首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The regiospecific or preferential ω-hydroxylation of hydrocarbon chains is thermodynamically disfavored because the ease of C–H bond hydroxylation depends on the bond strength, and the primary C–H bond of a terminal methyl group is stronger than the secondary or tertiary C–H bond adjacent to it. The hydroxylation reaction will therefore occur primarily at the adjacent secondary or tertiary C–H bond unless the protein structure specifically enforces primary C–H bond oxidation. Here we review the classes of enzymes that catalyze ω-hydroxylation and our current understanding of the structural features that promote the ω-hydroxylation of unbranched and methyl-branched hydrocarbon chains. The evidence indicates that steric constraints are used to favor reaction at the ω-site rather than at the more reactive (ω−1)-site.  相似文献   

2.
The steroid 11ß-hydroxylase activity of the fungus Cochliobolus lunatus was increased about 100-fold by cultivation of mycelia for 4–5 h with 20-hydroxymethyl-1,4-pregnadien-3-one. Cell-free extracts revealed a maximum activity of 45 nmol 11ß-hydroxyprogesterone/h·mg protein in the 100,000 g pellet fraction. The 11ß-hydroxylation was dependent on NADPH. The formation of 11ß-hydroxyprogesterone correlated linearly with the cytochrome P450 concentration. The fungal 11ß-hydroxylase transformed both 21-methyl and 21-hydroxymethyl steroids. The enzyme showed a broader substrate specificity and lower regioselectivity as compared with the adrenal cytochrome P45011ß system. The fungal cytochrome P450 was partially purified to a specific content of 700 pmol P450/mg protein. Western blots showed that polyclonal antibodies against cytochrome P45011 from Rhizopus nigricans cross-react with a 60 kD protein of partially purified fractions. The NADPH-cytochrome c reductase was enriched up to a specific activity of 20 U/mg protein. Polyclonal antibodies against NADPH-cytochrome P450 reductases from Candida maltosa and rat liver cross-reacted with the fungal reductase. It is concluded that the 11ß-hydroxylase of Cochliobolus lunatus represents a microsomal two-component monooxygenase system which is composed of a cytochrome P450 (Mr 60 kD) and a NADPH-cytochrome P450 reductase (Mr 79 kD).  相似文献   

3.
Regio- and stereo-selective hydroxylation of bile acids is a valuable reaction but often lacks suitable catalysts. In the research, semi-rational design in protein engineering techniques had been applied on cytochrome P450 monooxygenase CYP102A1 (P450 BM3) from Bacillus megaterium, and a mutation library had been set up for the 1β-hydroxylation of lithocholic acid (LCA) to produce 1β-OH-LCA. After four rounds of mutagenesis, a key residue at W72 was identified to regulate the regio- and stereo-selectivity at C1 of LCA. A quadruple variant (G87A/W72T/A74L/L181M) was identified to reach 99.4% selectivity of 1β-hydroxylation and substrate conversion of 68.1% resulting in a 21.5-fold higher level of 1β-OH-LCA production than the template LG-23. Molecular docking indicated that introducing hydrogen bonds at W72 was responsible for enhancing selectivity and catalytic activity, which gave some insights into the structure-based understanding of Csp3-H activation by the developed P450 BM3 mutants.  相似文献   

4.
 Until recently, the majority of experts would have replied "yes" to the question in the title of this commentary. In fact, the answer is not so evident. Recent investigations have permitted us to gain insight into the similarities and the differences between the mechanisms of these two remarkable monooxygenases. In the generally accepted mechanism of cytochrome P-450, reductive activation of dioxygen and the presence of an external electrophile leads to heterolytic O-O bond cleavage to yield water and a highly electron-deficient terminally bound iron oxenoid species that is capable of attacking unactivated hydrocarbons by an electrophilic mechanism. The recently suggested "bridge mechanism" for sMMO involves homolytic O-O bond cleavage of a diferric "side-on" peroxide intermediate to yield a bridged intermediate bis-μ-oxo-diiron(IV) species, in which both oxygen atoms are derived from the dioxygen molecule. In contrast to terminal oxenoid species, this bridged diiron(IV) intermediate has stronger steric selectivity for substrates; this explains the unusual selectivity observed in sMMO alkane oxidation. Received: 7 October 1997 / Accepted: 4 February 1998  相似文献   

5.
Cell-suspension cultures of Linum flavum L. (Linaceae) synthesize and accumulate aryltetrahydronaphthalene lignans with 6-methoxypodophyllotoxin as the main component. The experimental data indicate that the biosynthesis of 6-methoxypodophyllotoxin occurs via deoxypodophyllotoxin, beta-peltatin, and beta-peltatin-A methyl ether. The enzyme catalyzing the introduction of the hydroxyl group in position 6 is deoxypodophyllotoxin 6-hydroxylase (DOP6H). The enzyme was shown to be a cytochrome P450-dependent monooxygenase by blue-light reversion of carbon monoxide inhibition and inhibition by cytochrome c. DOP6H is a membrane-bound microsomal enzyme with a pH optimum of 7.6 and a temperature optimum of 26 degrees C. Deoxypodophyllotoxin is specifically accepted with an apparent Km of 20 microM and a saturation concentration of 200 microM; 4'-demethyldeoxypodophyllotoxin is the only other tested substrate accepted for hydroxylation. DOP6H predominantly accepts NADPH as electron donor; NADH can only sustain low hydroxylation activities. A synergistic effect of NADPH and NADH is not observed. The enzyme is saturated around 250 microM NADPH; the apparent Km for this substrate is 36 microM.  相似文献   

6.
Wild-type cytochrome P450 monooxygenase from Bacillus megaterium (P450 BM-3) has a low hydroxylation activity for β-ionone (<1 min−1). Substitution of phenylalanine by valine at position 87 led to a more than 100-fold increase in β-ionone hydroxylation activity (115 min−1). Enzyme activity could be further increased by both site-directed and random mutagenesis. The mutant R47L Y51F F87V, designed by site-directed mutagenesis, and the mutant A74E F87V P386S, obtained after two rounds of error-prone polymerase chain reaction, exhibited an increase in activity of up to 300-fold compared to the wild-type enzyme. The triple mutant R47 LY51F F87V exhibited moderate enantioselectivity, forming (R)-4-hydroxy-β-ionone with an optical purity of 39%. All mutants regioselectively converted β-ionone into 4-hydroxy-β-ionone. The regioselectivity is determined amongst others by the absolute configuration of the substrate.  相似文献   

7.
Tanaka H  Nogi T  Yasui N  Iwasaki K  Takagi J 《PloS one》2011,6(4):e19411
Neurexins (Nrxs) are presynaptic membrane proteins with a single membrane-spanning domain that mediate asymmetric trans-synaptic cell adhesion by binding to their postsynaptic receptor neuroligins. α-Nrx has a large extracellular region comprised of multiple copies of laminin, neurexin, sex-hormone-binding globulin (LNS) domains and epidermal growth factor (EGF) modules, while that of β-Nrx has but a single LNS domain. It has long been known that the larger α-Nrx and the shorter β-Nrx show distinct binding behaviors toward different isoforms/variants of neuroligins, although the underlying mechanism has yet to be elucidated. Here, we describe the crystal structure of a fragment corresponding to the C-terminal one-third of the Nrx1α ectodomain, consisting of LNS5-EGF3-LNS6. The 2.3 Å-resolution structure revealed the presence of a domain configuration that was rigidified by inter-domain contacts, as opposed to the more common flexible “beads-on-a-string” arrangement. Although the neuroligin-binding site on the LNS6 domain was completely exposed, the location of the α-Nrx specific LNS5-EGF3 segment proved incompatible with the loop segment inserted in the B+ neuroligin variant, which explains the variant-specific neuroligin recognition capability observed in α-Nrx. This, combined with a low-resolution molecular envelope obtained by a single particle reconstruction performed on negatively stained full-length Nrx1α sample, allowed us to derive a structural model of the α-Nrx ectodomain. This model will help us understand not only how the large α-Nrx ectodomain is accommodated in the synaptic cleft, but also how the trans-synaptic adhesion mediated by α- and β-Nrxs could differentially affect synaptic structure and function.  相似文献   

8.
A form of cytochrome P-450 which comigrates with cytochrome P-450LM4 (molecular weight, 55000) on SDS-polyacrylamide gel was purified from liver microsomes of cholestyramine-treated rabbits. This form of cytochrome P-450 catalyzed the 7α-hydroxylation of cholesterol with an activity of 37.5 pmol/min per nmol cytochrome P-450 in the reconstituted enzyme system containing cytochrome P-450 and NADPH-cytochrome P-450 reductase. The substrate specificity of this form of cytochrome P-450 was compared with cytochrome P-450LM4 isolated from phenobarbital- and β-naphthoflavone-treated rabbit liver microsomes. The latter two isoenzymes do not catalyze 7α-hydroxylation of cholesterol, but are more active in O-deethylation of 7-ethoxycoumarin and p-nitrophenetole. Ouchterlony double diffusion revealed cross-reactivity between anti-P-450LM4 (phenobarbital) IgG and cytochrome P-450 isolated from cholestyramine- or β-naphthoflavone-treated rabbit liver microsomes. A two-dimensional iodinated tryptic peptide fingerprint indicated only minor structural differences among these three cytochrome P-450LM4 preparations.  相似文献   

9.
Alzheimer's disease, the most common cause of dementia in the elderly and characterized by the deposition and accumulation of plaques, is composed in part of β-amyloid (Aβ) peptides, loss of neurons, and the accumulation of neurofibrillary tangles. Here, we describe ponezumab, a humanized monoclonal antibody, and show how it binds specifically to the carboxyl (C)-terminus of Aβ40. Ponezumab can label Aβ that is deposited in brain parenchyma found in sections from Alzheimer's disease casualties and in transgenic mouse models that overexpress Aβ. Importantly, ponezumab does not label full-length, non-cleaved amyloid precursor protein on the cell surface. The C-terminal epitope of the soluble Aβ present in the circulation appears to be available for ponezumab binding because systemic administration of ponezumab greatly elevates plasma Aβ40 levels in a dose-dependent fashion after administration to a mouse model that overexpress human Aβ. Administration of ponezumab to transgenic mice also led to a dose-dependent reduction in hippocampal amyloid load. To further explore the nature of ponezumab binding to Aβ40, we determined the X-ray crystal structure of ponezumab in complex with Aβ40 and found that the Aβ40 carboxyl moiety makes extensive contacts with ponezumab. Furthermore, the structure-function analysis supported this critical requirement for carboxy group of AβV40 in the Aβ-ponezumab interaction. These findings provide novel structural insights into the in vivo conformation of the C-terminus of Aβ40 and the brain Aβ-lowering efficacy that we observed following administration of ponezumab in transgenic mouse models.  相似文献   

10.
The differences in efficacy and molecular mechanisms of platinum based anti-cancer drugs cisplatin (CP) and oxaliplatin (OX) have been hypothesized to be in part due to the differential binding affinity of cellular and damage recognition proteins to CP and OX adducts formed on adjacent guanines in genomic DNA. HMGB1a in particular exhibits higher binding affinity to CP-GG adducts, and the extent of discrimination between CP- and OX-GG adducts is dependent on the bases flanking the adducts. However, the structural basis for this differential binding is not known. Here, we show that the conformational dynamics of CP- and OX-GG adducts are distinct and depend on the sequence context of the adduct. Molecular dynamics simulations of the Pt-GG adducts in the TGGA sequence context revealed that even though the major conformations of CP- and OX-GG adducts were similar, the minor conformations were distinct. Using the pattern of hydrogen bond formation between the Pt–ammines and the adjacent DNA bases, we identified the major and minor conformations sampled by Pt–DNA. We found that the minor conformations sampled exclusively by the CP-GG adduct exhibit structural properties that favor binding by HMGB1a, which may explain its higher binding affinity to CP-GG adducts, while these conformations are not sampled by OX-GG adducts because of the constraints imposed by its cyclohexane ring, which may explain the negligible binding affinity of HMGB1a for OX-GG adducts in the TGGA sequence context. Based on these results, we postulate that the constraints imposed by the cyclohexane ring of OX affect the DNA conformations explored by OX-GG adduct compared to those of CP-GG adduct, which may influence the binding affinities of HMG-domain proteins for Pt-GG adducts, and that these conformations are further influenced by the DNA sequence context of the Pt-GG adduct.  相似文献   

11.
25-Hydroxy-Grundmann’s ketone is a key building block in the chemical synthesis of vitamin D3 and its derivatives through convergent routes. Generally, the chemical synthesis of this compound involves tedious procedures and results in a mixture of several products. Recently, the selective hydroxylation of Grundmann’s ketone at position C25 by cytochrome P450 (CYP) 154E1 from Thermobifida fusca YX was described. In this study a recombinant whole-cell biocatalyst was developed and applied for hydroxylation of Grundmann’s ketone. Biotransformation was performed by Escherichia coli cells expressing CYP154E1 along with two redox partner systems, Pdx/PdR and YkuN/FdR. The system comprising CYP154E1/Pdx/PdR showed the highest production of 25-hydroxy-Grundmann’s ketone and resulted in 1.1 mM (300 mg L−1) product concentration.  相似文献   

12.
Nicotine is the primary addictive agent in tobacco products and is metabolized in humans by CYP2A6. Decreased CYP2A6 activity has been associated with decreased smoking. The extrahepatic enzyme, CYP2A13 (94% identical to CYP2A6) also catalyzes the metabolism of nicotine, but is most noted for its role in the metabolic activation of the tobacco specific lung carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). In this study, the inhibition and potential inactivation of CYP2A6 and CYP2A13 by two tobacco constituents, 1-methyl-4-(3-pyridinyl) pyrrole (β-nicotyrine) and (-)-menthol were characterized and compared to the potent mechanism based inactivator of CYP2A6, menthofuran. The effect of these compounds on CYP2A6 and CYP2A13 activity was significantly different. (-)-Menthol was a more efficient inhibitor of CYP2A13 than of CYP2A6 (KI, 8.2 μM and 110 μM, respectively). β-Nicotyrine was a potent inhibitor of CYP2A13 (KI, 0.17 μM). Neither menthol nor β-nicotyrine was an inactivator of CYP2A13. Whereas, β-nicotyrine was a mechanism based inactivator of CYP2A6 (KI(inact), 106 μM, kinact was 0.61 min(-1)). Similarly, menthofuran, a potent mechanism based inactivator of CYP2A6 did not inactivate CYP2A13. Menthofuran was an inhibitor of CYPA13 (KI, 1.24 μM). The inactivation of CYP2A6 by either β-nicotyrine or menthofuran was not due to modification of the heme and was likely due to modification of the apo-protein. These studies suggest that β-nicotyrine, but not menthol may influence nicotine and NNK metabolism in smokers.  相似文献   

13.
The synthesis of multivalent pyrrolidine iminosugars via CuAAC click reaction between different pyrrolidine-azide derivatives and tri- or hexavalent alkynyl scaffolds is reported. The new multimeric compounds, together with the monomeric reference, were evaluated as inhibitors against two homologous GH1 β-glucosidases (BglA and BglB from Paenibacillus polymyxa). The multivalent inhibitors containing an aromatic moiety in the linker between the pyrrolidine and the scaffold inhibited the octameric BglA (µM range) but did not show affinity against the monomeric BglB, despite the similarity between the active site of both enzymes. A modest multivalent effect (rp/n = 12) was detected for the hexavalent inhibitor 12. Structural analysis of the complexes between the monomeric and the trimeric iminosugar inhibitors (4 and 10) and BglA showed the insertion of the inhibitors at the active site of BglA, confirming a competitive mode of inhibition as indicated by enzyme kinetics. Additionally, structural comparison of the BglA/4 complex with the reported BglB/2F-glucose complex illustrates the key determinants responsible for the inhibitory effect and explains the reasons of the inhibition of BglA and the no inhibition of BglB. Potential inhibition of other β-glucosidases with therapeutic relevance is discussed under the light of these observations.  相似文献   

14.
15.
16.
Recently we have developed a new approach to study protein–protein interactions using Fourier transform infrared spectroscopy in combination with titration experiments and principal component analysis (FTIR-TPCA). In the present paper we review the FTIR-TPCA results obtained for the interaction between cytochrome P450 and the redox partner protein in two P450 systems, the Pseudomonas putida P450cam (CYP101) with putidaredoxin (P450cam–Pdx), and the Bacillus megaterium P450BM-3 (CYP102) heme domain with the FMN domain (P450BMP–FMND). Both P450 systems reveal similarities in the structural changes that occur upon redox partner complex formation. These involve an increase in β-sheets and α-helix content, a decrease in the population of random coil/310-helix structure, a redistribution of turn structures within the interacting proteins and changes in the protonation states or hydrogen-bonding of amino acid carboxylic side chains. We discuss in detail the P450cam–Pdx interaction in comparison with literature data and conclusions drawn from experiments obtained by other spectroscopic techniques. The results are also interpreted in the context of a 3D structural model of the Pdx–P450cam complex.  相似文献   

17.
Woods CM  Fernandez C  Kunze KL  Atkins WM 《Biochemistry》2011,50(46):10041-10051
Cytochrome P450 3A4 (CYP3A4) is the dominant xenobiotic metabolizing CYP. Despite great interest in CYP enzymology, two in vitro aspects of CYP3A4 catalysis are still not well understood, namely, sequential metabolism and allosteric activation. We have therefore investigated such a system in which both phenomena are present. Here we report that the sequential metabolism of Nile Red (NR) is accelerated by the heterotropic allosteric effector α-naphthoflavone (ANF). ANF increases the rates of formation for NR metabolites M1 and M2 and also perturbs the metabolite ratio in favor of M2. Thus, ANF has as an allosteric effect on a kinetic branch point. Co-incubating deuterium-labeled NR and unlabeled M1, we show that ANF increases k(cat)/k(off) ~1.8-fold in favor of the k(cat) of M2 production. Steady-state metabolic experiments are analyzed using a kinetic model in which the enzyme and substrates are not in rapid equilibrium, and this distinction allows for the estimation of rates of catalysis for the formation of both the primary (M1) and secondary (M2) products, as well as the partitioning of enzyme between these states. These results are compared with those of earlier spectroscopic investigations of NR and ANF cooperativity, and a mechanism of ANF heteroactivation is presented that involves effects on substrate off rate and coupling efficiency.  相似文献   

18.
α-Tocopherol (α-TOH) is the primary lipophilic radical trapping antioxidant in human tissues. Oxidative catabolism of α-tocopherol (αTOH) is initiated by ω-hydroxylation of the terminal carbon (C-13) of the isoprenoid sidechain followed by oxidative transformations that sequentially truncate the chain to yield the 2,5,7,8-tetramethyl(3′carboxyethyl)-6-hydroxychroman (α-CEHC). After conjugation to glucuronic acid, 3′-carboxyethyl-6-hydroxychroman glucuronide is excreted in urine. We report here that the same enzyme that accomplishes this task, the cytochrome P450 monooxygenase CYP-4F2, can also ω-hydroxylate the terminal carbon of α-tocopheryl quinone. A standard sample of ω-OH-α-tocopheryl quinone (ω-OH-α-TQ) was synthesized as a mixture of stereoisomers by allylic oxidation of α-tocotrienol using SeO2 followed by double-bond reduction and oxidation to the quinone. After incubating human liver microsomes or insect cell microsomes expressing only recombinant human CYP-4F2, cytochrome b5, and NADPH P450 reductase with d6-α-tocopheryl quinone (d6-αTQ), we showed that the ω-hydroxylated (13-OH) d6-α-TQ was produced. We further identified the production of the terminal carboxylic acid d6-13-COOH-αTQ. The ramifications of this discovery to the understanding of tocopherol utilization and metabolism, including the quantitative importance of the αTQ-ω-hydroxylase pathway in humans, are discussed.  相似文献   

19.
Different species of Rhizobium were successfully introduced into the extracellular slime of Nostoc paludosum (Kütz) Elenk, strain 18; cyanobacteria did not eliminate them and exhibited no specificity to the introduced species. Both partners were shown to exist in a self-sufficient manner in an artificial consortium, the stability of which is determined by the technology of growing the cultures in collections. Cyanobacteria act as carriers of introduced satellites, providing contact with the inoculated material through the slime, and increase the nitrogen-fixing ability of legume plants due to the increase of the number and activity of nodules. The fact of penetration of cyanobacterial hormogonia into the nodules has been noted. The treatment of seeds by the consortium resulted in an increase of the harvest as compared with the standard methods of nitragin treatment of legumes.  相似文献   

20.
The hydroxyl radical is a powerful oxidant that generates DNA lesions including the stereoisomeric R and S 5′,8-cyclo-2′-deoxyadenosine (cdA) and 5′,8-cyclo-2′-deoxyguanosine (cdG) pairs that have been detected in cellular DNA. Unlike some other oxidatively generated DNA lesions, cdG and cdA are repaired by the human nucleotide excision repair (NER) apparatus. The relative NER efficiencies of all four cyclopurines were measured and compared in identical human HeLa cell extracts for the first time under identical conditions, using identical sequence contexts. The cdA and cdG lesions were excised with similar efficiencies, but the efficiencies for both 5′R cyclopurines were greater by a factor of ∼2 than for the 5′S lesions. Molecular modeling and dynamics simulations have revealed structural and energetic origins of this difference in NER-incision efficiencies. These lesions cause greater DNA backbone distortions and dynamics relative to unmodified DNA in 5′R than in 5′S stereoisomers, producing greater impairment in van der Waals stacking interaction energies in the 5′R cases. The locally impaired stacking interaction energies correlate with relative NER incision efficiencies, and explain these results on a structural basis in terms of differences in dynamic perturbations of the DNA backbone imposed by the R and S covalent 5′,8 bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号