首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.

The co-culture system of denitrifying anaerobic methane oxidation (DAMO) and anaerobic ammonium oxidation (Anammox) has a potential application in wastewater treatment plant. This study explored the effects of permutation and combination of nitrate, nitrite, and ammonium on the culture enrichment from freshwater sediments. The co-existence of NO3 , NO2 , and NH4 + shortened the enrichment time from 75 to 30 days and achieved a total nitrogen removal rate of 106.5 mg/L/day on day 132. Even though ammonium addition led to Anammox bacteria increase and a higher nitrogen removal rate, DAMO bacteria still dominated in different reactors with the highest proportion of 64.7% and the maximum abundance was 3.07 ± 0.25 × 108 copies/L (increased by five orders of magnitude) in the nitrite reactor. DAMO bacteria showed greater diversity in the nitrate reactor, and one was similar to M. oxyfera; DAMO bacteria in the nitrite reactor were relatively unified and similar to M. sinica. Interestingly, no DAMO archaea were found in the nitrate reactor. This study will improve the understanding of the impact of nitrogen source on DAMO and Anammox co-culture enrichment.

  相似文献   

4.
Nitrite-dependent anaerobic oxidation of methane (n-damo) and ammonium (anammox) are two recently discovered processes in the nitrogen cycle that are catalyzed by n-damo bacteria, including "Candidatus Methylomirabilis oxyfera," and anammox bacteria, respectively. The feasibility of coculturing anammox and n-damo bacteria is important for implementation in wastewater treatment systems that contain substantial amounts of both methane and ammonium. Here we tested this possible coexistence experimentally. To obtain such a coculture, ammonium was fed to a stable enrichment culture of n-damo bacteria that still contained some residual anammox bacteria. The ammonium supplied to the reactor was consumed rapidly and could be gradually increased from 1 to 20 mM/day. The enriched coculture was monitored by fluorescence in situ hybridization and 16S rRNA and pmoA gene clone libraries and activity measurements. After 161 days, a coculture with about equal amounts of n-damo and anammox bacteria was established that converted nitrite at a rate of 0.1 kg-N/m(3)/day (17.2 mmol day(-1)). This indicated that the application of such a coculture for nitrogen removal may be feasible in the near future.  相似文献   

5.
6.
New perspectives on anaerobic methane oxidation   总被引:2,自引:0,他引:2  
Anaerobic methane oxidation is a globally important but poorly understood process. Four lines of evidence have recently improved our understanding of this process. First, studies of recent marine sediments indicate that a consortium of methanogens and sulphate-reducing bacteria are responsible for anaerobic methane oxidation; a mechanism of 'reverse methanogenesis' was proposed, based on the principle of interspecies hydrogen transfer. Second, studies of known methanogens under low hydrogen and high methane conditions were unable to induce methane oxidation, indicating that 'reverse methanogenesis' is not a widespread process in methanogens. Third, lipid biomarker studies detected isotopically depleted archaeal and bacterial biomarkers from marine methane vents, and indicate that Archaea are the primary consumers of methane. Finally, phylogenetic studies indicate that only specific groups of Archaea and SRB are involved in methane oxidation. This review integrates results from these recent studies to constrain the responsible mechanisms.  相似文献   

7.
8.
Due to serious eutrophication in water bodies, nitrogen removal has become a critical stage for wastewater treatment plants (WWTPs) over past decades. Conventional biological nitrogen removal processes are based on nitrification and denitrification (N/DN), and are suffering from several major drawbacks, including substantial aeration consumption, high fugitive greenhouse gas emissions, a requirement for external carbon sources, excessive sludge production and low energy recovery efficiency, and thus unable to satisfy the escalating public needs. Recently, the discovery of anaerobic ammonium oxidation (anammox) bacteria has promoted an update of conventional N/DN-based processes to autotrophic nitrogen removal. However, the application of anammox to treat domestic wastewater has been hindered mainly by unsatisfactory effluent quality with nitrogen removal efficiency below 80%. The discovery of nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) during the last decade has provided new opportunities to remove this barrier and to achieve a robust system with high-level nitrogen removal from municipal wastewater, by utilizing methane as an alternative carbon source. In the present review, opportunities and challenges for nitrate/nitrite-dependent anaerobic methane oxidation are discussed. Particularly, the prospective technologies driven by the cooperation of anammox and n-DAMO microorganisms are put forward based on previous experimental and modeling studies. Finally, a novel WWTP system acting as an energy exporter is delineated.  相似文献   

9.
Anaerobic ammonium oxidation (anammox) and nitrite-dependent anaerobic methane oxidation (n-damo) play important roles in nitrogen and carbon cycling in fresh waters but we do not know how these two processes compete for their common electron acceptor, nitrite. Here, we investigated the spatial distribution of anammox and n-damo across a range of permeable riverbed sediments. Anammox activity and gene abundance were detected in both gravel and sandy riverbeds and showed a simple, common vertical distribution pattern, while the patterns in n-damo were more complex and n-damo activity was confined to the more reduced, sandy riverbeds. Anammox was most active in surficial sediment (0–2 cm), coincident with a peak in hzsA gene abundance and nitrite. In contrast, n-damo activity peaked deeper down (4–8 cm) in the sandy riverbeds, coincident with a peak in n-damo 16S rRNA gene abundance and higher methane concentration. Pore water nitrite, methane and oxygen were key factors influencing the distribution of these two processes in permeable riverbeds. Furthermore, both anammox- and n-damo- activity were positively correlated with denitrification activity, suggesting a role for denitrification in supplying both processes with nitrite. Our data reveal spatial separation between anammox and n-damo in permeable riverbed sediments that potentially avoids them competing for nitrite.  相似文献   

10.
Anammox (anaerobic ammonium oxidation) is an environment-friendly and cost-efficient nitrogen-removal process currently applied to high-ammonium-loaded wastewaters such as anaerobic digester effluents. In these wastewaters, dissolved methane is also present and should be removed to prevent greenhouse gas emissions into the environment. Potentially, another recently discovered microbial pathway, n-damo (nitrite-dependent anaerobic methane oxidation) could be used for this purpose. In the present paper, we explore the feasibility of simultaneously removing methane and ammonium anaerobically, starting with granules from a full-scale anammox bioreactor. We describe the development of a co-culture of anammox and n-damo bacteria using a medium containing methane, ammonium and nitrite. The results are discussed in the context of other recent studies on the application of anaerobic methane- and ammonia-oxidizing bacteria for wastewater treatment.  相似文献   

11.
12.
海洋氮循环中细菌的厌氧氨氧化   总被引:5,自引:0,他引:5  
细菌厌氧氨氧化过程是在一类特殊细菌的厌氧氨氧化体内完成的以氨作为电子供体硝酸盐作为电子受体的一种新型脱氮反应.厌氧氨氧化菌的发现,改变人们对传统氮的生物地球化学循环的认识:反硝化细菌并不是大气中氮气产生的唯一生物类群.而且越来越多的证据表明,细菌厌氧氨氧化与全球的氮物质循环密切相关,估计海洋细菌的厌氧氨氧化过程占到全球海洋氮气产生的一半左右.由于氮与碳的循环密切相关,因此可以推测,细菌的厌氧氨氧化会影响大气中的二氧化碳浓度,从而对全球气候变化产生重要影响.另外,由于细菌厌氧氨氧化菌实现了氨氮的短程转化,缩短了氮素的转化过程,因此为开发更节约能源、更符合可持续发展要求的废水脱氮新技术提供了生物学基础.  相似文献   

13.
氮依赖型甲烷厌氧氧化菌(nitrite-dependent anaerobic methane oxidation bacteria,n-damo细菌,属于NC10门)是最近10年来微生物生态学领域的研究热点。然而,对该类群基于现有数据的生态分布、群落结构和系统进化的整合分析还未见报道。【目的】为了更好地将近年来针对该类群的研究做一次全面梳理,本文通过整合前人已有发表数据和结合自身实验数据两方面进行。【方法】一方面,利用NCBI数据库(数据搜集到2016年11月)中所有n-damo细菌序列对其进行生物信息学分析;另一方面,对大九湖泥炭地表层泥炭利用16S rRNA二代测序技术对该类群进行检测,并同前人数据进行对比。【结果】n-damo细菌主要在沉积物、湿地和水稻土检出;基于pmo A基因的n-damo细菌的平均检出率是基于16S rRNA基因检出率的7倍,但是这两类基因分子标记物所得到的多样性指数保持相对稳定(1.4-3.4);贫氮的大九湖泥炭其NC10的丰度仅为0.067%。【结论】n-damo类群种群相对稳定,暗示其行使的生态功能相对单一;贫氮的大九湖泥炭其极低的NC10丰度暗示氮对NC10是限制因子;具有真正氮依赖型甲烷厌氧氧化细菌的Group A可能只占很少的一部分(小于20%),暗示出该类群真正的生态潜能需要进一步评估。本次整合分析为更好的理解n-damo细菌的生活环境、评估不同基因分子标记物下n-damo细菌的检出率、不同亚类群比如Group A和Group B等的丰度和真正的潜在生态功能提供参考。  相似文献   

14.
15.
The anaerobic oxidation of methane (AOM) is a major sink for methane on Earth and is performed by consortia of methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Here we present a comparative study using in vitro stable isotope probing to examine methane and carbon dioxide assimilation into microbial biomass. Three sediment types comprising different methane-oxidizing communities (ANME-1 and -2 mixture from the Black Sea, ANME-2a from Hydrate Ridge and ANME-2c from the Gullfaks oil field) were incubated in replicate flow-through systems with methane-enriched anaerobic seawater medium for 5–6 months amended with either 13CH4 or H13CO3-. In all three sediment types methane was anaerobically oxidized in a 1:1 stoichiometric ratio compared with sulfate reduction. Similar amounts of 13CH4 or 13CO2 were assimilated into characteristic archaeal lipids, indicating a direct assimilation of both carbon sources into ANME biomass. Specific bacterial fatty acids assigned to the partner SRB were almost exclusively labelled by 13CO2, but only in the presence of methane as energy source and not during control incubations without methane. This indicates an autotrophic growth of the ANME-associated SRB and supports previous hypotheses of an electron shuttle between the consortium partners. Carbon assimilation efficiencies of the methanotrophic consortia were low, with only 0.25–1.3 mol% of the methane oxidized.  相似文献   

16.
Pseudomonas sp. strain T and Pseudomonas sp. strain K172 grow with toluene under denitrifying conditions. We demonstrated that anaerobic degradation of toluene was initiated by direct oxidation of the methyl group. Benzaldehyde and benzoate accumulated sequentially after toluene was added when cell suspensions were incubated at 5 degrees C. Strain T also grows anaerobically with m-xylene, and we demonstrated that degradation was initiated by oxidation of one methyl group. In cell suspensions incubated at 5 degrees C 3-methylbenzaldehyde and 3-methylbenzoate accumulated after m-xylene was added. Toluene- or m-xylene-grown strain T cells were induced to the same extent for oxidation of both hydrocarbons. In addition, the methyl group-oxidizing enzyme system of strain T also catalyzed the oxidation of each isomer of the chloro- and fluorotoluenes to the corresponding halogenated benzoate derivatives. In contrast, strain K172 only oxidized 4-fluorotoluene to 4-fluorobenzoate, probably because of the narrow substrate specificity of the methyl group-oxidizing enzymatic system. During anaerobic growth with toluene strains T and K172 produced two transformation products, benzylsuccinate and benzylfumarate. About 0.5% of the toluene carbon was converted to these products.  相似文献   

17.
Methyl sulfides as intermediates in the anaerobic oxidation of methane   总被引:1,自引:0,他引:1  
While it is clear that microbial consortia containing Archaea and sulfate-reducing bacteria (SRB) can mediate the anaerobic oxidation of methane (AOM), the interplay between these microorganisms remains unknown. The leading explanation of the AOM metabolism is 'reverse methanogenesis' by which a methanogenesis substrate is produced and transferred between species. Conceptually, the reversal of methanogenesis requires low H2 concentrations for energetic favourability. We used 13C-labelled CH4 as a tracer to test the effects of elevated H2 pressures on incubations of active AOM sediments from both the Eel River basin and Hydrate Ridge. In the presence of H2, we observed a minimal reduction in the rate of CH4 oxidation, and conclude H2 does not play an interspecies role in AOM. Based on these results, as well as previous work, we propose a new model for substrate transfer in AOM. In this model, methyl sulfides produced by the Archaea from both CH4 oxidation and CO2 reduction are transferred to the SRB. Metabolically, CH4 oxidation provides electrons for the energy-yielding reduction of CO2 to a methyl group ('methylogenesis'). Methylogenesis is a dominantly reductive pathway utilizing most methanogenesis enzymes in their forward direction. Incubations of seep sediments demonstrate, as would be expected from this model, that methanethiol inhibits AOM and that CO can be substituted for CH4 as the electron donor for methylogenesis.  相似文献   

18.
A strain D3 of denitrifying bacterium was isolated from an anammox reactor, and identified as Pseudomonas mendocina based on the morphological and physiological assay, Vitek test, Biolog test, (G+C) mol% content, and 16S rDNA phylogenetic analysis. As a typical denitrifying bacterium, strain D3 achieved the maximal nitrate reduction rate of 26.2 mg/(L·d) at the nitrate concentration of 88.5 mg N/L. The optimal pH and growth temperature were 7.84 and 34.9°C, respectively. Strain D3 was able to oxidize ammonia under anaerobic condition. The maximum nitrate and ammonium utilization rates were 6.37 mg/(L·d) and 3.34 mg/(L·d), respectively, and the consumption ratio of ammonia to nitrate was 1:1.91. Electron microscopic observation revealed peculiar cell in clusions in strain D3. Because of its relation to anammox activity, strain D3 was presumed to be anammoxosome. The present investigation proved that denitrifying bacteria have the anammox ability, and the results have engorged the range of anammox populations.  相似文献   

19.
The supernatant of an anaerobic digester was treated at 20 °C in two systems. The first one is a two units configuration, conformed by two sequencing batch reactors (SBR), carrying out partial nitrification and Anammox processes, respectively. Partial nitrification was achieved by granular biomass with a mean diameter of 3 mm, operating at a dissolved oxygen concentration of 2.7 mg/L. The combined system allowed the removal of nitrogen loading rates around 0.08 g N/(L d).  相似文献   

20.
A strain D3 of denitrifying bacterium was isolated from an anammox reactor,and identi-fied as Pseudomonas mendocina based on the morphological and physiological assay,Vitek test,Biolog test,(G C) mol% content,and 16S rDNA phylogenetic analysis.As a typical denitrifying bac-terium,strain D3 achieved the maximal nitrate reduction rate of 26.2 mg/(L·d) at the nitrate concen-tration of 88.5 mg N/L.The optimal pH and growth temperature were 7.84 and 34.9℃,respectively.Strain D3 was able to oxidize ammonia under anaerobic condition.The maximum nitrate and ammo-nium utilization rates were 6.37 mg/(L·d) and 3.34 mg/(L·d) ,respectively,and the consumption ratio of ammonia to nitrate was 1:1.91.Electron microscopic observation revealed peculiar cell inclusions in strain D3.Because of its relation to anammox activity,strain D3 was presumed to be anammoxosome.The present investigation proved that denitrifying bacteria have the anammox ability,and the results have engorged the range of anammox populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号