial biomass. Three sediment types comprising different methane-oxidizing communities (ANME-1 and -2 mixture from the Black Sea, ANME-2a from Hydrate Ridge and ANME-2c from the Gullfaks oil field) were incubated in replicate flow-through systems with methane-enriched anaerobic seawater medium for 5–6 months amended with either 13CH4 or H13CO3-. In all three sediment types methane was anaerobically oxidized in a 1:1 stoichiometric ratio compared with sulfate reduction. Similar amounts of 13CH4 or 13CO2 were assimilated into characteristic archaeal lipids, indicating a direct assimilation of both carbon sources into ANME biomass. Specific bacterial fatty acids assigned to the partner SRB were almost exclusively labelled by 13CO2, but only in the presence of methane as energy source and not during control incubations without methane. This indicates an autotrophic growth of the ANME-associated SRB and supports previous hypotheses of an electron shuttle between the consortium partners. Carbon assimilation efficiencies of the methanotrophic consortia were low, with only 0.25–1.3 mol% of the methane oxidized.  相似文献   

18.
Cellulase activity of a haloalkaliphilic anaerobic bacterium, strain Z-7026   总被引:3,自引:0,他引:3  
Summary The cellulolytic activity of an alkaliphilic obligate anaerobic bacterium, Z-7026, which was isolated from the microbial community of soda-lake sediments and belongs to the cluster III of Clostridia with low G+C content, was studied. The bacterium was capable of growing in media with cellulose or cellobiose as the sole energy sources. Its maximal growth rate on cellobiose (0.042–0.046 h–1) was observed at an initial pH value of 8.5–9.0, whereas the maximal rate of cellulase synthesis, assayed by using a novel fluorimetric approach, was found to be 0.1 h–1 at pH 8–8.5. Secreted proteins revealed high affinity for cellulose and were represented by two major forms of molecular masses of 75 and 84 kDa, whereas the general protein composition of the precipitated and cellulose-bound preparations was similar to cellulosome subunits of Clostridium thermocellum. The optimum pH of the partially purified enzyme preparation towards both amorphous and crystalline cellulose was in the range 6–9, with more than 70% and less than 50% of maximal activity being retained at pH 9.2 and 5.0, respectively.  相似文献   

19.
Analysis of intracellular metabolites is essential to delineate metabolic pathways of microbial communities for evaluation and optimization of anaerobic fermentation processes. The metabolomics are reported for a microbial community during two stages of anaerobic fermentation of corn stalk in a biogas digester using GC–MS. Acetonitrile/methanol/water (2:2:1, by vol) was the best extraction solvent for microbial community analysis because it yielded the largest number of peaks (>200), the highest mean summed value of identified metabolites (23) and the best reproducibility with a coefficient of variation of 30 % among four different extraction methods. Inter-stage comparison of metabolite profiles showed increased levels of sugars and sugar alcohols during methanogenesis and fatty acids during acidogenesis. Identification of stage-specific metabolic pathways using metabolomics can therefore assist in monitoring and optimization of the microbial community for increased biogas production during anaerobic fermentation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号